JP3208739B2 - Manufacturing method of ferrite particle powder material for bonded magnet - Google Patents

Manufacturing method of ferrite particle powder material for bonded magnet

Info

Publication number
JP3208739B2
JP3208739B2 JP11918991A JP11918991A JP3208739B2 JP 3208739 B2 JP3208739 B2 JP 3208739B2 JP 11918991 A JP11918991 A JP 11918991A JP 11918991 A JP11918991 A JP 11918991A JP 3208739 B2 JP3208739 B2 JP 3208739B2
Authority
JP
Japan
Prior art keywords
particle powder
bonded magnet
orientation
compound
ferrite particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11918991A
Other languages
Japanese (ja)
Other versions
JPH04322408A (en
Inventor
正之 渡部
博司 山本
茂憲 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP11918991A priority Critical patent/JP3208739B2/en
Publication of JPH04322408A publication Critical patent/JPH04322408A/en
Application granted granted Critical
Publication of JP3208739B2 publication Critical patent/JP3208739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ボンド磁石用フェライ
ト粒子粉末材料の製造法に関するものである。
The present invention relates to a ferrite for a bonded magnet.
The present invention relates to a method for producing a particle material.

【0002】[0002]

【従来の技術】ボンド磁石は、焼結磁石に比べ、軽量
で、寸法精度が良く、複雑な形状も容易に量産化できる
等の利点がある為、玩具用、事務用具用、音響機器用等
の各種用途に広く使用されている。
2. Description of the Related Art Bonded magnets have advantages over sintered magnets in that they are lighter, have better dimensional accuracy, and can be easily mass-produced in complex shapes. Therefore, bonded magnets are used for toys, office tools, audio equipment, etc. Widely used for various applications.

【0003】近年、各分野における用具や機器の小型軽
量化に伴って、これに使用されるボンド磁石の高性能化
による磁石自体の小型化が強く要望されている。
[0003] In recent years, along with the reduction in size and weight of tools and equipment in various fields, there is a strong demand for downsizing of the magnet itself by improving the performance of bonded magnets used therein.

【0004】ボンド磁石は、一般に、ゴム又はプラスチ
ックス材料と磁性粉末材料とを混練した後、磁場中で成
形する又は機械的手段により成形することにより製造さ
れる。
[0004] Bonded magnets are generally produced by kneading a rubber or plastics material and a magnetic powder material and then molding in a magnetic field or by mechanical means.

【0005】磁場中で成形される磁場配向成形品は、特
に形状の複雑化した部品に用いられ、しかも高い残留磁
束密度Br、最大エネルギー積BHmaxが要求されて
いる分野で用いられている。
A magnetic-field-oriented molded product molded in a magnetic field is used especially for a part having a complicated shape, and is used in a field where a high residual magnetic flux density Br and a maximum energy product BHmax are required.

【0006】一方、機械的手段により成形される機械配
向成形品は、複雑な形状をした部品には適してはいない
が、加工が容易であるという理由で特にマイクロモータ
の分野において汎用されている。
On the other hand, mechanically oriented molded articles formed by mechanical means are not suitable for parts having complicated shapes, but are widely used especially in the field of micromotors because they are easy to process. .

【0007】また、ボンド磁石の残留磁束密度Brは、
非磁性のゴム又はプラスチックス材料を含むために、そ
の体積分だけ焼結磁石に比べて低いので、その向上が要
求されている。
The residual magnetic flux density Br of the bonded magnet is
Since it contains a non-magnetic rubber or plastics material, its volume is lower than that of a sintered magnet, so its improvement is required.

【0008】そして、ボンド磁石の残留磁束密度Br
は、用いる磁性粉末の飽和磁化値の大きさ、配向度及び
充填率に左右され、殊に、飽和磁化値及び配向度の影響
は大きく、磁性粉末の飽和磁化値及び配向度の向上がボ
ンド磁石の残留磁束密度Br値を高めるための条件とい
える。
The residual magnetic flux density Br of the bonded magnet
Depends on the magnitude of the saturation magnetization value, the degree of orientation, and the filling factor of the magnetic powder used.In particular, the influence of the saturation magnetization value and the degree of orientation is large, and the improvement of the saturation magnetization value and the degree of orientation of the magnetic powder is not improved by the bond magnet. Can be said to be a condition for increasing the residual magnetic flux density Br value.

【0009】[0009]

【発明が解決しようとする課題】高い残留磁束密度B
r、エネルギー積BHmaxを有するボンド磁石は、現
在最も要求されているところであり、この為には前述し
た通り用いる磁性粉末の飽和磁化値及び配向度をできる
だけ高めることが必要である。
SUMMARY OF THE INVENTION High residual magnetic flux density B
The bond magnet having the r and the energy product BHmax is currently the most demanded, and for this purpose, it is necessary to increase the saturation magnetization value and the degree of orientation of the magnetic powder used as described above as much as possible.

【0010】磁性粉末材料のゴム又はプラスチック材料
への配合割合において、磁性粉末の充填率を高めて磁気
特性の向上を計った場合には、ゴム又はプラスチック材
料との混練物の溶融粘度が高くなって磁性粉末の配向度
が低下する傾向にあり、一方、配向度を高めようとすれ
ば磁性粉末の充填率を低く設定すればよく、この場合に
は、磁性粉末の配向度は向上するが、磁性粉末含有量の
絶対量が少ない為に磁気特性、特に残留磁束密度Br値
を高めるには限度があり、今日、市販されている磁性粉
末を用いて得られたボンド磁石の配向度(数2−以下、
同じ−)は高々0.91程度であった。
When the magnetic powder material is mixed with a rubber or plastic material at a higher filling rate of the magnetic powder to improve the magnetic properties, the melt viscosity of the kneaded product with the rubber or plastic material becomes higher. The tendency of the orientation of the magnetic powder tends to decrease.On the other hand, if the orientation is to be increased, the filling rate of the magnetic powder may be set low. In this case, the orientation of the magnetic powder is improved, Since the absolute amount of the magnetic powder content is small, there is a limit to increase the magnetic properties, particularly the residual magnetic flux density Br value, and the degree of orientation of the bonded magnet obtained using the magnetic powder that is commercially available today (Equation 2) -
The same-) was about 0.91 at most.

【0011】[0011]

【数2】 (Equation 2)

【0012】従って、当業界では、高飽和磁化値を有
し、しかも配向度の高いボンド磁石用フェライト粒子粉
末材料を得ることが最大の技術的課題となっている。
Therefore, it is the greatest technical problem in the art to obtain a ferrite particle powder material for a bonded magnet having a high saturation magnetization and a high degree of orientation.

【0013】[0013]

【課題を解決するための手段】本発明者らは、ボンド磁
石用フェライト粒子粉末材料を製造するに際して、飽和
磁化値が大きく、しかも配向度の高いボンド磁石用フェ
ライト粒子粉末を得ることにより、前記技術的課題を解
決すべく種々検討を重ねた結果、本発明を完成するに至
ったのである。
Means for Solving the Problems In producing a ferrite particle powder material for a bonded magnet, the present inventors obtained a ferrite particle powder for a bonded magnet having a large saturation magnetization value and a high degree of orientation by obtaining the ferrite particle powder. As a result of various studies to solve the technical problems, the present invention has been completed.

【0014】 即ち、本発明は、マグネトプランバイト
型フェライト原料混合物を1100℃以上で焼成したマ
グネトプランバイト型フェライト粒子粉末に対して、F
e化合物をFe23換算で0.30〜3.00重量%、
Bi化合物をBi23換算で0.20〜0.60重量%
配合した後、微粉砕処理を行ってから、700〜950
℃の温度範囲で熱処理することにより飽和磁化(σ
s)が70emu/g以上であ、配向度(数2)が
0.92以上であるボンド磁石を製造可能なマグネトプ
ランバイト型フェライト粒子粉末を得ることを特徴とす
るボンド磁石用フェライト粒子粉末材料の製造法であ
る。
That is, the present invention relates to a method in which a magnetoplumbite-type ferrite particle powder obtained by firing a magnetoplumbite-type ferrite raw material mixture at 1100 ° C. or higher is used.
e in an amount of 0.30 to 3.00% by weight in terms of Fe 2 O 3 ,
0.20 to 0.60% by weight of Bi compound in terms of Bi 2 O 3
After blending, after fine pulverization, 700-950
Heat treatment in the temperature range of ° C. , the saturation magnetization (σ
s) is Ri der 70 emu / g or more, the ferrite particles for bonded magnet orientation degree (number 2) is characterized in that to obtain a magnetoplumbite-type ferrite particles can be manufactured bonded magnets is 0.92 or more It is a manufacturing method of the material.

【数2】(Br//)/(Br//)+(Br⊥)## EQU2 ## (Br //) / (Br //) + (BrB)

【0015】次に、本発明実施にあたっての諸条件につ
いて説明する。
Next, various conditions for implementing the present invention will be described.

【0016】本発明におけるFe化合物としては、α−
Fe、γ−Fe、Fe等が使用でき
る。またBi化合物としては、Bi、NaBiO
等が使用できる。
As the Fe compound in the present invention, α-
Fe 2 O 3 , γ-Fe 2 O 3 , Fe 3 O 4 and the like can be used. Bi compounds include Bi 2 O 3 , NaBiO 2
3 etc. can be used.

【0017】Fe化合物及びBi化合物の配合量は、生
成物であるマグネトプランバイト型フェライト粒子粉末
に対して、それぞれFe換算で0.30〜3.0
0重量%、Bi換算で0.20〜0.60重量%
の範囲が有効である。Fe換算で3.00重量%
以上、Bi換算で0.60重量%以上配合した場
合には、熱処理条件の大幅な変更が余儀なくされ、ま
た、経済的でない。一方、Fe換算で0.30重
量%未満、Bi換算で0.20重量%未満である
場合には、本発明における効果が発現できない。
The compounding amount of the Fe compound and the Bi compound is 0.30 to 3.0 in terms of Fe 2 O 3 with respect to the product, the magnetoplumbite type ferrite particles.
0 wt%, Bi 2 O 3 in terms of at 0.20-0.60 wt%
Is valid. 3.00% by weight in terms of Fe 2 O 3
As described above, when the content is 0.60% by weight or more in terms of Bi 2 O 3 , the heat treatment conditions must be largely changed, and it is not economical. On the other hand, when the content is less than 0.30% by weight in terms of Fe 2 O 3 and less than 0.20% by weight in terms of Bi 2 O 3 , the effect of the present invention cannot be exhibited.

【0018】Fe化合物及びBi化合物を配合する時点
は、微粉砕処理時が適当である。即ち、原料配合→焼成
→微粉砕処理→熱処理の各工程において、焼成後の時点
で配合する。
It is appropriate to mix the Fe compound and the Bi compound at the time of pulverization. That is, in each of the steps of mixing the raw materials, firing, finely pulverizing, and heat treating, the raw materials are mixed at the time after firing.

【0019】Fe化合物及びBi化合物を焼成前に配合
した場合、例えばFe化合物を原料配合時に配合すると
Fe過剰のマグネトプランバイト型フェライト原
料混合物状態となり、このものは焼成時における十分な
粒子成長が行われず、また、所望の粒子サイズのフェラ
イト粒子を得ようとした場合には高温焼成が必要とな
る。高温焼成を行えば粒子の粗大化及び粒子相互間の焼
結が促進するという弊害が生じる。他方、Bi化合物を
焼成前に配合した場合、配合量によってはフェライト粒
子に丸みを持たせたり、粉砕を容易にする等の効果はあ
っても本発明における飽和磁化値が大きく、配向度の高
いボンド磁石用フェライト粒子粉末は得ることができな
い。
When the Fe compound and the Bi compound are blended before firing, for example, if the Fe compound is blended at the time of blending the raw materials, the raw material becomes a magnet plumbite-type ferrite raw material mixture in excess of Fe 2 O 3. If growth is not performed and ferrite particles having a desired particle size are to be obtained, high-temperature firing is required. High-temperature sintering has the disadvantage of promoting coarsening of particles and sintering between particles. On the other hand, when the Bi compound is blended before firing, depending on the blending amount, the ferrite particles may have roundness or may have an effect of facilitating pulverization, but have a large saturation magnetization value in the present invention and a high degree of orientation. Ferrite particles for bonded magnets cannot be obtained.

【0020】本発明におけるFe化合物及びBi化合物
配合前のマグネトプランバイト型フェライト粒子は、酸
化鉄、含水酸化鉄等の鉄原料と炭酸ストロンチウム、炭
酸バリウム等の副原料とを所定組成に配合した原料を1
100℃以上の温度で焼成することにより得ることがで
きる。尚、融剤例えば、塩化バリウム等を併用すれば、
低温でのマグネトプランバイト型フェライト粒子の生成
が容易となる。
In the present invention, the magnetoplumbite-type ferrite particles before the compounding of the Fe compound and the Bi compound are obtained by mixing a raw material such as iron oxide or hydrated iron oxide and an auxiliary raw material such as strontium carbonate or barium carbonate into a predetermined composition. 1
It can be obtained by firing at a temperature of 100 ° C. or higher. If a flux, such as barium chloride, is used in combination,
Generation of magnetoplumbite-type ferrite particles at low temperatures is facilitated.

【0021】焼成温度が1100℃以下の場合には、フ
ェライト化反応を十分生起させることができない。
When the sintering temperature is 1100 ° C. or lower, a ferrite-forming reaction cannot be sufficiently caused.

【0022】本発明における微粉砕処理後の熱処理の温
度は700〜950℃の範囲が望ましい。700℃以下
である場合には、本発明の目的を十分に達成することが
できない。950℃以上である場合には、粒子相互間で
軽い焼結をひき起こしてしまうため好ましくない。
The temperature of the heat treatment after the pulverization in the present invention is preferably in the range of 700 to 950 ° C. When the temperature is 700 ° C. or lower, the object of the present invention cannot be sufficiently achieved. A temperature of 950 ° C. or more is not preferable because light sintering occurs between particles.

【0023】[0023]

【作用】本発明において最も重要な点は、マグネトプラ
ンバイト型フェライト原料混合物を1100℃以上で焼
成したマグネトプランバイト型フェライト粒子粉末に対
して、Fe化合物をFe換算で0.30〜3.0
0重量%、Bi化合物をBi換算で0.20〜
0.60重量%配合した後、微粉砕処理を行ってから、
700〜950℃の温度範囲で熱処理した場合には、飽
和磁化(σs)が70emu/g以上、配向度(数2)
が0.92以上であり、配向性が優れているフェライト
粒子が得られるという事実である。
[Action] The most important point in the present invention is to provide magnetoplumbite ferrite particles with magnetoplumbite type ferrite raw material mixture was fired at 1100 ° C. or more, the Fe compound in terms of Fe 2 O 3 0.30 3.0
0 wt%, 0.20 to Bi compound calculated as Bi 2 O 3
After blending 0.60% by weight, after performing a fine pulverization process,
When the heat treatment is performed in the temperature range of 700 to 950 ° C., the saturation magnetization (σs) is 70 emu / g or more, and the degree of orientation (Equation 2)
Is 0.92 or more, which is the fact that ferrite particles having excellent orientation can be obtained.

【0024】本発明におけるフェライト粒子粉末の配向
性が優れている理由について、本発明者は、従来法では
生成した板状形態の粒子を、ゴム又はプラスチックス材
料への充填率を高めるたため粉砕処理を施し、単一粒子
までバラバラにしており、その際、粒子の角がとれ、微
粉が発生し、粒子自体は丸味を帯びてくる。この状態の
粒子を粉砕時に生じた歪を取り除くために熱処理を施し
たとしても飽和磁化値及び配向度の低いものしか得られ
ず、本発明により得られるフェライト粒子粉末は、焼成
後に、Fe化合物及びBi化合物を配合しており、微粉
砕処理後の熱処理時に於いてFe化合物及びBi化合物
の存在に起因して微粉砕処理時に発生した微粉の一部の
大粒子への吸収促進と、粒子結晶内に発生した欠陥の補
充が行われることによって、飽和磁化値が大きく、しか
も磁場配向度の高いフェライト粒子が得られるものと考
えている。
Regarding the reason why the orientation of the ferrite particle powder in the present invention is excellent, the present inventor has proposed that the plate-like particles produced by the conventional method are subjected to a pulverizing treatment in order to increase the filling ratio of rubber or plastics material. , And the individual particles are broken up into single particles. At this time, the corners of the particles are removed, fine powder is generated, and the particles themselves are rounded. Even if the particles in this state are subjected to a heat treatment to remove the strain generated during pulverization, only those having a low saturation magnetization value and a low degree of orientation can be obtained, and the ferrite particle powder obtained according to the present invention has a Fe compound and It contains a Bi compound, and promotes the absorption of some of the fine powder generated during the fine pulverization due to the presence of the Fe compound and the Bi compound during the heat treatment after the fine pulverization into large particles, It is considered that by replenishing the defects generated in the above, ferrite particles having a large saturation magnetization value and a high degree of magnetic field orientation can be obtained.

【0025】[0025]

【実施例】次に、実施例並びに比較例により本発明を説
明する。
Next, the present invention will be described with reference to Examples and Comparative Examples.

【0026】尚、以下の実施例並びに比較例における配
向度(数2)は、磁場中で成形された磁場配向成形体を
配向磁場に対して平行な方向から測定して得た残留磁束
密度(数3)と配向磁場に対して垂直な方向から測定し
て得た残留磁束密度(数4)より求めた値で示した。
The degree of orientation (Equation 2) in the following Examples and Comparative Examples is a residual magnetic flux density (a magnetic flux density obtained by measuring a magnetic-field-oriented compact formed in a magnetic field from a direction parallel to the orientation magnetic field). It is shown by the value obtained from Equation 3) and the residual magnetic flux density (Equation 4) measured from the direction perpendicular to the orientation magnetic field.

【0027】[0027]

【数3】 (Equation 3)

【0028】[0028]

【数4】 (Equation 4)

【0029】また、飽和磁化(σs)値は、磁場中で成
形された磁場配向成形体を円柱(φ5.5mm×3m
m)状に加工し、VSM(東英工業(株)製)を用い、
測定磁場15KOeで測定した。
The saturation magnetization (σ s) value is determined by measuring the orientation of a magnetic-field-oriented compact formed in a magnetic field by a cylinder (φ5.5 mm × 3 m
m), and using VSM (manufactured by Toei Kogyo Co., Ltd.)
The measurement was performed with a measurement magnetic field of 15 KOe.

【0030】実施例1α−Fe 861.4g、
SrCO 138.6g及びBaCl30gをよく
混合し水にて造粒する。この造粒物を1150℃で1時
間焼成した後、焼成物1000gに対して酸化鉄(α−
Fe)を16g(マグネトプランバイト型フェラ
イト粒子粉末に対して1.60重量%に相当する。)、
酸化ビスマス(Bi)を2.7g(マグネトプラ
ンバイト型フェライト粒子粉末に対して0.27重量%
に相当する。)配合し、アトライターを用い微粉砕を施
した。次いで、850℃で1.5時間熱処理してボンド
磁石用フェライト粒子粉末材料を得た。
Example 1 861.4 g of α-Fe 2 O 3 ,
138.6 g of SrCO 3 and 30 g of BaCl 2 are mixed well and granulated with water. After the granulated product was fired at 1150 ° C. for 1 hour, iron oxide (α-
Fe 2 O 3 ) of 16 g (corresponding to 1.60% by weight based on the magnetoplumbite type ferrite particle powder);
2.7 g of bismuth oxide (Bi 2 O 3 ) (0.27% by weight based on the magnetoplumbite type ferrite particle powder)
Is equivalent to ) And pulverized using an attritor. Next, heat treatment was performed at 850 ° C. for 1.5 hours to obtain a ferrite particle powder material for a bonded magnet.

【0031】得られたフェライト粒子粉末は、組成分析
の結果、Fe/SrO+BaO=6.07であっ
た。
As a result of composition analysis, the obtained ferrite particle powder was found to have Fe 2 O 3 /SrO+BaO=6.07.

【0032】ここに得られたボンド磁石用フェライト粒
子粉末材料121g、EVA(エチレン−酢酸ビニル共
重合体樹脂:三井ジュポンポリケミカル(株)製)12
g及びステアリン酸亜鉛0.5gを混合した後、80℃
に加熱して混練し、次いで、冷却固化した後、粉砕し
た。該粉砕物を加熱溶融して10000 Oeの磁場を
印加した後、冷却固化してボンド磁石を得た。
121 g of the ferrite particle powder material for a bonded magnet thus obtained, EVA (ethylene-vinyl acetate copolymer resin: manufactured by Mitsui Dupont Polychemical Co., Ltd.) 12
g and 0.5 g of zinc stearate, and then mixed at 80 ° C.
The mixture was heated and kneaded, and then cooled and solidified, and then pulverized. The pulverized material was heated and melted, a magnetic field of 10,000 Oe was applied, and then cooled and solidified to obtain a bonded magnet.

【0033】得られたボンド磁石は、配向度(数2)
0.93、残留磁束密度Brは2860Gauss、保
磁力Hc2600 Oe、エネルギー積(BH)ma
x2.02MGOeであった。また、飽和磁化σSは7
0.5emu/gであった。
The resulting bonded magnet has a degree of orientation (Equation 2).
0.93, residual magnetic flux density Br is 2860 Gauss, coercive force I Hc2600 Oe, energy product (BH) ma
x2.02MGOe. The saturation magnetization σS is 7
It was 0.5 emu / g.

【0034】実施例2〜7、比較例1〜5Fe原料の
量、Sr原料の量、焼成温度、Fe化合物の配合量、B
i化合物の配合量及び熱処理温度を種々変更させた以外
は実施例1と同様にしてボンド磁石用フェライト粒子粉
末材料を製造し、更に、該粒子粉末材料を用いてボンド
磁石を製造した。
Examples 2 to 7, Comparative Examples 1 to 5 Amount of Fe raw material, amount of Sr raw material, firing temperature, blending amount of Fe compound, B
A ferrite particle powder material for a bonded magnet was produced in the same manner as in Example 1 except that the amount of the i-compound and the heat treatment temperature were variously changed, and a bonded magnet was produced using the particle powder material.

【0035】この時の主要製造条件及び諸特性を表1に
示す。尚、比較例5におけるFe化合物及びBi化合物
の配合した時点は、焼成前の原料配合時である。
Table 1 shows the main manufacturing conditions and various characteristics at this time. The time when the Fe compound and the Bi compound were blended in Comparative Example 5 was when the raw materials were blended before firing.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】 以上説明した通りの本発明に係るボン
ド磁石用フェライト粒子粉末材料の製造法によれば、前
出実施例に示した通り、焼成後にFe化合物及びBi化
合物を配合し、続いて微粉砕処理後、熱処理を施すこと
によって、飽和磁化値が大きく、且つ、磁場配向手段で
の配向性を向上させたボンド磁石を製造可能なフェライ
ト粒子粉末を得ることが出来るので、ボンド磁石用の磁
性粒子粉末として最適なものである。
According to the method for producing a ferrite particle powder material for a bonded magnet according to the present invention as described above, an Fe compound and a Bi compound are blended after firing, By performing heat treatment after the pulverization treatment, ferrite particle powder capable of producing a bonded magnet having a large saturation magnetization value and having improved orientation by the magnetic field orientation means can be obtained. It is most suitable as a magnetic particle powder for a bonded magnet.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−162532(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-162532 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マグネトプランバイト型フェライト原料
混合物を1100℃以上で焼成したマグネトプランバイ
ト型フェライト粒子粉末に対して、Fe化合物をFe2
3換算で0.30〜3.00重量%、Bi化合物をB
23換算で0.20〜0.60重量%配合した後、微
粉砕処理を行ってから、700〜950℃の温度範囲で
熱処理することにより飽和磁化(σs)が70emu
/g以上であ、配向度(数1)が0.92以上である
ボンド磁石を製造可能なマグネトプランバイト型フェラ
イト粒子粉末を得ることを特徴とするボンド磁石用フェ
ライト粒子粉末材料の製造法。 【数1】(Br//)/(Br//)+(Br⊥)
1. An Fe compound is added to Fe 2 powder in a magnetoplumbite-type ferrite particle powder obtained by firing a magnetoplumbite-type ferrite raw material mixture at 1100 ° C. or more.
0.30 to 3.00% by weight in terms of O 3 ,
After mixing 0.20 to 0.60% by weight in terms of i 2 O 3 , fine pulverization is performed, and then heat treatment is performed in a temperature range of 700 to 950 ° C., so that the saturation magnetization (σs) is 70 emu.
/ G or more der is, the degree of orientation (number 1) is 0.92 or more
A method for producing a ferrite particle powder material for a bonded magnet, comprising obtaining a magnetoplumbite type ferrite particle powder capable of producing a bonded magnet. [Equation 1] (Br //) / (Br //) + (Br⊥)
JP11918991A 1991-04-22 1991-04-22 Manufacturing method of ferrite particle powder material for bonded magnet Expired - Lifetime JP3208739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11918991A JP3208739B2 (en) 1991-04-22 1991-04-22 Manufacturing method of ferrite particle powder material for bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11918991A JP3208739B2 (en) 1991-04-22 1991-04-22 Manufacturing method of ferrite particle powder material for bonded magnet

Publications (2)

Publication Number Publication Date
JPH04322408A JPH04322408A (en) 1992-11-12
JP3208739B2 true JP3208739B2 (en) 2001-09-17

Family

ID=14755121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11918991A Expired - Lifetime JP3208739B2 (en) 1991-04-22 1991-04-22 Manufacturing method of ferrite particle powder material for bonded magnet

Country Status (1)

Country Link
JP (1) JP3208739B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668334B2 (en) * 1993-04-30 1997-10-27 ティーディーケイ株式会社 Permanent magnet, manufacturing method thereof, and permanent magnet material
EP2983178B1 (en) * 2013-04-03 2019-06-19 Toda Kogyo Corp. Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using same

Also Published As

Publication number Publication date
JPH04322408A (en) 1992-11-12

Similar Documents

Publication Publication Date Title
US11823823B2 (en) Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same
JP2008277792A (en) Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and compact using them
EP2983178B1 (en) Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using same
EP3202717B1 (en) Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
JP4697366B2 (en) Strontium ferrite particle powder for bonded magnet and bonded magnet using the strontium ferrite particle powder
US6419847B1 (en) Ferrite magnet powder and magnet using said magnet powder, and method for preparing them
WO2001035424A1 (en) Ferrite magnet powder and magnet using the magnet powder, and method for preparing them
EP2833377A1 (en) Ferrite particulate powder for bonded magnet, resin composition for bonded magnet, and moldings using same
JP3208739B2 (en) Manufacturing method of ferrite particle powder material for bonded magnet
JP2004186224A (en) Magneto-plumbite type ferrite particle powder for bonding magnet, manufacturing method therefor and bonding magnet using the same
JP5267771B2 (en) Magnetoplumbite type ferrite particle powder for bonded magnet and method for producing the same, resin composition using the magnetoplumbite type ferrite particle powder, bonded magnet and magnet roll
JP4296379B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP4961068B2 (en) Strontium ferrite particle powder for bonded magnet and bonded magnet using the strontium ferrite particle powder
JP2906079B2 (en) Ferrite particle powder material for bonded magnet and method for producing the same
JPS6217841B2 (en)
JPH11307331A (en) Ferrite magnet
JPH07106113A (en) Ferrite powder for bond magnet, and its manufacture
JP2904278B2 (en) Ferrite particle powder for bonded magnet
JP4370555B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JPH04224116A (en) Ferrite magnetic powder for magnetic-field-oriented bond magnet
JP2967827B2 (en) Hard ferrite powder for composite magnet, compound using the same, and composite magnet
JPH0822744B2 (en) Ferrite particle powder for bonded magnets
JPH04302101A (en) Ferrite magnetic powder for bonded magnet
JPS61113736A (en) Manufacture of sintered magnet of rare earth-transition metal compound
JPH10270225A (en) Rare-earth bond magnet and manufacture therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

EXPY Cancellation because of completion of term