JPH01243563A - Heat-dissipating substrate composed of boron-based compound semiconductor; its manufacture; boron-based compound semiconductor element - Google Patents

Heat-dissipating substrate composed of boron-based compound semiconductor; its manufacture; boron-based compound semiconductor element

Info

Publication number
JPH01243563A
JPH01243563A JP6970688A JP6970688A JPH01243563A JP H01243563 A JPH01243563 A JP H01243563A JP 6970688 A JP6970688 A JP 6970688A JP 6970688 A JP6970688 A JP 6970688A JP H01243563 A JPH01243563 A JP H01243563A
Authority
JP
Japan
Prior art keywords
boron
substrate
based compound
compound semiconductor
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6970688A
Other languages
Japanese (ja)
Other versions
JPH0634402B2 (en
Inventor
Yukinobu Kumashiro
幸伸 熊代
Takefumi Mihashi
武文 三橋
Shinichi Okaya
岡谷 伸一
Fumihito Muta
牟田 史仁
Takeshi Koshiro
小代 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
National Institute of Advanced Industrial Science and Technology AIST
RIGAKU KEISOKU KK
Original Assignee
Agency of Industrial Science and Technology
National Institute for Research in Inorganic Material
RIGAKU KEISOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, National Institute for Research in Inorganic Material, RIGAKU KEISOKU KK filed Critical Agency of Industrial Science and Technology
Priority to JP63069706A priority Critical patent/JPH0634402B2/en
Publication of JPH01243563A publication Critical patent/JPH01243563A/en
Publication of JPH0634402B2 publication Critical patent/JPH0634402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To manufacture a heat-dissipating substrate which is suitable for a semiconductor element by forming the heat-dissipating substrate of a boron- based compound semiconductor which is composed mainly of one out of boron phosphide and boron arsenide or of a mixed crystal of them. CONSTITUTION:A heat-dissipating substrate 3 is formed of a boron-based compound semiconductor which is composed mainly of one out of boron phosphide and boron arsenide or of a mixed crystal of them. The substrate 3 is grown on a substrate 1 for a semiconductor device. When the boron-based compound semiconductor is to be grown on the substrate 1, a temperature of the substrate 1 is raised rapidly in the course of its growth operation and, after that, the growth operation is continued. Then, an electrical resistance of the boron-based compound semiconductor becomes extremely high. By this setup, the substrate 3 which is suitable for a semiconductor element can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はリン化ホウ素(BP)、ヒ化ホウ素(BAs
)などホウ素系化合物の高熱伝導性を利用した新規な放
熱基板とその製法およびホウ素系化合物半導体素子に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention uses boron phosphide (BP), boron arsenide (BAs)
), etc., which utilize the high thermal conductivity of boron-based compounds, a novel heat-dissipating substrate, its manufacturing method, and boron-based compound semiconductor devices.

[従来の技術] 半導体素子の高集積化、高出力化の進展に伴って、素子
の動作中に発生する熱をいかに放散させるかが重要な課
題となっている。
[Background Art] With the progress of higher integration and higher output of semiconductor devices, how to dissipate the heat generated during the operation of the device has become an important issue.

これまで半導体素子用の放熱基板として、八f120.
.SiC,An Nなどが用いられてし)るが、これら
の熱伝導性は必ずしも十分ではない。より高い熱伝導性
を有するものとして、BeOやダイヤモンドがある。し
かし、 Beeは毒性があるため国内では製造されてい
ない、ダイヤモンドは価格が高い上に広い面積にわたっ
て作成することができず、実用化には大きな障壁となっ
ている。そこで電子機器の高速度化、小型、軽量化、高
出力化。
Until now, 8F120.
.. Although SiC, AnN, etc. have been used, their thermal conductivity is not necessarily sufficient. BeO and diamond have higher thermal conductivity. However, bees are not produced domestically because they are toxic, and diamonds are expensive and cannot be produced over a large area, creating a major barrier to commercialization. Therefore, electronic devices need to be faster, smaller, lighter, and have higher output.

高信頼性化への強い要求から、素子の発熱を効率よく系
外に逃がす高性能の高熱伝導基板の開発が望まれている
Due to the strong demand for high reliability, there is a desire to develop a high-performance, high-thermal-conductivity substrate that can efficiently dissipate heat generated by elements to the outside of the system.

一方、半導体素子の使用環境の拡大に伴って、耐熱性お
よび耐放射線性にすぐれた半導体素子が求められている
が、いまだ実用の域に達していない。
On the other hand, with the expansion of the usage environment of semiconductor devices, there is a demand for semiconductor devices with excellent heat resistance and radiation resistance, but these have not yet reached the level of practical use.

[発明が解決しようとする課題J 本発明はこのような事実に鑑みてなされたもので、熱伝
導性が高く、放熱効率の高い放熱基板およびそのような
放熱基板を容易に製造し得る方法を提供すること、さら
に耐熱性、耐放射線性にすぐれた半導体素子を提供する
ことを目的とする。
[Problem to be Solved by the Invention] The present invention has been made in view of these facts, and provides a heat dissipation board with high thermal conductivity and high heat dissipation efficiency, and a method for easily manufacturing such a heat dissipation board. Furthermore, the purpose is to provide a semiconductor element having excellent heat resistance and radiation resistance.

[課題を解決するための手段] このような目的を達成するために、本発明放熱基板はリ
ン化ホウ素およびヒ化ホウ素の一方またはそれらの混晶
を主成分とするホウ素系化合物半導体からなることを特
徴とする。
[Means for Solving the Problems] In order to achieve such an object, the heat dissipation substrate of the present invention is made of a boron-based compound semiconductor whose main component is one of boron phosphide and boron arsenide, or a mixed crystal thereof. It is characterized by

本発明製造方法は基板上に上述したホウ素系化合物半導
体を成長させるに際し、て、成長の途中で基板温度を急
激に上昇させた後、成長を続行することを特徴とする。
The manufacturing method of the present invention is characterized in that when growing the above-described boron-based compound semiconductor on a substrate, the substrate temperature is rapidly raised during the growth, and then the growth is continued.

さらに本発明半導体素子は基板上に形成したホウ素系化
合物半導体層を素子構成要素とすることを特徴とする。
Furthermore, the semiconductor device of the present invention is characterized in that a boron-based compound semiconductor layer formed on a substrate is used as a device component.

[作 用1 リン化ホウ素(BP)をSi基板上に成長させることは
すでに行われている。しかしリン化ホウ素の物性値、特
に熱伝導率などの熱的性質はこれまで実験的に明らかに
されていない。BP、BAsなどのホウ素系化合物半導
体が高い熱伝導率を有し、さらに高い電気絶縁性をも有
することが本発明者らによって明らかにされた。
[Function 1] Growing boron phosphide (BP) on a Si substrate has already been carried out. However, the physical properties of boron phosphide, especially its thermal properties such as thermal conductivity, have not been experimentally clarified so far. The present inventors have revealed that boron-based compound semiconductors such as BP and BAs have high thermal conductivity and also have high electrical insulation properties.

本発明の放熱基板はホウ素系化合物半導体の高熱伝導率
を利用しているので、放熱効率が高く、さらにSiなど
のICやLSI基板に直接積層した膜を放熱板として利
用できるので、半導体装置の構造が簡単となり、組立て
工数を低減することができる。さらに、本発明によるホ
ウ素系化合物半導体は熱膨張係数が小さいので、高い信
頼性を有している。
The heat dissipation board of the present invention utilizes the high thermal conductivity of boron-based compound semiconductors, so it has high heat dissipation efficiency.Furthermore, a film laminated directly on an IC or LSI substrate such as Si can be used as a heat dissipation plate, so it can be used for semiconductor devices. The structure is simplified and the number of assembly steps can be reduced. Furthermore, since the boron-based compound semiconductor according to the present invention has a small coefficient of thermal expansion, it has high reliability.

本発明製造方法によれば、ホウ素系化合物半導体の電気
抵抗を極めて高くすることができるので、半導体素子用
に好適な放熱基板を作製することができる。
According to the manufacturing method of the present invention, the electrical resistance of the boron-based compound semiconductor can be made extremely high, so that a heat dissipation substrate suitable for semiconductor devices can be manufactured.

本発明によるホウ素系化合物半導体を用いた半導体素子
は、耐熱性および耐放射線性および放熱特性がすぐれて
いる。
A semiconductor device using a boron-based compound semiconductor according to the present invention has excellent heat resistance, radiation resistance, and heat dissipation characteristics.

[実施例] 以下に実施例によって本発明の詳細な説明する。[Example] The present invention will be explained in detail below by way of examples.

第1図は本発明に係る放熱基板を用いた半導体装置の模
式図である。図において、1はSi基板、2は基板1上
に構成された素子構造である。3はBP放熱基板であり
、絶縁板を兼ねている。放熱基板3はSi基板1上に直
接成長させた層であり、そのSt基板側と反対の面は銅
などによってメタライズされている。メタライズ層4を
はんだ5によってフィン6にはんだ付けして半導体装置
の冷却構造が完成する。
FIG. 1 is a schematic diagram of a semiconductor device using a heat dissipation substrate according to the present invention. In the figure, 1 is a Si substrate, and 2 is an element structure constructed on the substrate 1. 3 is a BP heat dissipation board, which also serves as an insulating board. The heat dissipation substrate 3 is a layer grown directly on the Si substrate 1, and the surface opposite to the St substrate side is metalized with copper or the like. The metallized layer 4 is soldered to the fins 6 using solder 5 to complete the cooling structure of the semiconductor device.

第2図は比較のために示した従来の半導体装置の冷却構
造の一例の模式図である。Si基板1に、両面にメタラ
イズ層7および8を有するSiC放熱基板9がはんだ付
けされ、さらにSiC放熱基板9はフィン6にはんだ付
けされている。10.11ははんだ層である。第1図と
第2図との比較から明らかなように、本発明の放熱板を
用いた冷却構造は従来例に比してその構成が簡単である
。従って製造工程も簡略化することができる。
FIG. 2 is a schematic diagram of an example of a cooling structure of a conventional semiconductor device shown for comparison. A SiC heat dissipation board 9 having metallized layers 7 and 8 on both sides is soldered to the Si substrate 1, and the SiC heat dissipation board 9 is further soldered to the fins 6. 10.11 is a solder layer. As is clear from the comparison between FIG. 1 and FIG. 2, the cooling structure using the heat sink of the present invention is simpler in construction than the conventional example. Therefore, the manufacturing process can also be simplified.

次にSi基板上への[lP膜の成長法について説明する
Next, a method for growing an lP film on a Si substrate will be explained.

リン化ホウ素(BP)を含めたホウ素系111− V族
化合物半導体は、反応ガスを高周波加熱したSi単結晶
上に流し、基板上での熱分解法で得る方法が一般的であ
る。しかし従来の方法ではSi基板からのSiのオート
ドーピングのために高純度のBPを得ることができなか
った。
Boron-based 111-V group compound semiconductors including boron phosphide (BP) are generally obtained by a thermal decomposition method on the substrate by flowing a reaction gas over a Si single crystal heated by high frequency. However, in the conventional method, high purity BP could not be obtained due to autodoping of Si from the Si substrate.

第3図に、本発明のBP膜を形成するためのCVD装置
を示す。図において、12は反応管、13は冷却水を通
す冷却管、14は高周波コイルである。反応管12内に
グラファイト製のサセプタ15が設置され、その上にS
i基板16が支持されている。
FIG. 3 shows a CVD apparatus for forming the BP film of the present invention. In the figure, 12 is a reaction tube, 13 is a cooling pipe through which cooling water passes, and 14 is a high frequency coil. A graphite susceptor 15 is installed inside the reaction tube 12, and S
An i-board 16 is supported.

サセプタ15は、石英棒などからなる傾斜したフレーム
17上に載せられ、さらに前後を石英からなる2個の傾
斜体18.19によって挟まれている。反応管のガス人
口12AからB2H6,P)13および■2の混合ガス
を流し、加熱されたSi基板16上にBPを形成する。
The susceptor 15 is placed on an inclined frame 17 made of a quartz rod or the like, and further sandwiched between two inclined bodies 18 and 19 made of quartz at the front and back. A mixed gas of B2H6, P) 13 and (2) is flowed from the gas port 12A of the reaction tube to form BP on the heated Si substrate 16.

反応管内部の構成を第3図のようにすることによって、
反応ガスの流れを整流し、さらに傾斜体19に適度の質
量を持たせることによって、Si基板上の温度の均一性
を向上させることができた。
By configuring the inside of the reaction tube as shown in Figure 3,
By rectifying the flow of the reaction gas and further providing the inclined body 19 with an appropriate mass, it was possible to improve the uniformity of the temperature on the Si substrate.

原料ガスとしてB 2 H6およびPH,を用い、5i
(tll)基板上にBP膜を成長させた。成長条件はB
2Hg (5%水素希釈) 50〜60cc/win、
 PH3(5%水素希釈)300〜500cc/min
 、水素ガス(キャリア) 3000〜5000cc/
min、基板温度900〜1200℃である。
Using B 2 H6 and PH as raw material gas, 5i
(tll) A BP film was grown on the substrate. Growth conditions are B
2Hg (5% hydrogen dilution) 50-60cc/win,
PH3 (5% hydrogen dilution) 300-500cc/min
, hydrogen gas (carrier) 3000~5000cc/
min, and the substrate temperature is 900 to 1200°C.

以上の条件で高熱伝導率のBP膜をSi基板上に成長さ
せることができた。
Under the above conditions, a BP film with high thermal conductivity could be grown on the Si substrate.

次に本発明によるBP膜の熱的性質の測定例について述
べる。
Next, an example of measuring the thermal properties of a BP film according to the present invention will be described.

本発明のBP膜の熱膨張係数は4 X 10−6/l:
と極めて小さい。
The thermal expansion coefficient of the BP film of the present invention is 4 x 10-6/l:
and extremely small.

BP膜の熱拡散率をレーザフラッシュ法によって求めた
The thermal diffusivity of the BP film was determined by the laser flash method.

従来のレーザフラッシュ法では不可能な薄膜・薄板に対
してレーザ光を試料の中心軸上に合せてリング状に照射
し、試料の裏面の中心の温度変化を測定し、熱拡散率を
求めた。その結果室温で1.8c11’/secの値が
得られた。
We irradiated thin films and thin plates with laser light in a ring shape aligned with the central axis of the sample, which is impossible with conventional laser flash methods, and measured the temperature change at the center of the back surface of the sample to determine the thermal diffusivity. . As a result, a value of 1.8 c11'/sec was obtained at room temperature.

BP膜の比熱をパーキンソンのDSCによって測定した
結果、o、9(J/g ℃)の値が得られた。BP膜の
密度は2.97 g/cta3であり、以上の結果より
BPの熱伝導率を求めると、室温で4.8 (J/cm
’e・S)となる。
As a result of measuring the specific heat of the BP membrane by Parkinson's DSC, a value of o,9 (J/g °C) was obtained. The density of the BP film is 2.97 g/cta3, and the thermal conductivity of BP is calculated from the above results to be 4.8 (J/cm) at room temperature.
'e・S).

次にBPの熱伝導率を高温まで測定した。その結果を他
の材料と比較して第4図に示す。図示のように、本発明
のBpHiは全温度傾城にわたって、他の材料より高い
熱伝導率をもフている。このBP膜の高い熱伝導率は本
発明者らによって、はじめて明らかにされたものである
Next, the thermal conductivity of BP was measured up to high temperatures. The results are shown in FIG. 4 in comparison with other materials. As shown, the BpHi of the present invention also has higher thermal conductivity than other materials over the entire temperature range. The high thermal conductivity of this BP film was first revealed by the present inventors.

このような高い熱伝導率に加え、BP膜に高い電気抵抗
を付与する方法が見出された。
In addition to such high thermal conductivity, a method has been discovered for imparting high electrical resistance to the BP film.

第5図はBP膜を成長させるためのSi基板の加熱条件
の一例を示すダイアグラムである。はじめ基板温度を1
050℃としてBP膜をSi基板上に成長させた後、図
示するように温度を1080℃まで急激に上昇させて成
長をつづけ、所定膜厚の成長が完了した後、温度を再び
1050℃に下げて一定時間保持した後に徐冷する。こ
のようにして成長させたBP膜の断面構造を第6図に示
す。
FIG. 5 is a diagram showing an example of heating conditions for a Si substrate for growing a BP film. Initially, set the substrate temperature to 1
After growing a BP film on a Si substrate at a temperature of 050°C, the temperature was rapidly raised to 1080°C to continue growth as shown in the figure, and after the growth of a predetermined film thickness was completed, the temperature was lowered again to 1050°C. After holding for a certain period of time, cool slowly. The cross-sectional structure of the BP film grown in this manner is shown in FIG.

最初にSiを含んだ1次成長層22がSi基板2I上に
成長し、さらに温度を上げることにより2次成長層23
として、うろこ状の成長が始まり、2層からなるBP膜
が得られた。
First, a primary growth layer 22 containing Si is grown on the Si substrate 2I, and by further increasing the temperature, a secondary growth layer 23 is grown.
As a result, scale-like growth started, and a BP film consisting of two layers was obtained.

この2次成長したBpHiについて、4端子法によるホ
ール測定を行った。得られたBP膜の抵抗率は106〜
10’ΩcI11であり、従来の1次成長だけのBPの
抵抗率101〜102ΩCD+に比べて絶縁性を大きく
することが出来た。なお2次成長したBP膜の熱伝導率
には変化はなかった。
Hall measurements were performed on this secondarily grown BpHi using a four-probe method. The resistivity of the obtained BP film is 106~
The resistivity was 10'ΩcI11, and the insulating property could be increased compared to the resistivity of the conventional BP using only primary growth, which had a resistivity of 101 to 102ΩCD+. Note that there was no change in the thermal conductivity of the secondarily grown BP film.

1次成長のための基板温度は1050℃に限られず、成
長させるべき膜の種類、性質に応じ選定することができ
る。2次成長は、1次成長温度に対してlO〜60℃程
度急激に昇温して反応を行わせればよい。1次成長層と
しての必要な厚さは厳密ではなく、数lθμ■以上であ
ればよく、2次成長゛層の厚さは必要に応じて定められ
る。2次成長終了後、1次成長温度と同じ温度に保持す
ることは省略することもできる。
The substrate temperature for primary growth is not limited to 1050° C., and can be selected depending on the type and properties of the film to be grown. In the secondary growth, the reaction may be carried out by rapidly increasing the temperature from 10 to 60° C. with respect to the primary growth temperature. The required thickness of the primary growth layer is not strictly limited, and may be several lθμ or more, and the thickness of the secondary growth layer is determined as necessary. After the secondary growth is completed, it may be omitted to maintain the temperature at the same temperature as the primary growth temperature.

このように本発明のBP膜は高熱伝導性と高絶縁性とを
あわせもっているので、半導体素子の放熱基板として極
めて有用である。
As described above, since the BP film of the present invention has both high thermal conductivity and high insulation properties, it is extremely useful as a heat dissipation substrate for semiconductor devices.

最後に本発明のBP膜を有する半導体素子の実施例につ
いて述べる。第7図は本発明によるp−n接合ダイオー
ドの実施例を示す。図において、24はSi基板、25
はn−BP層、26はp−BP層、27および28はA
j2電極層である。この素子はSi基板上にn型BP層
とp型BP層を積層することによって作られる。
Finally, an example of a semiconductor device having a BP film of the present invention will be described. FIG. 7 shows an embodiment of a pn junction diode according to the invention. In the figure, 24 is a Si substrate, 25
is n-BP layer, 26 is p-BP layer, 27 and 28 are A
This is the j2 electrode layer. This device is made by laminating an n-type BP layer and a p-type BP layer on a Si substrate.

n型層は反応ガス中のP■、の比率を高くし、また反応
温度を低く制御することによって、p型層はpH,の比
率を低くし、または反応温度を高く制御することによっ
て形成することができる。n型層とn型層の積層順序は
逆であってもよい。
The n-type layer is formed by increasing the ratio of P in the reaction gas and controlling the reaction temperature low, and the p-type layer is formed by decreasing the ratio of pH or controlling the reaction temperature high. be able to. The stacking order of the n-type layer and the n-type layer may be reversed.

本実施例のダイオードは従来のダイオードに比べて耐熱
性にすぐれ、さらに放射線(α線、中性子線、X線等)
に対して強い特徴をもち、さらに放熱特性が良好である
The diode of this example has superior heat resistance compared to conventional diodes, and is also highly resistant to radiation (α-rays, neutron beams, X-rays, etc.).
It has strong characteristics against heat, and also has good heat dissipation characteristics.

このほか表面障壁型ダイオードでも同様のことは可能で
ある。
The same thing can also be done with surface barrier diodes.

上の実施例はBPについて示したが、BAsやこれらの
混晶の場合についても同等の効果が得られる。すなわち
BAsも結晶構造がぜん亜鉛鉱型で、電子構造、化学結
合ならびに電気的、光学的特性などがBPのものと極め
て近く、半導体物性が極めて類似しているので、BPと
同等の効果が得られる。
Although the above embodiments were shown using BP, similar effects can be obtained using BAs or mixed crystals thereof. In other words, BAs also has a zincite crystal structure, and its electronic structure, chemical bonds, electrical and optical properties are extremely similar to those of BP, and its semiconductor properties are extremely similar, so it can achieve the same effects as BP. .

また、他の元素を添加した多成分系においても同様の効
果が得られている。なお本発明は単結晶膜に限定される
ものでなく、多結晶、非結晶、焼結体などからなるホウ
素系化合物半導体に適用できる。
Similar effects have also been obtained in multi-component systems to which other elements are added. Note that the present invention is not limited to single crystal films, but can be applied to boron-based compound semiconductors made of polycrystals, amorphous, sintered bodies, etc.

[発明の効果] 以上説明したように、この発明は高い熱伝導率を利用し
てIC,レーザダイオード等の放熱板に用いるものであ
る。この発明によって得られる効果を列挙すると、 mlc、  レーザ等に用いられるSiやGaAs等の
上に成長させた膜を放熱板にすれば、材料構造が単純に
なり、部品点数や組立て工数が低減でき、デバイスの小
型軽量化、信頼性向上などの効果が大きい。
[Effects of the Invention] As explained above, the present invention utilizes high thermal conductivity to be used in heat sinks for ICs, laser diodes, and the like. To enumerate the effects obtained by this invention, if a heat sink is made of a film grown on Si, GaAs, etc. used in MLC, lasers, etc., the material structure can be simplified, and the number of parts and assembly man-hours can be reduced. , it has significant effects such as making the device smaller and lighter and improving its reliability.

(2)絶縁性が大きく、熱膨張係数が小さいので、信頼
性が高い。
(2) High reliability due to high insulation properties and low coefficient of thermal expansion.

(3)宇宙通信や自動車電話などに用いるマイクロ波発
振用トランジスタ、光通信用レーザダイオードのように
、高電流密度で作動させるために、発熱が特に激しいも
のに効果が大きい。
(3) It is most effective for devices that generate particularly intense heat because they operate at high current densities, such as microwave oscillation transistors used in space communications and car telephones, and laser diodes for optical communications.

さらに、本発明によるホウ素系化合物半導体を用いた半
導体素子は、放熱特性、耐熱性、耐放射線性にすぐれて
いるので、広い適用範囲をもっている。
Furthermore, the semiconductor device using the boron-based compound semiconductor according to the present invention has excellent heat dissipation characteristics, heat resistance, and radiation resistance, and therefore has a wide range of applications.

本発明は電子計算機、光通信等の情報産業の広い分野に
わたって適用可能である。
The present invention is applicable to a wide range of fields in the information industry, such as electronic computers and optical communications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の放熱基板を用いた半導体装置の模式図
、 第2図は従来の放熱基板を用いた半導体装置の模式図、 第3図は本発明BP膜を形成するCVO装置の断面図、 第4図はBPの熱伝導率を他の材料と比較して示した特
性図、 第5図は本発明BPMの成長方法の一例を示すダイアグ
ラム、 第6図はBP膜の2次成長を説明する断面図、第7図は
本発明によるp−n接合ダイオードの実施例の構造を示
す図である。 1・・・Si基板、 2・・・素子構造、 3・・・[IP放熱基板、 4・・・メタライズ層、 5・・・はんだ、 6・・・フィン、 7.8・・・メタライズ層、 9・・・放熱基板(SiC)、 10.11・・・はんだ、 12・・・反応管、 14・・・高周波コイル、 15・・・サセプタ、 16・・・Si基板、 18.19・・・傾斜体、 zl・・・Si基板。 22・・・1次成長層、 23・・・2次成長層、 24・・・Si基板、 25・・・n−BP層、 26・・・1)−BP層、 27.28・・・^1電極層。 奎発明板熱幕板を用いに牛堪イ岑襞工の才延に図第1図 第2図 逼jfL(’C) BPn熱イ云導率alI也のオオ釆斗ビ化較しτ示した
牛茅圧図第4図 BPPl*の2;カ戊長を賛明劣ろ断面口第6図 不発明1′:よるp−rt捧合ダ°イオーFの実眉朗列
の斗鼻遭乞示オ図第7図
Fig. 1 is a schematic diagram of a semiconductor device using the heat dissipation substrate of the present invention, Fig. 2 is a schematic diagram of a semiconductor device using a conventional heat dissipation substrate, and Fig. 3 is a cross section of a CVO device forming the BP film of the present invention. Figure 4 is a characteristic diagram showing the thermal conductivity of BP in comparison with other materials. Figure 5 is a diagram showing an example of the method of growing the BPM of the present invention. Figure 6 is the secondary growth of BP film. FIG. 7 is a cross-sectional view illustrating the structure of an embodiment of a p-n junction diode according to the present invention. DESCRIPTION OF SYMBOLS 1... Si substrate, 2... Element structure, 3... [IP heat dissipation board, 4... Metallized layer, 5... Solder, 6... Fin, 7.8... Metallized layer , 9... Heat dissipation board (SiC), 10.11... Solder, 12... Reaction tube, 14... High frequency coil, 15... Susceptor, 16... Si substrate, 18.19. ... Inclined body, zl...Si substrate. 22... Primary growth layer, 23... Secondary growth layer, 24... Si substrate, 25... N-BP layer, 26... 1)-BP layer, 27.28... ^1 electrode layer. Figure 1 Figure 2 Figure 2 〼jfL('C) BPn thermal conductivity alIya was compared to the cow that was resistant to the heat of the cow using the invented heat shield board. Figure 4 BPPl * 2: The length of the column is approved Figure 6 Non-invention 1': The part of the p-rt dedicated to the F's actual eyebrows is shown Figure 7

Claims (5)

【特許請求の範囲】[Claims] (1)リン化ホウ素およびヒ化ホウ素の一方またはそれ
らの混晶を主成分とするホウ素系化合物半導体からなる
ことを特徴とする放熱基板。
(1) A heat dissipation substrate characterized by being made of a boron-based compound semiconductor whose main component is one of boron phosphide and boron arsenide, or a mixed crystal thereof.
(2)前記放熱基板を半導体装置の基板上に成長させた
ことを特徴とする請求項1記載の放熱基板。
(2) The heat dissipation substrate according to claim 1, wherein the heat dissipation substrate is grown on a substrate of a semiconductor device.
(3)基板上に請求項1に記載されたホウ素系化合物半
導体を成長させるに際して、成長の途中で基板温度を急
激に上昇させた後、成長を続行することを特徴とするホ
ウ素系化合物半導体からなる放熱基板の製造方法。
(3) From a boron-based compound semiconductor characterized in that when growing the boron-based compound semiconductor according to claim 1 on a substrate, the growth is continued after the substrate temperature is rapidly raised during the growth. A method of manufacturing a heat dissipation board.
(4)基板上に形成した請求項1に記載されたホウ素系
化合物半導体層を素子構成要素とすることを特徴とする
ホウ素系化合物半導体素子。
(4) A boron-based compound semiconductor device, characterized in that the boron-based compound semiconductor layer according to claim 1 formed on a substrate is used as an element component.
(5)請求項4に記載のホウ素系化合物半導体素子にお
いて、該半導体素子が基板上に形成された互いに導電型
の異なるホウ素系化合物半導体層からなるP−n接合ダ
イオードおよび表面障壁型ダイオードのいずれかである
ことを特徴とするホウ素系化合物半導体素子。
(5) In the boron-based compound semiconductor device according to claim 4, the semiconductor device is either a P-n junction diode or a surface barrier diode, which is formed of boron-based compound semiconductor layers of mutually different conductivity types formed on a substrate. A boron-based compound semiconductor device characterized in that:
JP63069706A 1988-03-25 1988-03-25 Heat dissipating substrate having boron compound semiconductor and its manufacturing method Expired - Lifetime JPH0634402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069706A JPH0634402B2 (en) 1988-03-25 1988-03-25 Heat dissipating substrate having boron compound semiconductor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069706A JPH0634402B2 (en) 1988-03-25 1988-03-25 Heat dissipating substrate having boron compound semiconductor and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01243563A true JPH01243563A (en) 1989-09-28
JPH0634402B2 JPH0634402B2 (en) 1994-05-02

Family

ID=13410551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069706A Expired - Lifetime JPH0634402B2 (en) 1988-03-25 1988-03-25 Heat dissipating substrate having boron compound semiconductor and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0634402B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919855B2 (en) * 2006-02-21 2011-04-05 Lockheed Martin Topside thermal management of semiconductor devices using boron phosphide contacting a gate terminal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953787A (en) * 1972-09-28 1974-05-24
JPS628600A (en) * 1985-07-04 1987-01-16 ティーディーケイ株式会社 Heat radiation plate for semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953787A (en) * 1972-09-28 1974-05-24
JPS628600A (en) * 1985-07-04 1987-01-16 ティーディーケイ株式会社 Heat radiation plate for semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919855B2 (en) * 2006-02-21 2011-04-05 Lockheed Martin Topside thermal management of semiconductor devices using boron phosphide contacting a gate terminal

Also Published As

Publication number Publication date
JPH0634402B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
Dahal et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material
Schlager et al. Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy
Chung et al. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices
Chatterjee et al. Electro-thermal co-design of β-(AlxGa1-x) 2O3/Ga2O3 modulation doped field effect transistors
Matsumoto et al. Novel integration method for III–V semiconductor devices on silicon platform
JPS6347983A (en) Silicon carbide field effect transistor
JPH0920589A (en) Diamond device and formation of polycrystalline diamond layer
JPS63307196A (en) Diamond multilayered thin film and its production
Fauchet Progress toward nanoscale silicon light emitters
Minoura et al. Surface activated bonding of SiC/diamond for thermal management of high-output power GaN HEMTs
WO2008097484A2 (en) Methods of depositing epitaxial thermoelectric films having reduced crack and/or surface defect densities and related devices
Rinnert et al. Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures
US7811914B1 (en) Apparatus and method for increasing thermal conductivity of a substrate
Alfaraj et al. Thermodynamic photoinduced disorder in AlGaN nanowires
Zheng et al. Enhanced heat dissipation of phosphor film in WLEDs by AlN-coated sapphire plate
US5529846A (en) Highly-oriented diamond film heat dissipating substrate
Mohanta et al. Photoluminescence study of ZnCdO alloy
JPH01243563A (en) Heat-dissipating substrate composed of boron-based compound semiconductor; its manufacture; boron-based compound semiconductor element
JPH04240784A (en) Ultraviolet light-emitting element
US3401449A (en) Method of fabricating a metal base transistor
JPS63283014A (en) Silicon carbide semiconductor element
Zheng et al. Ultra-bright pure green perovskite light-emitting diodes
JP2010045184A (en) Thermally conductive plate component and electronic component with the same
Hu et al. High‐Quality GaN Crystal Grown on Laser Decomposed GaN–Sapphire Substrate and Its Application in Photodetector
Gagui et al. A study of the physical properties of GaN, GaP and their mixed ternary alloys for the applications in optoelectronics devices

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term