JPH01243378A - Manufacture of fused carbonate type fuel cell - Google Patents

Manufacture of fused carbonate type fuel cell

Info

Publication number
JPH01243378A
JPH01243378A JP63069782A JP6978288A JPH01243378A JP H01243378 A JPH01243378 A JP H01243378A JP 63069782 A JP63069782 A JP 63069782A JP 6978288 A JP6978288 A JP 6978288A JP H01243378 A JPH01243378 A JP H01243378A
Authority
JP
Japan
Prior art keywords
electrolyte
gas diffusion
plate
fuel cell
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63069782A
Other languages
Japanese (ja)
Inventor
Hideyuki Ozu
秀行 大図
Yoshihiro Akasaka
芳浩 赤坂
Hiroshi Tateishi
浩史 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63069782A priority Critical patent/JPH01243378A/en
Priority to US07/310,309 priority patent/US4895774A/en
Publication of JPH01243378A publication Critical patent/JPH01243378A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/144Fuel cells with fused electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/144Fuel cells with fused electrolytes characterised by the electrolyte material
    • H01M8/145Fuel cells with fused electrolytes characterised by the electrolyte material comprising carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent the occurrence of cracks on electrolyte plates by assembling unit cells each laminated with a pair of gas diffusion electrodes and an electrolyte plate impregnated with an electrolyte on both sides then heating them to the operating temperature to fill the electrolyte in the electrolyte plate. CONSTITUTION:A mixture of an electrolyte, a holding material, alkaline earth metal carbonate, and an organic binder is molded to form an electrolyte plate. This electrolyte plate impregnated with the electrolyte on both sides and a pair of gas diffusion electrodes are laminated to form a unit cell. Inter- connectors are inserted between the unit cells and assembled, then they are heated to the operating temperature. During this heating process, pore portions are generated due to the volatilization of the organic binder in the electrolyte plates. The fused electrolyte in the gas diffusion electrodes is smoothly diffused and filled in the pore portions of the electrolyte plates. The occurrence of cracks on the electrolyte plates can be prevented, end a fused carbonate type fuel cell with no initial deterioration can be obtained.

Description

【発明の詳細な説明】 [発明・の目的] (産業上の利用分野) 本発明は、溶融炭酸塩型燃料電池の製造方法に関する。[Detailed description of the invention] [Purpose of invention] (Industrial application field) The present invention relates to a method for manufacturing a molten carbonate fuel cell.

(従来の技術) 溶融炭酸塩型燃料電池は、対向して配置された一対のガ
ス拡散電極、つまり燃料極と空気極との間に電解質とし
てのアルカリ炭酸塩を介して単位電池とし、この単位電
池をインターコネクタを介在させて複数積層して構成さ
れている。かがる構成の溶融炭酸塩型燃料電池では、高
温下でアルカリ炭酸塩を溶融させ、燃料極に水素及び−
酸化炭素を含む燃料ガスを、空気極に酸素及び二酸化炭
素を含む酸化剤ガスを夫々流通させることにより運転さ
れる。
(Prior art) A molten carbonate fuel cell is a unit cell in which an alkali carbonate is interposed as an electrolyte between a pair of gas diffusion electrodes, that is, a fuel electrode and an air electrode, which are arranged opposite to each other. It is constructed by stacking a plurality of batteries with interconnectors interposed. In a molten carbonate fuel cell with a bending configuration, alkaline carbonate is melted at high temperatures, and hydrogen and -
It is operated by flowing a fuel gas containing carbon oxide and an oxidant gas containing oxygen and carbon dioxide to the air electrode, respectively.

上述した溶融炭酸塩型燃料電池には、電解質として電解
質タイルと呼ばれる電解質板が使用されている。こうし
た電解質板は、従来、電解質としてのアルカリ□炭酸塩
の粉末と該炭酸塩を保持するだめのセラミックス粉末か
らなる保持材とを混合し、該混合物を成形用金型内に注
入して400〜500℃で200〜500に97cdの
圧力下にて成形するホットプレス法により製造されてい
る。このホットプレス法により得られる電解質板は、高
密度で電解質の保持機能が優れているため、良好な発電
特性を有する。
The molten carbonate fuel cell described above uses an electrolyte plate called an electrolyte tile as an electrolyte. Conventionally, such an electrolyte plate is produced by mixing an alkali carbonate powder as an electrolyte with a retaining material made of a ceramic powder that retains the carbonate, and injecting the mixture into a molding die. It is manufactured by a hot press method in which it is molded at 500°C under a pressure of 200 to 500 and 97 cd. The electrolyte plate obtained by this hot pressing method has a high density and an excellent electrolyte retention function, so it has good power generation characteristics.

ところで、溶融炭酸塩型燃料電池に使用される電解質板
を製造するにあたっては、量産化、大型化及び薄層化が
要求されている。しかしながら、上述し°た従来のホッ
トプレス法ではこれらの要求を満足できない問題があっ
た。即ち、ホットプレス法ではアルカリ炭酸塩が軟化・
溶融を起こす400℃以上の高温で金型成形するため、
金型の昇温・降温に時間を要する。特に、降温時に急激
な冷却を行なうと電解質板の破損が生じる。これを防止
するためには、徐冷する必要があり、製造時間が長くな
る。しかも、高温の溶融アルカリ炭酸塩は腐蝕性が高い
ため、金型寿命を低下させる。
By the way, in manufacturing electrolyte plates used in molten carbonate fuel cells, mass production, larger size, and thinner layers are required. However, the above-mentioned conventional hot press method has a problem in that it cannot satisfy these requirements. In other words, in the hot press method, the alkali carbonate softens and
Because it is molded at a high temperature of over 400℃, which causes melting,
It takes time to heat up and cool down the mold. In particular, if rapid cooling is performed when the temperature drops, the electrolyte plate will be damaged. In order to prevent this, slow cooling is required, which increases production time. Moreover, the high temperature molten alkali carbonate is highly corrosive and thus shortens the life of the mold.

従って、ホットプレス法では電解質板の量産化を達成す
ることが極めて困難である。また、ホットプレス法を用
いた場合には電解質板は金型内部で変形や応力を受ける
ため、製造中に割れを生じ易い。仮に、製造中に割れが
発生しなかった場合でも、製造時に導入された残留応力
が保管中に解放されることによって遅れ割れを生じ易い
。こうした製造中や保管中における割れの発生は、電解
質板の大型化に伴って顕著となる。更に、ホットプレス
法では1M以下の厚さの電解質板を割れを発生せずに製
造することは困難であり、特に大型化に伴って薄層化は
一層困難となる。しかも、ホットプレス法により製造さ
れた電解質板は可撓性に乏しく、操作時に外部からの衝
撃によって脆性破壊を生じ易い。従って、ホットプレス
法は電解質板の大型化及び薄層化に対して不利である。
Therefore, it is extremely difficult to achieve mass production of electrolyte plates using the hot press method. Furthermore, when the hot press method is used, the electrolyte plate is subjected to deformation and stress inside the mold, so cracks are likely to occur during manufacturing. Even if cracking does not occur during manufacturing, delayed cracking is likely to occur due to residual stress introduced during manufacturing being released during storage. The occurrence of cracks during manufacturing and storage becomes more noticeable as the size of the electrolyte plate increases. Furthermore, it is difficult to produce an electrolyte plate with a thickness of 1 M or less without cracking using the hot press method, and in particular, as the size increases, it becomes even more difficult to reduce the thickness of the electrolyte plate. Moreover, the electrolyte plate manufactured by the hot pressing method has poor flexibility and is susceptible to brittle fracture due to external impact during operation. Therefore, the hot pressing method is disadvantageous in increasing the size and thinning of the electrolyte plate.

このようなことから、比較的低温でシート化することが
可能なドクターブレード法により電解質板を製造するこ
とが考えられている。ドクターブレード法は、一般にセ
ラミックスのシート成形法として知られており、電解質
板の成形法としても容易に適用することが可能である。
For this reason, it has been considered to manufacture electrolyte plates by the doctor blade method, which allows sheet formation at relatively low temperatures. The doctor blade method is generally known as a method for forming ceramic sheets, and can be easily applied as a method for forming electrolyte plates.

通常のドクターブレード法は、強度及び柔軟性を付与す
るために成形用助剤として数%〜30%程度の有機バイ
ンダを使用する。このため、ドクターブレード法で製造
された電解質板には、有機バインダを含み、発電に至る
過程で有機バインダを除去している。
In the usual doctor blade method, an organic binder of several to 30% is used as a molding aid to impart strength and flexibility. For this reason, the electrolyte plate manufactured by the doctor blade method contains an organic binder, and the organic binder is removed during the process leading to power generation.

有機バインダが除去された電解質板には、添加したバイ
ンダ量に相当する量の気孔が形成されて電解質板の性能
を劣化させる。
In the electrolyte plate from which the organic binder has been removed, pores are formed in an amount corresponding to the amount of the added binder, which deteriorates the performance of the electrolyte plate.

そこで、多孔質のガス拡散電極側にアルカリ炭酸塩の電
解質を予め含浸させ、電池昇温途中で該電極中の溶融し
たアルカリ炭酸塩を電解質板の気孔部分に拡散、充填す
る方法が採用されている。
Therefore, a method has been adopted in which the porous gas diffusion electrode side is pre-impregnated with an alkali carbonate electrolyte, and the molten alkali carbonate in the electrode is diffused and filled into the pores of the electrolyte plate while the battery temperature is rising. There is.

しかしながら、この溶融したアルカリ炭酸塩の拡散、充
填過程において電解質仮にクラックが発生し、電池起動
時でのガスのクロスオーバ、短絡等の初期劣化を生°じ
る問題があった。こうした傾向は、電解質板の面積が大
型化するに伴って顕著となる。
However, during the diffusion and filling process of the molten alkali carbonate, cracks may occur in the electrolyte, causing initial deterioration such as gas crossover and short circuiting at the time of starting the battery. This tendency becomes more noticeable as the area of the electrolyte plate increases.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされたも
ので、ドクタブレード法等により成形された電解質板の
発電過程において発生した気孔部分にガス拡散電極に含
浸させた電解質を該電解質板のクラックを生じることな
(拡散、充填し得る溶融炭酸塩型燃料電池の製造方法を
堤供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned conventional problems. The present invention aims to provide a method for manufacturing a molten carbonate fuel cell in which an impregnated electrolyte can be diffused and filled without causing cracks in the electrolyte plate.

(9課題を解決するための手段) 本発明は、アルカリ炭酸塩を電解質として保持した電解
質板の両側に、一対の多孔質のガス拡散電極を配置した
単位電池を備えた溶融炭酸塩型燃料電池の製造において
、電解質、保持材、アルカリ土類金属炭酸塩及び有機バ
インダの混合物を成形して電解質板を作製する工程と、
前記一対の多孔質ガス拡散電極の少なくとも一方に電解
質を含浸させる工程と、前記電解質の両側に前記電解質
が含浸された一対のガス拡散電極を積層して単位電池と
し、これら単位電池間にインターコネクタを介在させて
組立てを行なった後、作動温度まで昇温させ、該昇温過
程で前記電解質板中の有機バインダの揮散により生じた
気孔部分に前記拡散電極中の電解質を拡散、充填する工
程とを具備したことを特徴とする溶融炭酸塩型燃料電池
の製造方法−である。
(Means for Solving 9 Problems) The present invention provides a molten carbonate fuel cell comprising a unit cell in which a pair of porous gas diffusion electrodes are arranged on both sides of an electrolyte plate holding an alkali carbonate as an electrolyte. In the production of, a step of forming an electrolyte plate, forming a mixture of an electrolyte, a holding material, an alkaline earth metal carbonate, and an organic binder;
impregnating at least one of the pair of porous gas diffusion electrodes with an electrolyte; stacking the pair of gas diffusion electrodes impregnated with the electrolyte on both sides of the electrolyte to form a unit cell; and interconnecting between these unit cells. After assembling with the intervening step, the temperature is raised to an operating temperature, and the electrolyte in the diffusion electrode is diffused and filled into the pores generated by volatilization of the organic binder in the electrolyte plate during the temperature raising process. A method for manufacturing a molten carbonate fuel cell, characterized by comprising:

上記電解質板を構成する電解質としては、例えばL12
CO3とに2CO3の混合アルカリ炭酸塩、Li 2 
CO3とNa2CO3の混合アルカリ炭酸塩、Li2C
O3とに2CO3と Na2CO3の混合アルカリ炭酸塩等を挙げることがで
きる。
As the electrolyte constituting the electrolyte plate, for example, L12
Mixed alkali carbonate of CO3 and 2CO3, Li 2
Mixed alkali carbonate of CO3 and Na2CO3, Li2C
Examples of O3 include mixed alkali carbonates of 2CO3 and Na2CO3.

上記電解質板を構成する保持材としては、例えばLi 
AI!02粉末等を挙げることができる。なお、必要に
応じて補強のためにLi A、ff02繊維を保持材と
共に配合してもよい。
As the holding material constituting the electrolyte plate, for example, Li
AI! 02 powder and the like. Note that, if necessary, Li A and ff02 fibers may be blended together with the holding material for reinforcement.

上記電解質板を構成するアルカリ土類金属炭酸塩は、作
動温度までの昇温過程において同電解質板の構成成分で
あるアルカリ炭酸塩の融点を下げ、ガス拡散電極中の溶
融した電解質を電解質板の気孔部分に円滑に拡散、充填
させ、これにより電解質板のクラック発生を防止する作
用をなすものである。このアルカリ土類金属炭酸塩とし
ては、例えばBa CO3、Sr CO3、Ca CO
3、MgCO3等を挙げることができ、これらは単独で
使用しても2種以上の混合物で使用してもよい。
The alkaline earth metal carbonate constituting the electrolyte plate lowers the melting point of the alkali carbonate, which is a component of the electrolyte plate, during the heating process up to the operating temperature, and transfers the molten electrolyte in the gas diffusion electrode to the electrolyte plate. It diffuses and fills the pores smoothly, thereby preventing cracks in the electrolyte plate. Examples of this alkaline earth metal carbonate include Ba CO3, Sr CO3, Ca CO
3, MgCO3, etc., which may be used alone or in a mixture of two or more.

かかるアルカリ土類金属炭酸塩の配合量は、電解質であ
るアルカリ炭酸塩に対して5〜20モル%の範囲にする
ことが望ましい。この理由は、アルカリ土類金属炭酸塩
の配合量を5モル%未満にすると電解質板中のアルカリ
炭酸塩の融点を充分に下げることが困難となり、一方そ
の配合量が20モル%を越えると電解質板に占める電解
質としてのアルカリ炭酸塩の量が減少して電解質板の性
能を低下させる恐れがあるからである。実験的に確認し
たアルカリ土類金属炭酸塩の配合によるアルカリ炭酸塩
の融点の低減化を具体的に例示すると、モル比でLi 
2 CO3/ K2 CO3=62/Hの混合アルカリ
炭酸塩を用い、アルカリ土類金属炭酸塩としてBa C
O3を用いた場合、Ba CO3の配合量が該混合アル
カリ炭酸塩に対して5モル%では10℃、10〜20モ
ル%では20℃の融点の低温化が認められた。
The amount of the alkaline earth metal carbonate to be blended is desirably in the range of 5 to 20 mol % based on the alkali carbonate that is the electrolyte. The reason for this is that if the content of the alkaline earth metal carbonate is less than 5 mol%, it will be difficult to sufficiently lower the melting point of the alkali carbonate in the electrolyte plate, whereas if the content exceeds 20 mol%, the electrolyte This is because the amount of alkali carbonate as an electrolyte occupying the plate may decrease, leading to a decrease in the performance of the electrolyte plate. To give a concrete example of the experimentally confirmed reduction in the melting point of an alkali carbonate by blending an alkaline earth metal carbonate, Li
2 CO3/K2 Using a mixed alkali carbonate of CO3=62/H, Ba C was used as the alkaline earth metal carbonate.
When O3 was used, the melting point was lowered by 10° C. when the amount of BaCO3 was 5 mol % based on the mixed alkali carbonate, and by 20° C. when it was 10 to 20 mol %.

上記電解質板を構成する有機バインダとしては、セラミ
ックスのシート成形に使用されているものと同様のもの
を使用でき、例えばポリビニルブチラール、フタル酸ジ
ブチル、アクリル樹脂系バインダ等を挙げることができ
る。かかる有機バインダの配合量は、アルカリ炭酸塩、
保持材及びアルカリ土類金属炭酸塩の混合物100重量
部に対して5〜30重量部程度とすることが望ましい。
The organic binder constituting the electrolyte plate can be the same as that used in ceramic sheet molding, and examples thereof include polyvinyl butyral, dibutyl phthalate, acrylic resin binders, and the like. The blending amount of such organic binder is alkali carbonate,
The amount is desirably about 5 to 30 parts by weight per 100 parts by weight of the mixture of the holding material and the alkaline earth metal carbonate.

上記電解質、保持材、アルカリ土類金属炭酸塩及び有機
バインダの混合物の成形手段としては、例えばプレス成
形法、テープキャスト法、圧延ロール法等を採用するこ
とができる。
As a means for forming the mixture of the electrolyte, holding material, alkaline earth metal carbonate, and organic binder, for example, a press molding method, a tape casting method, a pressure roll method, etc. can be employed.

上記多孔質のガス拡散電極に電解質を含浸させる手段と
しては、例えば該電極表面に電解質を塗布し、熱処理を
施して電解質を電極中に拡散、含浸させる方法等を採用
し得る。電解質は、ガス拡散電極(燃料極、空気極)の
少なくとも一方に含浸させればよいが、電池の操作上等
の観点から燃料極に含浸させることが望ましい。
As a means for impregnating the porous gas diffusion electrode with an electrolyte, for example, a method may be employed in which the electrolyte is applied to the surface of the electrode, and heat treatment is performed to diffuse and impregnate the electrolyte into the electrode. The electrolyte may be impregnated into at least one of the gas diffusion electrodes (fuel electrode, air electrode), but it is desirable to impregnate the fuel electrode from the viewpoint of battery operation.

(作用) 本発明によれは、電解質、保持材、アルカリ土類金属炭
酸塩及び有機バインダの混合物を成形して電解質板を作
製することによって、作動温度までの昇温過程において
同電解質板の構成成分であるアルカリ土類金属炭酸塩に
より電解質としてのアルカリ炭酸塩の融点をドげができ
る。しかるに、一対の多孔質ガス拡散電極の少なくとも
一方に電解質を含浸させ、前記電解質の両側に前記電解
質が含浸された一対のガス拡散電極を積層して111位
電池とし、これらil1位電池間にインターコネクタを
介在させて組立てを行なった後、作動温度まで昇温させ
ることによって、該昇温過程で前記電解質板中の有機バ
インダの揮散により気孔部分が生じる。この際、電解質
板表面は前記アルカリ土類金属炭酸塩の配合により低融
点化されたアルカリ炭酸塩の溶融物で覆うことができ、
該溶融物、が電解質板と対向配置されたガス拡散電極中
の溶融した電解質を呼び込む作用をなすため、ガス拡散
電極中の溶融した電解質を電解質板の気孔部分に円滑に
拡散、充填でき、これにより電解質板のクラック発生を
防止できる。従って、電池起動時に発生するガスのクロ
スオーツく、短絡等の初期劣化のない高性能の溶融炭酸
塩型燃料電池を得ることができる。
(Function) According to the present invention, by forming an electrolyte plate by molding a mixture of an electrolyte, a holding material, an alkaline earth metal carbonate, and an organic binder, the structure of the electrolyte plate is obtained during the heating process up to the operating temperature. The alkaline earth metal carbonate component can lower the melting point of the alkali carbonate as the electrolyte. However, at least one of a pair of porous gas diffusion electrodes is impregnated with an electrolyte, and a pair of gas diffusion electrodes impregnated with the electrolyte are stacked on both sides of the electrolyte to form a 111-position battery, and an interface is formed between these 111-position batteries. After assembly with the connector interposed, the temperature is raised to the operating temperature, and in the temperature raising process, the organic binder in the electrolyte plate evaporates, creating pores. At this time, the surface of the electrolyte plate can be covered with a molten alkali carbonate whose melting point has been lowered by blending the alkaline earth metal carbonate,
Since the molten material acts to draw in the molten electrolyte in the gas diffusion electrode disposed opposite to the electrolyte plate, the molten electrolyte in the gas diffusion electrode can be smoothly diffused and filled into the pores of the electrolyte plate. This can prevent cracks from occurring in the electrolyte plate. Therefore, it is possible to obtain a high-performance molten carbonate fuel cell that is free from initial deterioration such as short circuits and has no cross-over of gas generated when the cell is started.

(実施−1) 以下、本発明の実施例を詳細に説明する。(Implementation-1) Examples of the present invention will be described in detail below.

実施例1〜4 まず、モル比でLl 2 CO3/に2 CO3−13
2/3Bの混合アルカリ炭酸塩粉末からなる電解質(;
Ba CO3粉末、Sr CO3粉末、CaCO3粉末
及びMgCO3粉末を夫々10モル%配合した。
Examples 1 to 4 First, the molar ratio of Ll 2 CO3/ to 2 CO3-13
Electrolyte consisting of 2/3B mixed alkali carbonate powder (;
Ba CO3 powder, Sr CO3 powder, CaCO3 powder, and MgCO3 powder were each blended in an amount of 10 mol %.

つづいて、これら混合粉末に比表面積力(10〜20r
rt2/9のLI A、i’oz粉末を夫々55重量%
添加し、これらをアルミナポットに入れ、トルエンを加
えて混合、粉砕した後、混合物100重量部にポリビニ
ルブチラール及びフタル酸ジブチルを20重量部配合し
、混合して4種の電解質スラリーを調製した。ひきつづ
き、これらスラリーをドクターブレード成形機を用いて
シート成形して4種のシート状電解質板を作製した。
Next, apply specific surface area force (10 to 20r) to these mixed powders.
55% by weight of each of rt2/9 LI A and i'oz powders
These were placed in an alumina pot, toluene was added, mixed, and pulverized. 20 parts by weight of polyvinyl butyral and dibutyl phthalate were added to 100 parts by weight of the mixture and mixed to prepare four types of electrolyte slurries. Subsequently, these slurries were formed into sheets using a doctor blade forming machine to produce four types of sheet-like electrolyte plates.

また、気孔率6096のNi −Cr多孔質体からなる
燃料極にモル比でLi 2 CO3/に2 CO3−8
2/ 3aの混合アルカリ炭酸塩を溶融法により80#
 / cri含浸させた。なお、空気極には混合アルカ
リ炭酸塩が含浸されていない気孔率60%のNi多孔質
体を用いた。
In addition, a fuel electrode made of a Ni-Cr porous body with a porosity of 6096 had a molar ratio of Li 2 CO3/2 CO3-8
Mixed alkali carbonate of 2/3a is made into 80# by melting method.
/cri impregnated. Note that a Ni porous body with a porosity of 60% and not impregnated with mixed alkali carbonate was used for the air electrode.

次いで、前記各電解質の両側に前記電解質が含浸された
燃料極と空気極を積層して単位電池とし、これら単位電
池とセルハウジングを組み合せて4種の燃料電池の組立
てを行なった後、前記燃料極側にH2とCO2の混合ガ
スを、空気極側に空気とCO2の混合ガスを流通させな
がら、10時間かけて650℃まで昇温した。
Next, a fuel electrode and an air electrode impregnated with the electrolyte are laminated on both sides of each electrolyte to form a unit cell, and these unit cells and cell housings are combined to assemble four types of fuel cells. The temperature was raised to 650° C. over 10 hours while flowing a mixed gas of H2 and CO2 to the pole side and a mixed gas of air and CO2 to the air electrode side.

しかして、本実施例1〜4の燃料の昇温過程において燃
料極側に流通させる混合ガス中にHeを5 vo1%混
合し、空気極出口側でガスクロ分析でHeリークの検出
を行なって電解質板の昇温過程での割れ状態を評価した
。また、空気極側からの水の発生の有無と開路電圧を測
定した。この結果を下記第1表に示した。なお、第1表
中には比較のためにBB C03等のアルカリ土類金属
炭酸塩を含まない電解質板を用いた以外、7実施例1と
同様に燃料電池を組立て、同様な条件での混合ガスの流
通等を行なった時のHeリークの検出、水の発生の有無
及び開路電圧の結果を併記した。
Therefore, in the heating process of the fuel in Examples 1 to 4, 5 vol. The state of cracking during the heating process of the plate was evaluated. In addition, the presence or absence of water generation from the air electrode side and the open circuit voltage were measured. The results are shown in Table 1 below. In Table 1, for comparison, a fuel cell was assembled in the same manner as in Example 1, except that an electrolyte plate containing no alkaline earth metal carbonate such as BB C03 was used, and the mixture was mixed under the same conditions. The results of detection of He leak, presence or absence of water generation, and open circuit voltage when gas was circulated, etc. are also shown.

第1表 上記第1表から明らかなようにアルカリ土類金属炭酸塩
を含まない電解質板を備えた比較例の電池では昇温時に
空気極側からHeの多大なリークが生じ、しかも水の発
生が認められた。こうした水の発生は、昇温時に電解質
仮に大きなりう・ツクが発生したために燃料極側のH2
が空気極狽11(こ拡散するガスクロスオー!(が起き
、H2102の水発生反応が生じたことに起因するもの
である。このような大きなりロスオーツくが生じたため
、昇温直後の開路電圧も著しく低下した。これ喜二女(
し、電解質である混合アルカリ炭酸塩の融点を下ζダる
アルカリ土類金属炭酸塩を配合して作製された電解質板
を備えた本実施例1〜4の燃料電池で1よ、いずれも昇
温時に空気極からの水の発生力(なく、かつHeのリー
ク量が少ないことから、電解質仮に大きなりラック発生
がないことがわかる。また、本実施例1〜4では昇温後
の開路電圧が(1ずれも1.08V以上であり正常な電
極反応が行われて0ることかわかる。
Table 1 As is clear from Table 1 above, in the comparative battery equipped with an electrolyte plate that does not contain alkaline earth metal carbonates, a large amount of He leaks from the air electrode side when the temperature rises, and water is also generated. was recognized. The generation of such water is caused by the generation of large amounts of water in the electrolyte when the temperature rises, resulting in H2 on the fuel electrode side.
This is due to the occurrence of a gas cross-o! (diffusing gas cross-o!) at the air electrode, resulting in the water generation reaction of H2102.As such a large loss occurred, the open circuit voltage immediately after the temperature rise also decreased. It has decreased significantly.This is Kijijo (
However, in the fuel cells of Examples 1 to 4, each of which was equipped with an electrolyte plate prepared by blending an alkaline earth metal carbonate with a melting point lower than the melting point of the mixed alkali carbonate, which is an electrolyte, Since there is no water generation force from the air electrode at high temperatures and the amount of He leakage is small, it can be seen that there is no rack generation even if the electrolyte is large.In addition, in Examples 1 to 4, the open circuit voltage after temperature rise It can be seen that (1 deviation is also 1.08 V or more, indicating that a normal electrode reaction is occurring and 0.

[発明の効果〕 以上詳述した如く、本発明によればドクターレード法等
により成形された電解質板の発電過程において発生した
気孔部分にガス拡散電極(こ含浸させた電解質を該電解
質板のクラ・ツクを生じることなく拡散、充填でき、ひ
いては電池起動時に発生するガスのクロスオーバ、短絡
等の初期劣化のない高性能の溶融炭酸塩型燃料電池を提
供できる。
[Effects of the Invention] As described in detail above, according to the present invention, a gas diffusion electrode (impregnated with electrolyte is applied to the pores generated during the power generation process of an electrolyte plate formed by the Doctorade method etc.) is applied to the cracks of the electrolyte plate. - It is possible to provide a high-performance molten carbonate fuel cell that can be diffused and filled without causing any damage, and is free from initial deterioration such as gas crossover and short circuits that occur when starting up the cell.

出願人代理人 弁理士  鈴江武彦Applicant's agent: Patent attorney: Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] アルカリ炭酸塩を電解質として保持した電解質板の両側
に、一対の多孔質のガス拡散電極を配置した単位電池を
備えた溶融炭酸塩型燃料電池の製造において、電解質、
保持材、アルカリ土類金属炭酸塩及び有機バインダの混
合物を成形して電解質板を作製する工程と、前記一対の
多孔質ガス拡散電極の少なくとも一方に電解質を含浸さ
せる工程と、前記電解質の両側に前記電解質が含浸され
た一対のガス拡散電極を積層して単位電池とし、これら
単位電池間にインターコネクタを介在させて組立てを行
なった後、作動温度まで昇温させ、該昇温過程で前記電
解質板中の有機バインダの揮散により生じた気孔部分に
前記拡散電極中の電解質を拡散、充填する工程とを具備
したことを特徴とする溶融炭酸塩型燃料電池の製造方法
In the production of a molten carbonate fuel cell, which includes a unit cell in which a pair of porous gas diffusion electrodes are arranged on both sides of an electrolyte plate holding an alkali carbonate as an electrolyte, an electrolyte,
a step of forming an electrolyte plate by molding a mixture of a retaining material, an alkaline earth metal carbonate, and an organic binder, a step of impregnating at least one of the pair of porous gas diffusion electrodes with an electrolyte, and a step of impregnating both sides of the electrolyte. A pair of gas diffusion electrodes impregnated with the electrolyte are laminated to form a unit cell, and after assembly by interposing an interconnector between these unit cells, the temperature is raised to the operating temperature, and during the heating process, the electrolyte is A method for manufacturing a molten carbonate fuel cell, comprising the step of diffusing and filling the electrolyte in the diffusion electrode into pores generated by volatilization of the organic binder in the plate.
JP63069782A 1988-02-17 1988-03-25 Manufacture of fused carbonate type fuel cell Pending JPH01243378A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63069782A JPH01243378A (en) 1988-03-25 1988-03-25 Manufacture of fused carbonate type fuel cell
US07/310,309 US4895774A (en) 1988-02-17 1989-02-14 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069782A JPH01243378A (en) 1988-03-25 1988-03-25 Manufacture of fused carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPH01243378A true JPH01243378A (en) 1989-09-28

Family

ID=13412677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069782A Pending JPH01243378A (en) 1988-02-17 1988-03-25 Manufacture of fused carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPH01243378A (en)

Similar Documents

Publication Publication Date Title
JP2846738B2 (en) Method for producing molten carbonate-fuel cell
KR102427387B1 (en) Sealant composition for solid oxide fuel cell, solid oxide fuel cell comprising sealant manufactured by the same and method for sealing thereof
JP2019185883A (en) Fuel cell
US20110250521A1 (en) Method of manufacturing anode for in-situ sintering for molten carbonate fuel cell
KR102427389B1 (en) Sealant composition for solid oxide fuel cell, solid oxide fuel cell comprising sealant manufactured by the same and method for sealing thereof
JPH01243378A (en) Manufacture of fused carbonate type fuel cell
KR102365217B1 (en) Sealant composition for solid oxide fuel cell, solid oxide fuel cell comprising sealant manufactured by the same and method for sealing thereof
CN114583226B (en) Metal-supported proton conductor solid oxide battery and preparation method thereof
JPH0222505B2 (en)
JP2944097B2 (en) Molten carbonate fuel cell
JPH0650643B2 (en) Method for manufacturing electrolyte plate for molten carbonate fuel cell
JP5404966B2 (en) Method for producing electrolyte-impregnated air electrode
JPH0799695B2 (en) Method for manufacturing molten carbonate fuel cell
JP2997518B2 (en) Molten carbonate fuel cell
JP3104295B2 (en) Method for producing molten salt fuel cell
KR102117739B1 (en) Method of preparing anode-supported solid oxide fuel cell
JPH01130474A (en) Manufacture of electrolyte plate for molten carbonate fuel cell
CN115231623A (en) High-entropy metal oxide material, preparation method thereof and battery
JPH06188012A (en) Molten carbonate type fuel cell
CN116454314A (en) High-performance solid oxide fuel cell
JPS632262A (en) Molten carbonate fuel cell
KR20180110459A (en) Molten Carbonate Fuel Cell Module Capable of Block Assembly with Perforated Plate
JPS6343266A (en) Manufacture of electrolyte plate for molten carbonate fuel cell
KR20180033808A (en) Composition for gasket sealant, gasket sealant using the same and method for manufacturing the same
JPS6282655A (en) Manufacture of electrolyte plate for molten carbonate fuel cell