JPH0650643B2 - Method for manufacturing electrolyte plate for molten carbonate fuel cell - Google Patents

Method for manufacturing electrolyte plate for molten carbonate fuel cell

Info

Publication number
JPH0650643B2
JPH0650643B2 JP61079931A JP7993186A JPH0650643B2 JP H0650643 B2 JPH0650643 B2 JP H0650643B2 JP 61079931 A JP61079931 A JP 61079931A JP 7993186 A JP7993186 A JP 7993186A JP H0650643 B2 JPH0650643 B2 JP H0650643B2
Authority
JP
Japan
Prior art keywords
electrolyte
electrolyte plate
fuel cell
cloth
molten carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61079931A
Other languages
Japanese (ja)
Other versions
JPS62237672A (en
Inventor
康孝 小松
昭男 相馬
正義 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61079931A priority Critical patent/JPH0650643B2/en
Publication of JPS62237672A publication Critical patent/JPS62237672A/en
Publication of JPH0650643B2 publication Critical patent/JPH0650643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融炭酸塩型燃料電池に係り、特に電解質保持
力を向上させた電解質板の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a molten carbonate fuel cell, and more particularly to a method for producing an electrolyte plate with improved electrolyte retention.

〔従来の技術〕[Conventional technology]

燃料電池の一般的構造は第4図のようになっており、電
解質板1の上下には電解質板を挟むように2種の電極
(アノード2及びカソード3)が設けられている。アノ
ード2には燃料ガスを供給する燃料流路溝5及び、カソ
ード3には酸化剤ガスを供給する酸化剤流路溝6を有す
るセパレータ4が積層されている。
The general structure of the fuel cell is as shown in FIG. 4, and two kinds of electrodes (anode 2 and cathode 3) are provided above and below the electrolyte plate 1 so as to sandwich the electrolyte plate. A separator 4 having a fuel flow channel 5 for supplying a fuel gas to the anode 2 and an oxidant flow channel 6 for supplying an oxidant gas is laminated on the cathode 3.

これ等の電極は数十ミクロンの微細孔を有し、ガスが拡
散可能となっている。
These electrodes have fine pores of several tens of microns and are capable of diffusing gas.

溶融炭酸塩型燃料電池に使用される電解質は、Li2CO3
K2CO3、NaCO3等の混合物であり、その中でも一般的なの
はLi2CO3:K2CO3=62:38のモル比で融点が約490℃のも
のである。
The electrolyte used in the molten carbonate fuel cell is Li 2 CO 3 ,
It is a mixture of K 2 CO 3 , NaCO 3, etc., and among them, a common one has a molar ratio of Li 2 CO 3 : K 2 CO 3 = 62: 38 and a melting point of about 490 ° C.

従ってこの電解質は室温では固体であり、650℃の電池
運転温度に於いては溶融状態となっている。
Therefore, this electrolyte is a solid at room temperature and is in a molten state at a battery operating temperature of 650 ° C.

電解質板1は、電解質とその電解質を保持するマトリッ
クスからなり、マトリックスは電解質を保持した状態に
おいて、燃料ガスと酸化剤ガスを分離し、さらに電子の
不導体でCO3 2-イオンの良導体でなければならない。
The electrolyte plate 1 is composed of an electrolyte and a matrix that holds the electrolyte. The matrix must separate the fuel gas and the oxidizer gas while holding the electrolyte, and must be a nonconductor of electrons and a good conductor of CO 3 2− ions. I have to.

そのため、マトリックスは溶融塩に対して安定であり、
かつ電気絶縁性の高い物質からなる多孔体で構成されて
いる。
Therefore, the matrix is stable to molten salt,
In addition, it is composed of a porous body made of a material having high electric insulation.

例えば、アルミン酸リチウム、チタン酸ストロンチウ
ム、ジルコン酸ストロンチウム等は上記条件を満足する
ため、マトリックス材料として好適である。
For example, lithium aluminate, strontium titanate, strontium zirconate, and the like satisfy the above conditions, and are therefore suitable as matrix materials.

燃料ガスと酸化剤ガスとの混合を防ぐのは、基本的には
電解質の毛管力によっており、燃料ガス圧力と酸化剤ガ
ス圧力の差圧に耐えるためには、マトリクッス中の細孔
径を出来るだけ小さくしなければならない。また、細孔
径が小さい程、電解質の蒸気圧を下げる効果があり、電
解質の消失量を抑える意味からも、細孔径が小さい方が
好ましい。さらに組立時に割れたりしないようにハンド
リング性が良くなければならない。
It is basically the capillary force of the electrolyte that prevents the mixing of fuel gas and oxidant gas. In order to withstand the differential pressure between fuel gas pressure and oxidant gas pressure, the pore size in the matrix should be as small as possible. Must be small. Further, the smaller the pore diameter, the more effectively the vapor pressure of the electrolyte is lowered, and the smaller pore diameter is preferable also from the viewpoint of suppressing the loss of the electrolyte. In addition, it must be easy to handle so that it will not crack during assembly.

それらの条件を満足するものとして、例えば特開昭58-7
1564号公報に示されるように、マトリクッス材として1
μm以下のセラミックス微細粒子と25μm以上のセラミ
ックス粒子及びプラスチックのバインダーから成るマト
リクッステープに、電極材料金属から成り1μm以下の
細孔径を有する泡障壁シートを組合せる複合マトリクッ
スが知られている。
As those satisfying those conditions, for example, JP-A-58-7
As disclosed in Japanese Patent No. 1564, 1 as a matrix material
There is known a composite matrix in which a matrix tape made of ceramic fine particles of μm or less, ceramic particles of 25 μm or more and a plastic binder is combined with a bubble barrier sheet made of an electrode material metal and having a pore size of 1 μm or less.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

マトリクッスに要求される条件は前記した通り、(1)電
解質に対し安定であること、(2)多数の微細孔を有する
こと、(3)組立時に破損等しないハンドリング性に優れ
ていること及び(4)気孔率〔=(マトリックスに含まれ
る細孔の体積)/(マトリクッスの全体積)〕が高いこ
とである。
As described above, the conditions required for the matrix are (1) stable to the electrolyte, (2) having a large number of fine pores, (3) excellent in handling property such as no damage during assembly, and ( 4) High porosity [= (volume of pores contained in matrix) / (total volume of matrix)].

特開昭58-71564号に提案されたマトリクッステープは、
セラミックスの大粒子と小粒子の混合物を使用している
ため上記(1)〜(3)の要件は満足するが、要件(4)の気孔
率を高めることができない。その結果、電解質保持量が
少なくなるために、電解質が少量蒸発等で失われても大
きな影響を受けてしまう。さらに気孔率が低いと電解質
中の炭酸イオンの伝導抵抗も大きくなる。また、泡障壁
は金属であるため、マトリクッスと組合せると、熱膨張
率の違いから温度変化によって大きな応力が発生し、割
れが生じるという問題も有している。
The matrix tape proposed in JP-A-58-71564 is
Since the mixture of large and small ceramic particles is used, the above requirements (1) to (3) are satisfied, but the porosity of requirement (4) cannot be increased. As a result, the amount of electrolyte retained becomes small, and even if a small amount of the electrolyte is lost due to evaporation or the like, it is greatly affected. Further, when the porosity is low, the conduction resistance of carbonate ions in the electrolyte also becomes large. Further, since the bubble barrier is made of metal, when combined with the matrix, there is a problem that a large stress is generated due to a temperature change due to a difference in coefficient of thermal expansion and a crack is generated.

本発明の目的は、ハンドリング性を損なうことなく微細
孔かつ高気孔率とできる溶融炭酸塩型燃料電池用電解質
板の製造方法を提供することにある。
An object of the present invention is to provide a method for producing an electrolyte plate for a molten carbonate fuel cell, which can have fine pores and high porosity without impairing handleability.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的は、セラミックスの繊維からなる布もしくはフ
ェルト又は該布もしくはフェルトとセラミックス粉末と
の混合物からなり内在する細孔部にアルカリ金属炭酸塩
が充填されている長尺シートを、金属アルコキシドの加
水分解により生成した金属水酸化物を解膠して得られる
スラリー状ゾルを薄板成形した後に乾燥、ゲル化して得
られた微細孔を有する可撓性の2枚の長尺シートで挟持
するとともにこれらの長尺シートを圧着ロールで加圧し
て圧着した後、前記金属水酸化物を加熱脱水処理して電
解質板を製造することによって達成される。
The purpose is to hydrolyze a metal alkoxide by using a cloth or felt made of ceramic fibers or a long sheet made of a mixture of the cloth or felt and ceramics powder and filled with an alkali metal carbonate in the internal pores. Slurry sol obtained by deflocculating the metal hydroxide produced by the method is formed into a thin plate, then dried and gelled, and sandwiched between two flexible long sheets having fine pores and This is achieved by pressing the long sheet with a pressure roll to perform pressure bonding, and then subjecting the metal hydroxide to a heat dehydration treatment to produce an electrolyte plate.

〔作用〕[Action]

通常、セラミックス粒子でマトリクッスを形成すると気
孔率は30%が限度である。これでは充分な炭酸イオンの
伝導率が得られず電池性能が高くならない。
Usually, when forming matrix with ceramic particles, the porosity is limited to 30%. With this, sufficient conductivity of carbonate ions cannot be obtained, and the battery performance is not improved.

本発明では、電解質の保持材としてセラミックスの繊維
から成る布もしくはフェルト又はそれ等とセラミックス
粉末との混合物を使用して細孔を作るので、充分な量の
電解質が保持される。電解質を保持した布等のシートの
両面にはセラミックス粒子で作ったシートを設けるの
で、電解質板が外部へ流れ出すことがない。
In the present invention, a cloth or felt made of ceramic fibers or a mixture thereof with a ceramic powder is used as the electrolyte holding material to form the pores, so that a sufficient amount of the electrolyte is held. Since the sheets made of ceramic particles are provided on both sides of the sheet of cloth or the like holding the electrolyte, the electrolyte plate does not flow out.

〔実施例〕〔Example〕

以下、本発明を実施例に基づき更に説明する。 Hereinafter, the present invention will be further described based on examples.

まずリチウムのブトキシドLi[OCH(CH3)CH2CH3]とアルミ
ニウムブトキシドAl[OCH(CH3)CH2CH3]3とを混合し、混
合アルキシド Li[Al[OCH(CH3)CH2CH3]4]を作り、それに水H2Oを加え、
水酸化物LiAl(OH)4を沈澱させ、それに酢酸CH3COOHを加
え解膠しゾル化した。
First, lithium butoxide Li [OCH (CH 3 ) CH 2 CH 3 ] and aluminum butoxide Al [OCH (CH 3 ) CH 2 CH 3 ] 3 are mixed, and mixed alkoxide Li [Al [OCH (CH 3 ) CH 2 Make CH 3 ] 4 ], add water H 2 O to it,
Hydroxide LiAl (OH) 4 was precipitated, and CH 3 COOH acetate was added thereto to peptize it to form a sol.

このゾル中の粒子径は0.01〜0.1μm程度であり、これ
を第1図に示すようにして、シート状に整形し乾燥させ
ゲル化すれば0.1μm以下の微細孔を有する可撓性のゲ
ルシートができる。
The particle size in this sol is about 0.01 to 0.1 μm. As shown in FIG. 1, a flexible gel sheet having fine pores of 0.1 μm or less if shaped into a sheet, dried and gelled. You can

すなわち、前記LiAl(OH)4のスラリー状ゾル7をベルト
コンベア11の上に流し、ゾルのシート8を作り、ヒータ
9によって加熱して乾燥しゲル化して、ゲルのシート10
をロール12で巻取る。シートの厚さは薄い程イオン伝導
抵抗が小さくなるので望ましいが、あまり薄過ぎると破
損しやすくなる。通常0.1mm程度のものが用いられる。
このゲルシート10は板厚0.1mmと薄いため、可撓性に富
み容易にロールに巻きとることができる。
That is, the LiAl (OH) 4 slurry sol 7 is poured onto a belt conveyor 11 to form a sol sheet 8, which is heated by a heater 9 to be dried and gelled to form a gel sheet 10.
Take up with roll 12. It is desirable that the sheet has a smaller thickness because the ionic conduction resistance becomes smaller, but if the sheet is too thin, it is easily damaged. Usually, a diameter of about 0.1 mm is used.
Since this gel sheet 10 is thin with a plate thickness of 0.1 mm, it is highly flexible and can be easily wound into a roll.

第2図に示すように、アルミナ繊維で作られた布16に電
解質スラリー17を添着し、それをサンドイッチ状に挟む
ように前記のアルコキシド法で作ったゲルシート15を圧
着ロール18で加圧して圧着し複合電解質板19を作製し
た。
As shown in FIG. 2, the electrolyte slurry 17 is attached to the cloth 16 made of alumina fiber, and the gel sheet 15 made by the above-mentioned alkoxide method is pressed by the pressure roll 18 so as to sandwich it in the sandwich shape. Then, a composite electrolyte plate 19 was produced.

この電解質板は第3図に示すような断面になっており、
アルミナ繊維の布16の繊維間のすき間に電解質スラリー
17が保持され、さらにそれを挟むようにゲルシート15が
貼り付けてある。この電解質板を電池の運転温度である
650℃まで加熱昇温すれば、その過程でゲルシートのLiA
l(OH)4は脱水してリチウムアルミネートLiAlO2となり、
0.1μm以下の微細孔を有するセラミックス多孔質体と
なる。また、この加熱工程は、未加熱の電解質板を電池
に組み込み、その昇温過程で代行することもできる。
This electrolyte plate has a cross section as shown in FIG.
Alumina Fiber Cloth 16 Electrolyte Slurry in the interfiber gap
17 is held, and a gel sheet 15 is attached so as to sandwich it. This electrolyte plate is the operating temperature of the battery
If the temperature is raised to 650 ℃, LiA in the gel sheet
l (OH) 4 is dehydrated into lithium aluminate LiAlO 2 ,
It becomes a ceramics porous body having fine pores of 0.1 μm or less. In addition, this heating step may be performed by incorporating an unheated electrolyte plate into the battery and performing the heating process.

この方法で作られた電解質板は、その主成分がアルミナ
繊維であるため多孔質体となり気孔率が大きいため、電
解質の保持量も多く、またイオン抵抗も小さくなる。こ
のアルミナ繊維16は電解質に対し安定ではなく炭酸リチ
ウムと反応してアルミン酸リチウムとなり二酸化炭素を
発生するが、それによって気孔率が多少増加するだけで
ほとんど悪影響が無い。
The electrolyte plate produced by this method has a large porosity because it has a large porosity because its main component is alumina fiber, so that it retains a large amount of electrolyte and also has a low ionic resistance. The alumina fiber 16 is not stable to the electrolyte and reacts with lithium carbonate to form lithium aluminate to generate carbon dioxide. However, this slightly increases the porosity and has almost no adverse effect.

またゲルシート15は、微細孔であるため気孔率は小さい
が、0.1mm以下の薄板であることからイオン抵抗の増大
はほとんど無い。またこのゲルシート15は薄く強度が小
さいが、間に挟んだアルミナ繊維の布16と同材となるの
で、熱膨張差による応力の発生は無い。電解質板として
の強度は中央部のアルミナ繊維の布16が受けもつことに
なり、ハンドリング等にも問題は無い。ゲルシート15は
0.1μm以下の細孔を有するアルミン酸リチウムの板と
なるため、燃料ガスと酸化剤ガスとの差圧による混合を
充分に防止できる。従ってゲルシート15の間に挟む多孔
体は細孔径が大きくても良い。
Further, the gel sheet 15 has small porosity because it is fine pores, but since it is a thin plate of 0.1 mm or less, ionic resistance hardly increases. Further, this gel sheet 15 is thin and has low strength, but since it is made of the same material as the alumina fiber cloth 16 sandwiched between them, no stress is generated due to the difference in thermal expansion. The strength of the electrolyte plate is taken up by the alumina fiber cloth 16 in the central portion, and there is no problem in handling. Gel sheet 15
Since the plate is made of lithium aluminate having pores of 0.1 μm or less, it is possible to sufficiently prevent mixing due to the differential pressure between the fuel gas and the oxidant gas. Therefore, the porous body sandwiched between the gel sheets 15 may have a large pore size.

以上ではアルミナ繊維の布16を電解質保持材としたが、
布でなくても気孔率が大きいものならアルミナのフェル
トや、アルミナの長繊維とアルミナ粉末の混合物であっ
ても良い。
In the above, the alumina fiber cloth 16 is used as the electrolyte holding material,
Alumina felt or a mixture of alumina long fibers and alumina powder may be used as long as it has a high porosity even if it is not a cloth.

本実施例では、セラミックス材としてアルミン酸リチウ
ムについて説明したが、アルコキシドの種類を変えれば
チタン酸ストロンチウムやジルコン酸ストロンチウムと
いった電解質マトリクッスに好適な材料の微細孔ゲルシ
ートが得られる。
In this example, lithium aluminate was described as the ceramic material, but if the type of alkoxide is changed, a microporous gel sheet of a material suitable for the electrolyte matrix such as strontium titanate or strontium zirconate can be obtained.

〔発明の効果〕〔The invention's effect〕

本発明の電解質板の製造方法によれば、気孔率が大きく
て電解質の保持量が多く、イオン抵抗も小さい上、強度
が大きくてハンドリングが容易な溶融炭酸塩型燃料電池
用電解質板を簡単な工程で均質に、しかも大量に製造す
ることができる。
According to the method for producing an electrolyte plate of the present invention, a molten carbonate fuel cell electrolyte plate having a large porosity, a large amount of electrolyte retained, a small ionic resistance, a large strength, and easy handling can be easily prepared. It can be manufactured uniformly in a process and in large quantities.

【図面の簡単な説明】[Brief description of drawings]

第1図はゲルシートを作製する装置の概略図、第2図は
本発明による電解質板の製造方法を説明する図、第3図
は製造された電解質板の断面図、第4図は公知の燃料電
池斜視図である。 1……電解質板、2……アノード、3……カソード、4
……セパレータ、5……燃料ガス流路溝、6……酸化剤
ガス流路溝、7……混合ゾル、8……ゾルシート、9…
…ヒータ、10……ゲルシート、11……ベルトコンベア、
12……ロール、15……ゲルシート、16……アルミナ繊維
布、17……電解質スラリー、18……圧着ロール、19……
複合電解質板
FIG. 1 is a schematic diagram of an apparatus for producing a gel sheet, FIG. 2 is a diagram illustrating a method for producing an electrolyte plate according to the present invention, FIG. 3 is a sectional view of the produced electrolyte plate, and FIG. 4 is a known fuel. It is a battery perspective view. 1 ... Electrolyte plate, 2 ... Anode, 3 ... Cathode, 4
...... Separator, 5 …… Fuel gas channel groove, 6 …… Oxidant gas channel groove, 7 …… Mixed sol, 8 …… Sol sheet, 9 ・ ・ ・
… Heater, 10 …… Gel sheet, 11 …… Belt conveyor,
12 …… Roll, 15 …… Gel sheet, 16 …… Alumina fiber cloth, 17 …… Electrolyte slurry, 18 …… Crimping roll, 19 ……
Composite electrolyte plate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−24161(JP,A) 特開 昭58−129777(JP,A) 特開 昭58−87772(JP,A) 特開 昭58−129775(JP,A) 特開 昭62−160663(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-61-24161 (JP, A) JP-A-58-129777 (JP, A) JP-A-58-87772 (JP, A) JP-A-58- 129775 (JP, A) JP-A-62-160663 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミックスの繊維からなる布もしくはフ
ェルト又は該布もしくはフェルトとセラミックス粉末と
の混合物からなり内在する細孔部にアルカリ金属炭酸塩
が充填されている長尺シートを、金属アルコキシドの加
水分解により生成した金属水酸化物を解膠して得られる
スラリー状ゾルを薄板成形した後に乾燥、ゲル化して得
られた微細孔を有する可撓性の2枚の長尺シートで挟持
するとともにこれらの長尺シートを圧着ロールで加圧し
て圧着した後、前記金属水酸化物を加熱脱水処理するこ
とを特徴とする溶融炭酸塩型燃料電池用電解質板の製造
方法。
1. A long sheet of a cloth or felt made of ceramics fibers or a mixture of the cloth or felt and ceramics powder, in which the pores therein are filled with alkali metal carbonate, is treated with a metal alkoxide A slurry sol obtained by deflocculating the metal hydroxide produced by decomposition is formed into a thin plate, then dried and gelled, and sandwiched between two flexible long sheets having fine pores 1. The method for producing an electrolyte plate for a molten carbonate fuel cell, which comprises pressurizing and pressing the long sheet of the present invention with a press roll and subjecting the metal hydroxide to heat dehydration treatment.
JP61079931A 1986-04-09 1986-04-09 Method for manufacturing electrolyte plate for molten carbonate fuel cell Expired - Fee Related JPH0650643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61079931A JPH0650643B2 (en) 1986-04-09 1986-04-09 Method for manufacturing electrolyte plate for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079931A JPH0650643B2 (en) 1986-04-09 1986-04-09 Method for manufacturing electrolyte plate for molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS62237672A JPS62237672A (en) 1987-10-17
JPH0650643B2 true JPH0650643B2 (en) 1994-06-29

Family

ID=13704055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079931A Expired - Fee Related JPH0650643B2 (en) 1986-04-09 1986-04-09 Method for manufacturing electrolyte plate for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0650643B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213055A (en) * 1989-02-14 1990-08-24 Hitachi Ltd Molten carbonate fuel cell and electrolyte base plate and manufacture of electrolyte base plate
JPH03133063A (en) * 1989-10-19 1991-06-06 Hitachi Ltd Molten carbonate fuel cell
JP2538380B2 (en) * 1990-03-08 1996-09-25 川崎重工業株式会社 Molten carbonate fuel cell and method of manufacturing the same
DE59309933D1 (en) * 1992-03-13 2000-02-24 Binsmaier Geb Gallin Ast Process for the production of electrical energy from bio raw materials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887772A (en) * 1981-11-17 1983-05-25 Toshiba Corp Production process of matrix powder for molten carbonate type fuel cell
JPS58129775A (en) * 1982-01-29 1983-08-02 Hitachi Ltd Fuel battery
JPS58129777A (en) * 1982-01-29 1983-08-02 Hitachi Ltd Fuel battery
JPS6097558A (en) * 1983-11-01 1985-05-31 Agency Of Ind Science & Technol Molten carbonate fuel cell
JPS6124161A (en) * 1984-07-13 1986-02-01 Fuji Electric Corp Res & Dev Ltd Production of electrolyte plate for fused carbonate type fuel cell
JPS62160663A (en) * 1986-01-04 1987-07-16 Kobe Steel Ltd Production of porous aluminate lithium sintered body

Also Published As

Publication number Publication date
JPS62237672A (en) 1987-10-17

Similar Documents

Publication Publication Date Title
US4710436A (en) Molten carbonate fuel cell and method of manufacturing electrolyte plate thereof
CN112968217A (en) Method for fixing anode material on solid electrolyte and solid battery
JPH0650643B2 (en) Method for manufacturing electrolyte plate for molten carbonate fuel cell
JP3405918B2 (en) Method for manufacturing molten carbonate fuel cell electrolyte plate
JPH06231784A (en) Solid electrolyte type fuel cell
JPS60101876A (en) Manufacture method of fused carbonate salts type fuel cell
CA1174271A (en) Fuel cell provided with electrolyte plate made of electrical insulating long fibers
JPH0636783A (en) Fuel electrode current collector for flat type solid electrolyte fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP2002075406A (en) Fuel battery cell unit and manufacturing method
US3959017A (en) Electrode and spacer assembly for a fuel cell and fuel cell therewith
JP3336171B2 (en) Solid oxide fuel cell
JPH01309264A (en) Manufacture of fuel cell
JP2997518B2 (en) Molten carbonate fuel cell
JP3652932B2 (en) Solid oxide fuel cell
JPH0222505B2 (en)
JPH01124961A (en) Electrolyte plate of molten carbonate fuel cell
OKUYAMA et al. Fabrication of YSZ/NiO-YSZ Two-Layer Ceramics for Tubular SOFC by Multilayer Slurry Casting Process
JP2517750B2 (en) Method for producing molten salt fuel cell
JP3177768B2 (en) Method for producing molten carbonate fuel cell and sheet for electrolyte plate thereof
JPS6386366A (en) Solid electrolyte fuel cell
JPH01206568A (en) Manufacture of electrolyte plate for molten carbonate type fuel battery
JPS6343266A (en) Manufacture of electrolyte plate for molten carbonate fuel cell
JP2504467B2 (en) Molten carbonate fuel cell electrolyte plate and method for producing the same
JPH0626130B2 (en) Method for manufacturing electrolyte plate for molten carbonate fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees