JPS63283014A - Silicon carbide semiconductor element - Google Patents

Silicon carbide semiconductor element

Info

Publication number
JPS63283014A
JPS63283014A JP10553887A JP10553887A JPS63283014A JP S63283014 A JPS63283014 A JP S63283014A JP 10553887 A JP10553887 A JP 10553887A JP 10553887 A JP10553887 A JP 10553887A JP S63283014 A JPS63283014 A JP S63283014A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
sic
gas
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10553887A
Other languages
Japanese (ja)
Inventor
Yoshihisa Fujii
藤井 良久
Akira Suzuki
彰 鈴木
Masaki Furukawa
勝紀 古川
Mitsuhiro Shigeta
光浩 繁田
Akitsugu Hatano
晃継 波多野
Atsuko Uemoto
植本 敦子
Kenji Nakanishi
健司 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10553887A priority Critical patent/JPS63283014A/en
Publication of JPS63283014A publication Critical patent/JPS63283014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enhance surface flatness and obtain preferable characteristics by growing a beta-type SiC (111) on an Si single crystal. CONSTITUTION:A single crystal substrate 9 of Si (111) is placed on a graphite sample base 2. Hydrogen gas is fed as carrier gas 3 liters per min., propane gas is fed approx. 1cc per min as material gas, a high frequency current is fed to a work coil 4 to heat a sample base 2 to heat the substrate 9 to approx. l350 deg.C. Then, the surface of the substrate 9 is carbonized to form a thin film of beta-type SiC single crystal. Monosilane and propane gas are fed 0.1-0.9cc per min. together with hydrogen (3 liters per min.) of carrier gas to grow a thin film of beta-type SiC single crystal at 1300-1350 deg.C. Thus, surface flatness is enhanced to obtain preferable characteristics.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はβ型炭化珪素(111)単結晶よりなる炭化珪
素半導体素子(こ開動る。 従来技術 炭化珪素(SiC)には多くの結晶構造(polyLy
pe・多形と称される)か存在し、結晶構造により2.
2ないし3.3エレクトロンポル) (eV )の禁制
帯幅を有する。またSiCは、熱的、化学的、機械的に
極めて安定で、放射線損傷にも強く、さらにワイドギヤ
/プ半導体としてはめずらしく、l〕型、Il型とも安
定に存在する材料である。したがって高温動作素子、大
電力用素子、高信頼性f4本素子、耐放射線素子等の半
導本材料として有望視されている。また従来の半導体材
料を用いた素子では困難な環境下でも使用可能となり、
半導体デバイスの応用範囲を着しく拡大し得る材料であ
る。 さらに、その広いエネルギーギヤ7プを利用して短波長
可視光および近紫外光の光電変換素子材料としても適用
できる半導体材料である。池のワイドギャンプ半導体か
一般に重金属をその主成分に含有し、このために公害と
資源の問題を伴うのに対して、炭化珪素はこれらの両問
題から解放されている点からも電子材料として有望視さ
れるものである。 このように多くの利点、可11ヒ性を有する材料である
にもかかわらず実用化が阻まれているのは、生産性を考
慮した工業的規模での量産に必要となる高品質の大面積
SiC基板を得る上で、再現性のある結品成長技術か確
立されていないところにその原因がある。 従来、研究室基板でSiC単結晶基板を得る方法として
は、黒鉛坩堝中でSiC粉末を2200°C〜2600
°Cて昇華させ、さらに再結晶こせ′ζSiC基板を得
るいわゆる昇華再結晶法(レー1) +法と称される)
、珪素または珪素に鉄、フハルト、白金等の不純物を混
入した混合物を黒鉛坩堝で溶融してSiC基板を得るい
わゆる溶液法、研磨材料を工業的に得るために一般に用
いられているアチェソン法により偶発的に得られるSi
C基板を用いる方法等がある。 しかしながら上記昇華再結晶法、溶液法では多数の再結
晶を得ることはできるが、多くの結晶核が結晶成長初期
に発生するために大形のSiC単結晶基板を得ることが
困難であり、また幾種類かの結晶構造(polyLyp
e)のSiCが混在し、単一結晶構造で大形のSiC単
結晶をより再現性よく得る方法としては不完全なもので
ある。またアチェソン法により偶発的に得られる5iC
u板は1.半導体材料として使用するには純度および結
晶性の点で問題があり、また比較的大形のものが得られ
ても偶発的に得られるものであり、SiC基板を工業的
に代る方法としては適当でない。 一方、近年の半導体技術の向上に伴い、良質で大型の単
結晶基板として入手できる珪素 (Si)の異質基板上
に、気相成長法(CV D法)を用いたヘテロエピタキ
シャル技術により3C形(β型)SiC(立方晶形に属
する結晶構造を有するもので、そのエネルギーギャップ
は〜2,2eV)、qt結晶薄膜が得られるようになっ
た。CVD法は工業的規模での量産性に優れた製造技術
であり、大面積で高品質のSiC単結晶膜を再現性良(
Si基板上に1&長させる技術として有望である0通常
、珪素原料として、5i84%5iCZい5iHzC1
2、(CI、)、S iC1、(CH3)2S iC1
2まな、炭素原料として C)[、%C,H,、C,H
いキャリアlfスとして水素、アルゴン等を用いて、S
i基板温度を1.200℃〜1.400℃に設定し3C
形SiC単結晶で膜をエピタキシャル成長させている。 しかしながら、S;は5% 11基板であるたゐ、Si
Cとはなじみ(ぬれ)が悪(、またSiとSiCは格子
定数が20%も相違するため、Si基板上に直接にSi
Cを単結晶成長させようとしても層状成長による単結晶
膜は得られずデンドライト構造な示す多結晶になるかあ
るいはごく薄い単結晶膜が得られたとしても厚くなるに
つれて結晶の品質が劣化し、多結晶化する傾向にある。 さらに上記CVD法を改良したものの1つとして、最近
Si単結晶基板表面を炭化水素ガス雰囲気下で加熱して
炭化し、表面にごく薄い炭化珪素膜を形成した後、珪素
用原料ガスと炭素用原料ガスを供給してCVD法により
炭化珪素単結晶を成長させる方法が開発されており、す
でに公知の技術となっている(Appl、 Pl+ys
、Lett 42 (5)。 I  Marcb 1983.P2O3−P2O3)。 またこの方法で作製されたSiC単結晶を用いたシay
トキーダイオード、11按合ダイオード、電界効果トラ
ンジスタ等の半導体素子が開発されている。 発明が解決しようとする問題点 上記SiCを用いた半導体素子においては5i(100
)単結晶基板上に成長させた5iC(100)単結晶が
従来用いられてきた。しかしながら5iC(00)単結
晶では成長表面は凹凸のある平坦性の劣るものしか得ら
れず、またS;基板とSiCの格子定数のちがいに起因
する面欠陥がSiC結晶中に含まれる。このような原因
により実用化に耐えうる良好な特性を示すSiC半導体
素子を製造することは困難であった。 発明者らは上記問題点を解決するためにSi単結晶上に
5iC(111)単結晶を成長させて5iC(111)
半導体素子を製造したところ、得られたS 1C(11
1)半導体素子が前述の欠点を有さないことを見出し、
本発明を完成した。 5iC(111)面は自然核発生して結晶が成長した場
合に表面平坦な大きな面として得られやすい面であり、
a型SiCを用いた半導体素子製造においてもa型5i
C(0001)面(β型S i C)(111)面に相
当する)が用いられている。このように表面平坦な大ト
な面として得られやすい面であるため、珪素基板上に炭
化珪素をエピタキシャル成長させる場合においても層状
成長により炭化珪素単結晶が成長していくことにつなが
り、欠陥の少ない良質の結晶が得られる。しかしながら
従来SiCの半導体素子においては5iC(111)面
を用いたものは製作されていなかった。 問題点を解決するための手段 本発明は5iC(111)単結晶を用いた表面平坦性か
優れ、欠陥の少ない5iC(111)単結晶を含み、良
好な特性を示す半導本素子およびその製造法を提O(す
る。 本発明にがかるSiC半導木素子はβ型5iC(111
)単結品面を含む。 同半導水は、たとえばSi単結晶基板上髪こ5iC(1
11)単結晶をヘテロエピタキシャル成長させるC V
 D法により製造できる。さらに謬細に記載rると、S
i単結晶基板上にエピタキシャル成長または傾斜エピタ
キシャル成長により5iC(111)単結晶膜を形成す
ると、本発明の炭1b珪素半導(ド素了か得られる。実
際的には、たとえば図面に示される装置において5i(
111)!it結晶基板または辿の面方位のSi単結晶
基板を約1000〜1500°C(ゴ加熱し、CHいC
、H、、C2II6等の炭素原料力スを水素、アルゴン
等のキャリアガスとともに流入させて、S1単結晶膜上
に5iC(111)単結晶膜を形成する。 人で珪素原料として 5iH−1SiCR4、S i 
H:C12、(CH3)3 S i C1、(C113
)2S iC1,2など、炭素原料としてC■1 、、
C2+−i 、、CJI−(、など、キャリアガスとし
て水素、アルゴンなどを用いて上記の二層からなる基板
を約1000〜1500°C1好ましくは130(1〜
1350 ’Cに加熱し、エピタキシャル成長させて表
面平坦性が優れ、欠陥の少ない5iC(111)単結晶
膜を形成する。 得られた5iC(111)単結晶を含む半導体膜を用い
て、あるいは同阜結晶膜上にさらに必要な層を連続成長
させて、常法によりショットキーグイオード、1月1接
合ダイオード、電界効果トランンスク等種々の半導本素
子を製造すると、漏れ電流等の少ない優れた特性を有す
るものが得られる。 実施例I Si単結晶基板上へのS i C’it結品のへテロエ
ビタキンヤル成長を原料ガスとしてモノシラン(SiH
,)、プロパン(C3H8)を用いた化学的気相成長法
(CV D法)で行った。 第1図に結晶成長装置の概略図を示1゜黒鉛試料台2土
に5i(111)単結晶基板9を載置する。 キャリアガスとして水素がスを毎分3I、原料力スとし
てプロパンガスを毎分約J(c流しワークコイル4に高
周波電流を流して試料台2を加熱してSi基板を約13
50 ’cまで加熱し、1〜5分程)交保持することに
より、Si単結晶基板表面を炭化してSiC単結晶の薄
膜を形成rる。一ついでモノシランとプロパンガスをそ
れぞれ毎分0.1 〜0 、9 ccX キャリアガス
の水素(毎分3りとともに流しテSiC単結晶膜を13
00−1350’C(7)温度で成長させる。1時間で
約3μIITの成長膜が得られた。 電子顕微11観寮の結果、得られた成長膜は表面平坦性
か優れ、欠陥の少ない5iC(111)単結晶膜である
ことがわかった。 実施例2 SiC(111)面を用いて、第2図に示す 1目1接
合ダイオードを形成引る。実施例1の結晶成長法=3− により、11型5i(111)単結晶基板10上に、ま
ず、不純物添加を行なわないでSiC膜11 を約2μ
m成長させる (この成長層の電気伝導はIl型を示す
)。連続してこの成長層11上に、成長中にトリメチル
アルミニウム(TMA)を毎分0.01〜0.4cc原
料ガス、キャリアガスと共に流すことにより、アルミニ
ウムアクセプタを含むp型成長層12を約1μ
Industrial Field of Application The present invention is directed to a silicon carbide semiconductor device made of β-type silicon carbide (111) single crystal.
(referred to as pe polymorph) exist, and depending on the crystal structure, 2.
It has a forbidden band width of 2 to 3.3 electron pols (eV). Furthermore, SiC is extremely stable thermally, chemically, and mechanically, and is resistant to radiation damage. Furthermore, it is a material that stably exists in both type I and type Il, which is rare as a wide gap semiconductor. Therefore, it is considered promising as a semiconductor material for high-temperature operation elements, high-power elements, high-reliability F4 elements, radiation-resistant elements, etc. In addition, devices using conventional semiconductor materials can be used in difficult environments.
It is a material that can significantly expand the range of applications for semiconductor devices. Furthermore, it is a semiconductor material that can be used as a photoelectric conversion element material for short wavelength visible light and near ultraviolet light by utilizing its wide energy gap. Unlike wide-gap semiconductors, which generally contain heavy metals as their main components and are associated with pollution and resource problems, silicon carbide is seen as a promising electronic material because it is free from both of these problems. It is something that will be done. Despite these materials having many advantages and high heat resistance, their practical application is hindered by the high quality and large area required for mass production on an industrial scale with productivity in mind. The reason for this is that no reproducible crystal growth technology has been established for obtaining SiC substrates. Conventionally, the method of obtaining a SiC single crystal substrate using a laboratory substrate is to heat SiC powder in a graphite crucible at 2200°C to 2600°C.
°C, and then recrystallized to obtain a SiC substrate.
, the so-called solution method in which a SiC substrate is obtained by melting silicon or a mixture of silicon with impurities such as iron, Fhardt, platinum, etc. in a graphite crucible, and the Acheson method, which is generally used industrially to obtain polishing materials. Si obtained
There are methods such as using a C substrate. However, although it is possible to obtain a large number of recrystallizations using the sublimation recrystallization method and the solution method, it is difficult to obtain a large SiC single crystal substrate because many crystal nuclei are generated at the initial stage of crystal growth. Several types of crystal structures (polyLyp
This is an incomplete method for obtaining a large SiC single crystal with a single crystal structure with better reproducibility since SiC (e) is mixed therein. In addition, 5iC obtained accidentally by the Acheson method
The u board is 1. There are problems with purity and crystallinity when using it as a semiconductor material, and even if a relatively large one is obtained, it is only obtained by accident, so it is not an industrial alternative to SiC substrates. It's not appropriate. On the other hand, with the improvement of semiconductor technology in recent years, 3C type ( A qt crystal thin film of β type) SiC (having a crystal structure belonging to the cubic crystal structure, the energy gap of which is ~2.2 eV) can now be obtained. The CVD method is a manufacturing technology with excellent mass production on an industrial scale, and can produce large-area, high-quality SiC single crystal films with good reproducibility (
It is promising as a technology to make 1& length on a Si substrate. 0Usually, as a silicon raw material, 5i84%5iCZ5iHzC1
2, (CI,), S iC1, (CH3)2S iC1
2, as a carbon raw material C) [,%C,H,,C,H
Using hydrogen, argon, etc. as a carrier, S
iSet the substrate temperature between 1.200℃ and 1.400℃ to 3C.
The film is grown epitaxially using SiC single crystal. However, since S; is 5% 11 substrate, Si
It has poor compatibility (wetting) with C (and Si and SiC have 20% different lattice constants, so Si
Even if an attempt is made to grow a single crystal of C, a single crystal film cannot be obtained through layered growth, and the film becomes polycrystalline with a dendrite structure.Alternatively, even if a very thin single crystal film is obtained, the quality of the crystal deteriorates as it becomes thicker. It tends to become polycrystalline. Furthermore, as one of the improvements to the above CVD method, recently the surface of a Si single crystal substrate is heated and carbonized in a hydrocarbon gas atmosphere, and after forming a very thin silicon carbide film on the surface, a raw material gas for silicon and a carbon A method of growing silicon carbide single crystals by CVD method by supplying raw material gas has been developed and is already a known technology (Appl, Pl+ys
, Lett 42 (5). I Marcb 1983. P2O3-P2O3). In addition, SiC single crystal fabricated using this method
Semiconductor devices such as the Toky diode, the 11-channel diode, and the field effect transistor have been developed. Problems to be Solved by the Invention In the semiconductor device using the above-mentioned SiC, 5i (100
) A 5iC (100) single crystal grown on a single crystal substrate has been conventionally used. However, in the case of 5iC (00) single crystal, the growth surface is uneven and has poor flatness, and the SiC crystal contains planar defects due to the difference in lattice constant between the S substrate and SiC. Due to these reasons, it has been difficult to manufacture a SiC semiconductor element that exhibits good characteristics suitable for practical use. In order to solve the above problems, the inventors grew a 5iC(111) single crystal on a Si single crystal.
When a semiconductor device was manufactured, the obtained S 1C(11
1) Discovering that the semiconductor device does not have the above-mentioned drawbacks,
The invention has been completed. The 5iC (111) plane is a plane that is easily obtained as a large flat surface when crystals grow due to natural nucleation.
A-type 5i is also used in semiconductor device manufacturing using a-type SiC.
The C (0001) plane (β-type S i C) (corresponding to the (111) plane) is used. Since the surface is easily obtained as a large, flat surface, even when silicon carbide is grown epitaxially on a silicon substrate, it leads to the growth of silicon carbide single crystals through layered growth, with fewer defects. Good quality crystals can be obtained. However, conventional SiC semiconductor devices using 5iC (111) planes have not been manufactured. Means for Solving the Problems The present invention provides a semiconductor device using a 5iC (111) single crystal that has excellent surface flatness and few defects and exhibits good characteristics, and its manufacture. The SiC semiconductor tree device according to the present invention is a β-type 5iC (111
)Includes single-piece surfaces. The semiconducting water is, for example, 5iC (1
11) CV for heteroepitaxial growth of single crystal
It can be manufactured by method D. Furthermore, if it is stated in the details, S
When a 5iC (111) single crystal film is formed on an i single crystal substrate by epitaxial growth or inclined epitaxial growth, the carbon 1b silicon semiconductor of the present invention can be obtained. 5i(
111)! An IT crystal substrate or a Si single crystal substrate with a similar plane orientation is heated to approximately 1000 to 1500°C (CHC).
, H, , C2II6, etc. together with a carrier gas such as hydrogen and argon to form a 5iC (111) single crystal film on the S1 single crystal film. 5iH-1SiCR4, Si as a silicon raw material in humans
H: C12, (CH3)3 S i C1, (C113
)2S iC1,2, C■1 as a carbon raw material,...
C2+-i,, CJI-(, etc.), using hydrogen, argon, etc. as a carrier gas, heat the substrate consisting of the above two layers at about 1000-1500°C1, preferably 130°C (1-130°C).
It is heated to 1350'C and epitaxially grown to form a 5iC (111) single crystal film with excellent surface flatness and few defects. Using the obtained semiconductor film containing the 5iC (111) single crystal, or by continuously growing necessary layers on the same crystal film, a Schottky diode, a 1/1 junction diode, and a field effect are formed by a conventional method. When manufacturing various semiconductor devices such as transformers, devices having excellent characteristics such as low leakage current can be obtained. Example I Monosilane (SiH
, ), and a chemical vapor deposition method (CVD method) using propane (C3H8). FIG. 1 shows a schematic diagram of the crystal growth apparatus. A 5i (111) single crystal substrate 9 is placed on a 1° graphite sample stage 2. Hydrogen gas is used as a carrier gas at 3 I/min, and propane gas is used as a raw material gas at about 3 J/min.
By heating to 50'C and holding for about 1 to 5 minutes), the surface of the Si single crystal substrate is carbonized to form a thin film of SiC single crystal. At the same time, monosilane and propane gas were flowed at 0.1 to 0.9 cc/min, respectively, along with carrier gas hydrogen (3 cc/min), and the SiC single crystal film was heated at 13 cc/min.
Grow at a temperature of 00-1350'C (7). A grown film of about 3 μIIT was obtained in 1 hour. As a result of electron microscopy, it was found that the grown film obtained was a 5iC (111) single crystal film with excellent surface flatness and few defects. Example 2 A one-line, one-junction diode shown in FIG. 2 was formed using a SiC (111) surface. Using the crystal growth method of Example 1 = 3-, a SiC film 11 of about 2 μm is first grown on an 11 type 5i (111) single crystal substrate 10 without adding impurities.
(The electrical conductivity of this grown layer shows Il type). By continuously flowing trimethylaluminum (TMA) over this growth layer 11 at a rate of 0.01 to 0.4 cc per minute together with a source gas and a carrier gas, the p-type growth layer 12 containing an aluminum acceptor has a thickness of approximately 1 μm.

【n成長
させた。l】型成長WJi2上にオーム性電極として、
ニンケル(Ni)を真空蒸着した後、合金化した電極1
3を形成し、リアクティブエンチング(RIE)により
、電極周辺部を工/チング除去し、第2図のようなメサ
描造の1)11接合ダイオードを形成した。ll型炭化
珪素層 ・\のオーム性電極14として、n型珪素基板
裏面に二・/ケルメッキを行ない、同電極を形成した。 このようにして得られたl)!11接ダイオードは、従
来の炭1ヒ珪素(100)面を用いて形成されたものに
比へ′C1逆方向バイアス印加時の漏れ電流か少なく、
絶縁耐圧の大きな良好な特性を示すことか確認された。 実施例3 SiC(111)面を用いて、i13図に示すショット
キーデート型電界効果トランジスタを形成する。 実施例1に示す結晶成長法によQ 、II型珪素(11
1)単結晶基板10上に成長中にシボラン(B2H6)
を毎分0.01−0.4cc原料ガス、キャリアガスと
共に流すことにより、ボロンアクセプタを含む1)型成
長層15を約2μm成長させた。連続して、このr&艮
層に成長中に窒素(N2)を毎分0.01〜2cc原料
力゛ス、キャリアカ゛スと共に流すことにより、窒素ド
ナーを含むII型成長層16を約0゜5μm成長させた
。I)型成氏層16上にオーム性電極として、チタン(
T i)−アルミニウム(八り積層電極17+18をパ
ターン蒸着し、その後、この電極間に金(A u)ショ
ットキー電極1つをパターン蒸着することにより、第3
図に示すようなチタン−アルミニウム電極を、各々ソー
スおよびドレイン、金電極をデートとするショットキー
デート型電界効果トランシ゛スタを形成した。このよう
にして得られた素子のソース−デート間のショットキー
接合特性は炭化珪素(ioo)面を用いて形成されたも
のに比べて、逆方向バイアス印加時の漏れ電流の少ない
良好な特性を示し、その結果、良好な特性を示す電界効
果トランジスタを形成することができた。 効  果 本発明で得られたβ型5iC(111)単結晶膜を含む
半導体素子は、漏れ電流か少ない等の優れた特性を有し
ており将米半導体素了として広く応用され実用に供され
るものである。
[n Grow. l] As an ohmic electrode on the type growth WJi2,
Electrode 1 alloyed after vacuum-depositing nickel (Ni)
3 was formed, and the periphery of the electrode was etched/removed by reactive etching (RIE) to form a 1) 11-junction diode with a mesa pattern as shown in FIG. As the ohmic electrode 14 of the ll-type silicon carbide layer, the back surface of the n-type silicon substrate was plated with 2-/Kel to form the same electrode. Thus obtained l)! The 11-junction diode has less leakage current when reverse bias is applied than the conventional one formed using a carbon-1-arsenic (100) surface.
It was confirmed that it exhibited good characteristics with high dielectric strength. Example 3 A Schottky date field effect transistor shown in Figure i13 is formed using a SiC (111) plane. Q, type II silicon (11
1) Siborane (B2H6) is grown on the single crystal substrate 10
By flowing 0.01-0.4 cc per minute together with the raw material gas and the carrier gas, the type 1) growth layer 15 containing the boron acceptor was grown to a thickness of about 2 μm. By continuously flowing nitrogen (N2) through the R&R layer during growth along with a raw material gas and a carrier gas at a rate of 0.01 to 2 cc per minute, the type II growth layer 16 containing nitrogen donors is grown to a thickness of approximately 0°5 μm. Made it grow. I) Titanium (
T i)-aluminum (8) laminated electrodes 17+18 are deposited in a pattern, and then one gold (Au) Schottky electrode is deposited in a pattern between the electrodes to form the third
A Schottky date field effect transistor was formed using titanium-aluminum electrodes as shown in the figure for the source and drain, respectively, and a gold electrode as the date. The Schottky junction characteristics between the source and the date of the device thus obtained are better than those formed using silicon carbide (IOO) surfaces, with less leakage current when reverse bias is applied. As a result, it was possible to form a field effect transistor exhibiting good characteristics. Effects The semiconductor device containing the β-type 5iC (111) single crystal film obtained by the present invention has excellent characteristics such as low leakage current, and is expected to be widely applied and put into practical use as a semiconductor device in the future. It is something that

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に用いられる装置の概略図
、第2図は本発明の実施例2において製造された1)1
1接合ダイオードの断面図、第3図は本発明の実施例3
において製造された電界効果トランジスタの断面図であ
る。 1・・・反応管、2・・・試料台、3・・・支持台、4
・・・ワークコイル、5,6,7.8  ・・・枝管、
9・・・珪素単結晶基板、10・・・11型珪素単結晶
基板、11.16・・・n型炭化珪素成長層、12.1
5・・・p型炭化珪素成艮層、13・・・1】型層オー
ム性電極、14,17.18・・冒1型層オーム性電極
、19・・・n型層シヨ、トキー電極 代理人  弁理士 画数 圭一部 第1図 第3図
FIG. 1 is a schematic diagram of a device used in one embodiment of the present invention, and FIG. 2 is a schematic diagram of a device manufactured in a second embodiment of the present invention.
Embodiment 3 of the present invention is shown in FIG. 3, a cross-sectional view of a single-junction diode.
1 is a cross-sectional view of a field effect transistor manufactured in FIG. 1... Reaction tube, 2... Sample stand, 3... Support stand, 4
... Work coil, 5, 6, 7.8 ... Branch pipe,
9...Silicon single crystal substrate, 10...11 type silicon single crystal substrate, 11.16...N type silicon carbide growth layer, 12.1
5...p-type silicon carbide layer, 13...1 type layer ohmic electrode, 14,17.18...1 type layer ohmic electrode, 19...n type layer, toky electrode Agent Patent Attorney Number of strokes Keiichi Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] β型炭化珪素(111)単結晶膜を含むことを特徴とす
る炭化珪素半導体素子。
A silicon carbide semiconductor device comprising a β-type silicon carbide (111) single crystal film.
JP10553887A 1987-04-28 1987-04-28 Silicon carbide semiconductor element Pending JPS63283014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10553887A JPS63283014A (en) 1987-04-28 1987-04-28 Silicon carbide semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10553887A JPS63283014A (en) 1987-04-28 1987-04-28 Silicon carbide semiconductor element

Publications (1)

Publication Number Publication Date
JPS63283014A true JPS63283014A (en) 1988-11-18

Family

ID=14410364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10553887A Pending JPS63283014A (en) 1987-04-28 1987-04-28 Silicon carbide semiconductor element

Country Status (1)

Country Link
JP (1) JPS63283014A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE34861E (en) * 1987-10-26 1995-02-14 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
WO2003023837A1 (en) * 2001-09-06 2003-03-20 Toyoda Gosei Co., Ltd. ELECTRODE FOR p-TYPE SiC
JP2006012922A (en) * 2004-06-22 2006-01-12 Nagoya Institute Of Technology Electrode forming method to silicon carbide, electrode forming device, semiconductor element using electrode, and its manufacturing method
JP2006147866A (en) * 2004-11-19 2006-06-08 Sumitomo Osaka Cement Co Ltd Film formation method of silicon carbide thin film
JP2006149195A (en) * 1995-06-21 2006-06-08 Cree Inc Converter circuit, and circuit having at least one switching device, and circuit module
JP2009302097A (en) * 2008-06-10 2009-12-24 Air Water Inc Method of manufacturing single crystal sic substrate, and single crystal sic substrate
JP2009302098A (en) * 2008-06-10 2009-12-24 Air Water Inc Method of manufacturing nitrogen compound semiconductor substrate, and nitrogen compound semiconductor substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645897A (en) * 1979-09-19 1981-04-25 Sharp Corp Manufacture of silicon carbide crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645897A (en) * 1979-09-19 1981-04-25 Sharp Corp Manufacture of silicon carbide crystal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE34861E (en) * 1987-10-26 1995-02-14 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
JP2006149195A (en) * 1995-06-21 2006-06-08 Cree Inc Converter circuit, and circuit having at least one switching device, and circuit module
WO2003023837A1 (en) * 2001-09-06 2003-03-20 Toyoda Gosei Co., Ltd. ELECTRODE FOR p-TYPE SiC
US6943376B2 (en) 2001-09-06 2005-09-13 Toyoda Gosei Co., Ltd. Electrode for p-type SiC
JP2006012922A (en) * 2004-06-22 2006-01-12 Nagoya Institute Of Technology Electrode forming method to silicon carbide, electrode forming device, semiconductor element using electrode, and its manufacturing method
JP2006147866A (en) * 2004-11-19 2006-06-08 Sumitomo Osaka Cement Co Ltd Film formation method of silicon carbide thin film
JP4524447B2 (en) * 2004-11-19 2010-08-18 住友大阪セメント株式会社 Method for forming silicon carbide thin film
JP2009302097A (en) * 2008-06-10 2009-12-24 Air Water Inc Method of manufacturing single crystal sic substrate, and single crystal sic substrate
JP2009302098A (en) * 2008-06-10 2009-12-24 Air Water Inc Method of manufacturing nitrogen compound semiconductor substrate, and nitrogen compound semiconductor substrate

Similar Documents

Publication Publication Date Title
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
Filby et al. Single-crystal films of silicon on insulators
US4897149A (en) Method of fabricating single-crystal substrates of silicon carbide
US4865659A (en) Heteroepitaxial growth of SiC on Si
US5037502A (en) Process for producing a single-crystal substrate of silicon carbide
JPH0534825B2 (en)
JPS63283014A (en) Silicon carbide semiconductor element
JPH0513342A (en) Semiconductur diamond
JP2000001398A (en) Production of silicon carbide semiconductor substrate
JPH07131067A (en) Method for manufacturing silicon carbide wafer and method for manufacturing silicon carbide light emitting diode element
JPS61243000A (en) Production of substrate of silicon carbide single crystal
JPS6120514B2 (en)
Takigawa et al. Hetero-epitaxial growth of lower boron phosphide on silicon substrate using PH3-B2H6-H2 system
JPS6230699A (en) Production of silicon carbide single crystal substrate
JP2633403B2 (en) Method for producing silicon carbide single crystal
JPS6115150B2 (en)
JPH0364480B2 (en)
JPS6045159B2 (en) Method for manufacturing silicon carbide crystal layer
JPH0327515B2 (en)
JP3087030B2 (en) SiC composite, method for producing the same, and single crystal SiC
JPS6152119B2 (en)
JPS5838400B2 (en) Method for manufacturing silicon carbide crystal layer
JPS5830280B2 (en) Method for manufacturing silicon carbide crystal layer
JPS61222992A (en) Production of single crystal substrate of silicon carbide
JPS6120515B2 (en)