JPS63237364A - Enclosed type lead storage battery - Google Patents

Enclosed type lead storage battery

Info

Publication number
JPS63237364A
JPS63237364A JP62071261A JP7126187A JPS63237364A JP S63237364 A JPS63237364 A JP S63237364A JP 62071261 A JP62071261 A JP 62071261A JP 7126187 A JP7126187 A JP 7126187A JP S63237364 A JPS63237364 A JP S63237364A
Authority
JP
Japan
Prior art keywords
electrolyte
silica
sulfuric acid
stratification
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62071261A
Other languages
Japanese (ja)
Inventor
Yuichi Okada
祐一 岡田
Katsuto Takahashi
克仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP62071261A priority Critical patent/JPS63237364A/en
Publication of JPS63237364A publication Critical patent/JPS63237364A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • H01M10/10Immobilising of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To apply the adequate viscosity to an electrolyte and prevent the stratification of the electrolyte by adding silica fine grains to the electrolyte. CONSTITUTION:A dilute sulfuric acid electrolyte dispersed with 3-6wt.% of silica grains with the grain size of 5-100mmu is absorbed and held in an electrode plate group. If silica fine grains with the grain size of 5mmu or less are dispersed, the viscosity is made too high, the movement of sulfuric acid to the electrode plate is impaired, thus the capacity is decreased as compared with a battery not containing silica. If silica fine grains with the grain size of 100mmu or more are dispersed, the force to impair the flow down of sulfuric acid with high specific gravity is weak, thus the stratification of the electrolyte can not be prevented, and the discharge capacity is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は希硫酸電解液を極板群内に吸収保持させたリテ
ーナ式密閉形鉛蓄電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sealed lead-acid retainer battery in which a dilute sulfuric acid electrolyte is absorbed and retained within a group of electrode plates.

従来の技術とぞの問題点 正極板と負極板との間に液保持性のセパレータを配し、
このセパレーク中に希硫ff1ffi解液を自由に7!
離できない程度に含浸することを特徴とするいわゆるリ
テーナ式f!閏電池はメンテナンスフリー化の要求によ
って種々の用途に用いられ、最近では人吉量化、大形化
への期待が大きくなってき・ている。しかし、電池が大
きくなり大形の寸法の極板によって極板群を構成しよう
とすると、極板群内に含まれた硫酸電解液の上下方向の
濃度分布すなわち電解液の成層化現象が顕著になる傾向
がある。この電wI′mの成層化現客は、充電時に正負
極板から放出される濃度の高い高比重の電解液が周囲の
低比重の電解液とまじり合わず、極板表面に沿って流下
していくために起る現宋である。成層化が生じると放電
容量が低下するだけでなく、下部のB濃度の電解液に接
する正極板の劣化が促進され、寿命性能を著しく阻害す
る。流動液を有する従来の鉛蓄電池では過充電すること
により極板からガスを発生させその撹拌作用により電解
液の成層化を解消している。しかし、流動液のないリテ
ーナ式電池ではガスによる撹拌効果は期待できず、いっ
たん成層化を生じるとそれを解消するのが極めて困nで
ある。特に高形の電池になればなるほど成層化の程度は
大きくなり、その影響は著しくなる。それ故背の高い密
閉電池を設31するにあたっては、電解液の成層化が起
らないようにすることが必要である。
Problems with conventional technology A liquid-retentive separator is placed between the positive electrode plate and the negative electrode plate,
Freely pour the diluted sulfur ff1ffi solution into this separate lake!
The so-called retainer type f! is characterized by being impregnated to the extent that it cannot be separated. Lean batteries are used for a variety of purposes due to the demand for maintenance-free construction, and recently there have been growing expectations for their use in larger and heavier batteries. However, as the size of the battery grows and the electrode group is composed of plates with larger dimensions, the vertical concentration distribution of the sulfuric acid electrolyte contained in the electrode group, that is, the stratification phenomenon of the electrolyte, becomes noticeable. There is a tendency to The reason for this stratification of electricity wI'm is that the highly concentrated, high specific gravity electrolyte released from the positive and negative electrode plates during charging does not mix with the surrounding low specific gravity electrolyte and flows down along the electrode plate surface. This is the current Song Dynasty that was born in order to move on. When stratification occurs, not only does the discharge capacity decrease, but also the deterioration of the positive electrode plate in contact with the lower B-concentration electrolyte is accelerated, which significantly impairs the life performance. In conventional lead-acid batteries having a flowing liquid, overcharging causes gas to be generated from the electrode plates, and its stirring action eliminates the stratification of the electrolyte. However, in a retainer type battery without a flowing liquid, the stirring effect of gas cannot be expected, and once stratification occurs, it is extremely difficult to eliminate it. In particular, the higher the battery size, the greater the degree of stratification, and its effects become more significant. Therefore, when constructing a tall sealed battery 31, it is necessary to prevent stratification of the electrolyte.

問題点を解決するための手段 本発明は上記した事柄に鑑み電解液の成層化が起らない
リテーナ式密閉電池を提供するものである。すなわち、
極板群に電解液を吸収、保持したリテーナ式密閉電池に
おいて、電解液中にシリカ微粒子を添加することにより
?i2解液に過度な粘性を持たせ、電解液の成層化を防
止するものである。
Means for Solving the Problems In view of the above-mentioned problems, the present invention provides a sealed retainer battery in which stratification of the electrolyte does not occur. That is,
By adding silica particles to the electrolyte in a cage-type sealed battery in which the electrolyte is absorbed and retained in the electrode plate group? This is to impart excessive viscosity to the i2 solution to prevent stratification of the electrolyte.

実施例 本発明によるリテーナ式密閉電池と本発明によらないリ
テーナ式密rlj1m池とを試作し、実験を行った。こ
れを以下に詳)ホする。
EXAMPLE A cage-type sealed battery according to the present invention and a cage-type compact rlj 1m pond not according to the present invention were prototyped and tested. This is detailed below).

平均径5ミクロン以下のガラスm1lliを主体とした
隔離板と大形の平板状正負種板を用いて電池の総高さが
約70On+mの未注液電池を組立てた。この未注液電
池に、シリカを添加しない比重1.26(20℃)の希
硫il!電解液および粒径が5mμ以下。
An unfilled battery with a total height of about 70 On+m was assembled using a separator mainly made of glass m1lli with an average diameter of 5 microns or less and a large flat positive and negative seed plate. Dilute sulfur il with a specific gravity of 1.26 (20°C) without silica added to this unfilled battery! Electrolyte and particle size less than 5mμ.

5〜20mμ、20〜40mμ、40〜70mμ、70
〜1001Ilμ、 100mμ以上のシリカ微粒子を
Swt%添加した比重1.26  (20℃)の希硫酸
電解液をそれぞれ注液したのち、常法に従って安全弁な
どを’AMし2V 500Ahのリテーナ式密閉電池A
−Gを得た。
5-20mμ, 20-40mμ, 40-70mμ, 70
After pouring dilute sulfuric acid electrolyte with a specific gravity of 1.26 (20°C) to which silica fine particles of ~1001 Ilμ and 100 mμ or more were added in Swt%, the safety valve etc. were installed according to the usual method, and a 2V 500Ah retainer type sealed battery A was added.
-G was obtained.

これらの電池について充放電サイクル(10hR放電サ
イクル)を50サイクル行った。1サイクル目と50サ
イクル目の放電容量と50サイクル目充電後の電池上部
と下部の電解液比重を第1表に示す。
These batteries were subjected to 50 charge/discharge cycles (10 hR discharge cycles). Table 1 shows the discharge capacity at the 1st cycle and the 50th cycle, and the specific gravity of the electrolyte in the upper and lower parts of the battery after the 50th cycle of charging.

また第1表には希硫酸がシリカ微粒子の添加により流動
性を失うまでの時間(ゲル化時間)、すなわち注液不能
になるまでの時間もあわせて示した。
Table 1 also shows the time required for dilute sulfuric acid to lose its fluidity (gelling time) due to the addition of silica particles, that is, the time required for it to become injectable.

第1表から粒径100mμ0mμ以下カ微粒子を5wt
%電解液中に分散させることによって電解液の成層化は
防止でき、それによる放電容量の低下のな((ことがわ
かる。これは電解液中にシリカを分散させることにより
電解液の粘度が増し充電時に生成する濃厚な高比重硫酸
の流下を妨げるためである。しかし、粒径5ff1μ以
下のシリカ微粒子を分散した電池Aは粘度が高くなりす
ぎ極板への硫酸の移動も妨げるため、1サーイクル目の
容量はシリカを含まない電池に比べかなり低くなってい
る。
From Table 1, 5wt of fine particles with a particle size of 100mμ0mμ or less
By dispersing silica in the electrolytic solution, stratification of the electrolytic solution can be prevented, and the discharge capacity will not decrease due to it. This is to prevent the flow of concentrated high-density sulfuric acid that is generated during charging.However, in battery A in which fine silica particles with a particle size of 5ff1μ or less are dispersed, the viscosity becomes too high and prevents the movement of sulfuric acid to the electrode plates, so it is difficult to carry out one cycle. The capacity of the eye is considerably lower than that of batteries without silica.

また、この表から粒径5mlμ以下のシリカを分散させ
た電解液は短期間に流動性を失い注液できな(なること
がわかる。これは粒径5I11μ以下のシリカを分散さ
せた電解液を使用する場合には、その都度液をI製する
必要があり、注液工程が#g雑になることを示している
。一方、粒径が100mμ以上のシリカ微粒子を分散し
た場合にはこれらの欠点はないが、高比重硫酸の流下を
妨げる力が弱いために電解液の成層化を防止できず、こ
のため放電容量は低下している。従って電解液に分散さ
せるシリカ微粒子の粒径は5〜10011μが最適であ
る。
Also, from this table, it can be seen that an electrolytic solution in which silica with a particle size of 5 ml μ or less is dispersed loses fluidity in a short period of time and cannot be poured. When used, it is necessary to prepare the liquid each time, which means that the injection process becomes complicated.On the other hand, when fine silica particles with a particle size of 100 mμ or more are dispersed, these Although there are no drawbacks, the power to prevent the flow of high-density sulfuric acid from flowing down is weak, making it impossible to prevent stratification of the electrolytic solution, resulting in a decrease in discharge capacity.Therefore, the particle size of the silica fine particles dispersed in the electrolytic solution is 5. ~10011μ is optimal.

次に上)ホしたものと同様の未注液電池を製作し粒径5
〜100111μのシリカ微粒子をそれぞれ1〜8wt
%分散した希硫酸電解液(比重1.26  (20℃)
)を注液して、同様の充放電サイクル試# (10hR
)放電サイクル)を50サイクル行った。試験結果を第
2表に示す。
Next, make a non-injected battery similar to the one shown above) and use it with a particle size of 5
~100111μ silica fine particles 1~8wt each
% dispersed dilute sulfuric acid electrolyte (specific gravity 1.26 (20℃)
) and repeat the same charge/discharge cycle test # (10hR
) Discharge cycle) was performed for 50 cycles. The test results are shown in Table 2.

第2表からシリカ濃度2wt%以下では電解液の成層化
を完全に防止できないことがわかる。また、シリカ微粒
子が6wt%を越えると試験初191の放電容量がかな
り低下することがわかる。これに対し3〜6wt%の濃
度では初期の容量はシリカを添加しない場合に比べてほ
とんど遜色がなく、しかも電解液の成層化もない。従っ
て電解液中のシリカ濃度は3〜ewt%が最適である。
Table 2 shows that stratification of the electrolytic solution cannot be completely prevented when the silica concentration is 2 wt% or less. It is also seen that when the silica fine particles exceed 6 wt %, the discharge capacity of the first test sample 191 decreases considerably. On the other hand, at a concentration of 3 to 6 wt%, the initial capacity is almost as good as that without silica, and there is no stratification of the electrolyte. Therefore, the optimal silica concentration in the electrolyte is 3 to ewt%.

発明の効果 以上述べたように電解液の増粘剤として粒径5〜100
mμのシリカ微粒子を電解液中に3〜ewt%添加づる
ことにより放電容量を低下させることなく電解液の成層
化を防止できるため、高容量かつ長寿命の大形リテーナ
式密閉電池が19られ、その工業的価値は極めて大きい
Effects of the invention As mentioned above, as a thickener for electrolyte solution, particle size of 5 to 100
By adding 3 to ewt% of mμ silica particles to the electrolyte, stratification of the electrolyte can be prevented without reducing the discharge capacity, so a large cage-type sealed battery with high capacity and long life can be created. Its industrial value is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 1、正極板、負極板および吸液性セパレータからなる極
板群内に粒子径が5〜100mμのシリカ粒子を3〜6
wt%分散した希硫酸電解液を吸収保持させたことを特
徴とする密閉形鉛蓄電池。
1. 3 to 6 silica particles with a particle diameter of 5 to 100 mμ are placed in the electrode plate group consisting of a positive electrode plate, a negative electrode plate, and a liquid-absorbing separator.
A sealed lead-acid battery characterized by absorbing and retaining a dilute sulfuric acid electrolyte dispersed in wt%.
JP62071261A 1987-03-25 1987-03-25 Enclosed type lead storage battery Pending JPS63237364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071261A JPS63237364A (en) 1987-03-25 1987-03-25 Enclosed type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071261A JPS63237364A (en) 1987-03-25 1987-03-25 Enclosed type lead storage battery

Publications (1)

Publication Number Publication Date
JPS63237364A true JPS63237364A (en) 1988-10-03

Family

ID=13455604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071261A Pending JPS63237364A (en) 1987-03-25 1987-03-25 Enclosed type lead storage battery

Country Status (1)

Country Link
JP (1) JPS63237364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185743A (en) * 2004-12-27 2006-07-13 Furukawa Battery Co Ltd:The Control valve type lead-acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185743A (en) * 2004-12-27 2006-07-13 Furukawa Battery Co Ltd:The Control valve type lead-acid battery

Similar Documents

Publication Publication Date Title
JPS63237364A (en) Enclosed type lead storage battery
CN107863563A (en) A kind of colloidal electrolyte of lead acid batteries
JPS6237882A (en) Closed type lead storage battery
JPS62145655A (en) Sealed lead storage battery
JPS6319772A (en) Lead-acid battery
US3716412A (en) Electric storage batteries
JPS63152868A (en) Lead-acid battery
JPS59173961A (en) Organic electrolyte secondary battery
JP2855706B2 (en) Sealed lead-acid battery
JPH0528473B2 (en)
JPH03274668A (en) Sealed lead storage battery
JPS61264675A (en) Positive plate of clad type lead-acid battery
JP2918204B2 (en) Sealed lead-acid battery
JPS62170173A (en) Sealed lead-acid battery
JPS5889781A (en) Sealed lead-acid battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
CN115441065A (en) Electrolyte additive for lead-acid storage battery
JPH0492376A (en) Sealed type lead storage battery
JPS6319765A (en) Lead-acid battery
JPS63148546A (en) Sealed lead acid battery
JPS63148564A (en) Sealed lead acid battery
JPS6319764A (en) Lead-acid battery
Clough et al. Life and capacity improvements in lead acid batteries through metal control additives
JPH0524626B2 (en)
JPS61256565A (en) Enclosed clad lead storage battery