JPH01237424A - Optical temperature sensor - Google Patents

Optical temperature sensor

Info

Publication number
JPH01237424A
JPH01237424A JP6394888A JP6394888A JPH01237424A JP H01237424 A JPH01237424 A JP H01237424A JP 6394888 A JP6394888 A JP 6394888A JP 6394888 A JP6394888 A JP 6394888A JP H01237424 A JPH01237424 A JP H01237424A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
temperature
crystal plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6394888A
Other languages
Japanese (ja)
Inventor
Masaaki Tojo
正明 東城
Noboru Kurata
昇 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6394888A priority Critical patent/JPH01237424A/en
Publication of JPH01237424A publication Critical patent/JPH01237424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To make it possible to detect the temperature of a material to be measured without contact in a simple constitution, by detecting the presence or absence of the reflection of red light which is inputted from the outside into a temperature sensor comprising a liquid crystal plate and a reflecting plate with a light receiving part. CONSTITUTION:When the temperature of a liquid crystal plate 8 is less than a specified temperature, red light 12 is transmitted through a liquid crystal plate 8. Therefore, the red light 12 which is emitted from a light emitting part 10 provided at an arbitrary position is transmitted through the liquid crystal plate 8 and reflected with a reflecting plate 9. The reflected light 13 passes through the liquid crystal plate 8 again and enters into a light receiving part 11 provided in the vicinity of the light emitting part 10. When the temperature of the liquid crystal plate 8 becomes higher than the specified value, the red light 12 is not transmitted through the liquid crystal plate 8. Therefore, the red light 12 emitted from the light emitting part 10 is absorbed or scattered in the liquid crystal plate 8 and cannot pass through the liquid crystal plate 8. The temperature of a material to be measured can be detected by detecting the presence or absence of the reflection of the red light 12 inputted from the outside with the light receiving part 11 in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は加熱温度を遠隔地で検出する光温度センサに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical temperature sensor for remotely detecting heating temperature.

従来の技術 従来、この種の光温度センサは、第6図に示す2 ・\
−7 ようガ構成であった。第6図において、1a、1bは光
ファイバ、2a 、2bはロッドレンズ、3は光の遮蔽
板、4はコイル形状の形状記憶合金、6はバネである。
Conventional technology Conventionally, this type of optical temperature sensor is shown in Fig. 6.
-7 It had a similar structure. In FIG. 6, 1a and 1b are optical fibers, 2a and 2b are rod lenses, 3 is a light shielding plate, 4 is a coil-shaped shape memory alloy, and 6 is a spring.

同図において、光ファイバ1&から出射した光は、ロッ
ドレンズ2aで平行光線6に変換され、遮蔽板3に設け
られた孔7を通過したのち、ロッドレンズ2bで再び集
光され、光ファイバ1bに入射する。測定温度が上昇す
ると形状記憶合金で作られたバネ4が例えば縮むために
、遮蔽板3が平行光線6を遮蔽し、光ファイバ1bへ光
が入射しない。測定温度が下降すると、形状記憶合金4
の縮む力が無くなり、バネ6が縮むことにより遮蔽板3
が元の位置に戻るので、平行光線6は再び孔7を通過し
、光ファイバ1bに入射する。
In the figure, the light emitted from the optical fiber 1& is converted into parallel light rays 6 by the rod lens 2a, passes through the hole 7 provided in the shielding plate 3, and is again condensed by the rod lens 2b. incident on . When the measurement temperature rises, the spring 4 made of a shape memory alloy, for example, contracts, so the shielding plate 3 blocks the parallel light rays 6, and no light enters the optical fiber 1b. When the measured temperature decreases, the shape memory alloy 4
The force to contract is lost, and the spring 6 contracts, causing the shielding plate 3 to
returns to its original position, so the parallel light ray 6 passes through the hole 7 again and enters the optical fiber 1b.

発明が解決しようとする課題 このような従来の構成では、遠隔地で被測定物の温度を
検出するために、被測定物との間に光ファイバ1&、1
1)配線する必要があり、また特に高電圧部の温度測定
では、光ファイバ1a、1b3 ・ の外被を伝わる電気の漏れ(リーク)が発生ずる問題点
があった。本発明は、このような問題点を解決するもの
で、被測定物の温度を簡単な構成で、非接触に検出でき
る光温度センサを提供することを目的としたものである
Problems to be Solved by the Invention In such a conventional configuration, in order to detect the temperature of the object to be measured at a remote location, optical fibers 1 and 1 are connected to the object to be measured.
1) Wiring is required, and especially when measuring the temperature of a high voltage section, there is a problem in that electricity leaks through the outer sheath of the optical fibers 1a, 1b3. The present invention has been made to solve these problems, and aims to provide an optical temperature sensor that can detect the temperature of an object to be measured in a simple and non-contact manner.

課題を解決するだめの手段 本発明は上記問題点を解決するために、入射した光とお
およそ同じ方向に光を反射する反射部の前面に、一定値
の温度を境として、光の波長透過率特性が変化する(例
えば赤い光だけを透過していたものが青い光だけを透過
するように変化する)光の通過部材を設けて温度センサ
を構成するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention has a structure in which the wavelength transmittance of light is set at a certain temperature on the front surface of a reflecting part that reflects light in approximately the same direction as the incident light. A temperature sensor is constructed by providing a light passing member whose characteristics change (for example, from transmitting only red light to transmitting only blue light).

作用 本発明は上記した構成により、離れた場所にある特定波
長の光を放射する光源から出射した光を入射させ、光温
度センサの反射部による光の反射の有無を、光源の近傍
にある受光部で検出することで、一定温度状態が検出で
き、優れた光温度センサどして機能する。
Effect of the Invention With the above-described configuration, the present invention allows light emitted from a light source that emits light of a specific wavelength to be incident at a remote location, and detects whether or not the light is reflected by the reflecting part of the optical temperature sensor by detecting the light received near the light source. By detecting the temperature at a certain point, it is possible to detect a constant temperature state, and it functions as an excellent optical temperature sensor.

実施例 第1図は本発明の一実施例による光温度センサの構成図
である。第1図において、8はガラス板の中に液晶材料
を封入した液晶板、9は光の反射板、10は離れた位置
に設けた発光部、12は発光部からの出射光を示す矢印
、11は受光部、13は受光部11に入射する反射光を
示す矢印である。
Embodiment FIG. 1 is a configuration diagram of an optical temperature sensor according to an embodiment of the present invention. In FIG. 1, 8 is a liquid crystal plate in which a liquid crystal material is sealed in a glass plate, 9 is a light reflecting plate, 10 is a light emitting part provided at a distant position, 12 is an arrow indicating the light emitted from the light emitting part, 11 is a light receiving section, and 13 is an arrow indicating reflected light incident on the light receiving section 11.

以下、その構成および動作を第2図と第3図を併用して
説明する。液晶板8は反射板9の前面に設けられている
。反射板9は入射した光とほとんど同じ角度で、逆向き
に光を反射する機能を持つ。
Hereinafter, its configuration and operation will be explained with reference to FIGS. 2 and 3. The liquid crystal plate 8 is provided in front of the reflective plate 9. The reflecting plate 9 has a function of reflecting light in the opposite direction at almost the same angle as the incident light.

第2図にこの反射板9の構成の説明図を示す。同図(a
)は反射板90反射面の図を示したもので、互いに直角
な3つの反射平面から成る反射部14を複数個同一平面
に配置したものである。同図(b)はこの反射部14の
光の反射の様子を示す図で、入射光12は反射部14の
内部で完全反射を3回行い、入射光12に対して180
度の偏光角て出射し、反射光13となる。この動作は入
射光12の入射角に全く依存せず、光の入射方向に必ず
反射する。
FIG. 2 shows an explanatory diagram of the structure of this reflecting plate 9. The same figure (a
) shows a view of the reflecting surface of the reflecting plate 90, in which a plurality of reflecting parts 14 each consisting of three reflecting planes perpendicular to each other are arranged on the same plane. FIG. 3B is a diagram showing how light is reflected by the reflecting section 14. The incident light 12 is completely reflected three times inside the reflecting section 14, and the incident light 12 has a 180%
The light is emitted with a polarization angle of 100 degrees, and becomes reflected light 13. This operation is completely independent of the angle of incidence of the incident light 12, and the light is always reflected in the direction of incidence.

次に、液晶板8は、光をほとんど損失なく通過するガラ
ス板の内部に液晶材料を封入したもので、液晶は第3図
(2L)の液晶特性の説明図に示すように、一定の温度
16を境にして、光の波長透過率が変化する特性を持つ
。まだ、同図(b)に示すように、温度状態により、液
晶の波長透過特性が異なり、一定の温度より液晶の温度
が低い時は赤色光を透過し、液晶の温度が高い時は青色
光を透過するが赤色光は遮蔽する。
Next, the liquid crystal plate 8 is a glass plate in which a liquid crystal material is sealed inside which allows light to pass through with almost no loss. 16, the wavelength transmittance of light changes. However, as shown in Figure (b), the wavelength transmission characteristics of the liquid crystal differ depending on the temperature state; when the liquid crystal temperature is lower than a certain temperature, red light is transmitted, and when the liquid crystal temperature is high, blue light is transmitted. It transmits light, but blocks red light.

再び第1図に戻って説明を続ける。液晶板8の温度が第
3図に示す一定温度16以下の時、液晶板8は赤色光1
2を透過するので、任意の位置に設けた発光部10から
出射した赤色光12は、液晶板8を通過し、反射板9で
反射され、再び液晶板8を通過し、反射光13は発光部
10の近傍に設けた受光部11に入射する。
Returning to FIG. 1 again, the explanation will be continued. When the temperature of the liquid crystal plate 8 is below the constant temperature 16 shown in FIG. 3, the liquid crystal plate 8 emits red light 1.
2, the red light 12 emitted from the light emitting unit 10 provided at an arbitrary position passes through the liquid crystal plate 8, is reflected by the reflection plate 9, and passes through the liquid crystal plate 8 again, and the reflected light 13 is emitted. The light enters a light receiving section 11 provided near the section 10.

液晶板8の温度が一定値以」二になると、液晶板8は赤
色光を透過しないため、発光部10から出6・\−7 射した光12は液晶板8内で吸収寸だは散乱され、液晶
板8を通過することができない。
When the temperature of the liquid crystal plate 8 reaches a certain value or less, the liquid crystal plate 8 does not transmit red light, so the light 12 emitted from the light emitting part 10 is absorbed or scattered within the liquid crystal plate 8. and cannot pass through the liquid crystal plate 8.

以上の動作より、液晶板8および反射板9がら成る温度
センサに、外部より入射させた赤色光12の反射の有無
を、受光部11で検出することにより、被測定物の温度
を検出することができる。
According to the above operation, the temperature of the object to be measured can be detected by detecting with the light receiving section 11 whether or not the red light 12 incident from the outside is reflected on the temperature sensor consisting of the liquid crystal plate 8 and the reflection plate 9. Can be done.

第4図は、本発明の他の実施例による構成図を示す。第
4図において、16は一定温度を境にして光の波長透過
率特性が変化する液晶材料、17はその中に液晶材料1
6を封入した光をほとんど損失々〈通過させるガラス板
、12および13は各々光の入射光および反射光を表す
矢印で、18はガラス板170片方の面に一体に設けた
光の反射部で、1つまたは複数個の、互いに直角な3つ
の平面をもつプリズム(コーナーキューブ)部ヲ一体に
構成したものである。
FIG. 4 shows a block diagram according to another embodiment of the present invention. In FIG. 4, 16 is a liquid crystal material whose wavelength transmittance characteristics change at a certain temperature, and 17 is a liquid crystal material 1 inside it.
6 is a glass plate that allows the enclosed light to pass through with almost no loss, 12 and 13 are arrows representing incident light and reflected light, respectively, and 18 is a light reflecting part integrally provided on one surface of the glass plate 170. , one or more prisms (corner cubes) having three planes perpendicular to each other are integrally constructed.

赤色光12は、温度に依存する液晶材料16の光波長透
過率の変化に応じて通過し、反射部18で反射され、反
射光13となる。この実施例の動作は、第1図に示す実
施例と同じである。異なる71・−7 のけ、液晶16と反射部18との間がガラスで充填され
ており、空気層がないため空気とガラスの境界で光が反
射する損失(フレネル損失)が無く、有効に光を利用で
きること、および光の反射はプリズムの全反射を用いた
ことである。
The red light 12 passes through the liquid crystal material 16 in accordance with a temperature-dependent change in the light wavelength transmittance of the liquid crystal material 16 and is reflected by the reflecting section 18 to become reflected light 13. The operation of this embodiment is the same as the embodiment shown in FIG. The space between the liquid crystal 16 and the reflective part 18 is filled with glass, and there is no air layer, so there is no loss (Fresnel loss) caused by light reflection at the boundary between air and glass, and the light is effectively reflected. It is possible to utilize light, and the total reflection of the light is used in a prism.

以上のように本実施例では、簡単な構成で一定値以上の
温度の上昇を、赤色反射光の有無によって検出でき、優
れた光温度センサとして機能する。
As described above, this embodiment can detect a rise in temperature above a certain value with a simple configuration based on the presence or absence of red reflected light, and functions as an excellent optical temperature sensor.

なお、本実施例では、一定値温度を境に光の波長透過率
特性が変化する液晶を封入する材料として、ガラスを用
いたが、光がほとんど損失なく通過する材料であれば、
樹脂でも何を用いても良い。
In this example, glass was used as the material for enclosing the liquid crystal whose light wavelength transmittance characteristics change after reaching a certain temperature, but any material that allows light to pass through with almost no loss may be used.
Any resin may be used.

捷だ、光の通過部材として、一定値以上の温度で赤色光
の波長透過率が低くなる液晶を用いたが、一定値温度を
境にして特定波長光の透過率が大きく変化するものであ
れば、どのような材料および特性であっても良い。
Well, as a light passing material, we used a liquid crystal whose wavelength transmittance for red light decreases at a temperature above a certain value, but even though the transmittance of light at a specific wavelength changes significantly after a certain temperature. For example, any material and properties may be used.

さらに、光を反射する反射部として、本実施例では、互
いに直角に交わる3つの平面を用いて、光の全反射およ
び完全反射を利用して説明したが、入射光とほとんど同
じ方向に光を反射させるものであれば、どのような反射
部を用いても良いことは言うまでもない。
Furthermore, in this example, three planes that intersect at right angles to each other are used as the reflecting part that reflects light, and the explanation has been made using total reflection and complete reflection of light, but the light is reflected in almost the same direction as the incident light. Needless to say, any reflecting section may be used as long as it reflects light.

発明の効果 以上のように本発明によれば、光の反射部を用い、反射
光の有無により、被測定物の温度を検出するので、被測
定物との間に、光ファイバ等の配線を必要のないものと
なる。
Effects of the Invention As described above, according to the present invention, the temperature of the object to be measured is detected based on the presence or absence of reflected light using a light reflecting section. It becomes unnecessary.

さらに、光の反射部として入射光とほぼ同じ方向に反射
する反射部を用いているので、反射部に入射させる光の
発光部の位置に対する制約が少なく、光軸調整を必要と
しない効果がある。まだ、実施例では赤色光を遮断する
機能として、一定値の温度を境にして赤色光に対する波
長透過率特性が大きく変化する部材(液晶)を用いてい
るため、構成が簡単で、信頼性が高く、小形化できる。
Furthermore, since a reflective part that reflects in almost the same direction as the incident light is used as the light reflecting part, there are fewer restrictions on the position of the light emitting part for the light to be incident on the reflective part, and there is an effect that no optical axis adjustment is required. . However, in the example, a material (liquid crystal) whose wavelength transmittance characteristic for red light changes greatly after reaching a certain temperature is used for the function of blocking red light, so the structure is simple and reliable. High and can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による光温度センサの斜視図
、第2図は本発明の一実施例における反射部の構成の説
明図、第3図は一実施例におけるt−7 液晶の特性の説明図、第4図は本発明の他の実施例によ
る光温度センサの構成図、第5図は従来の光温度センサ
の斜視図である。 8 ・・・・液晶板、9・・・・・・光の反射板、1o
・・・・・・発光部、11・・・・・受光部、12・・
・・出射光を示す矢印、13・・・・反射光を示す矢印
、14・・・・反射部、16・・・・・・任意の一定温
度、16・・・・・・液晶材料、17・・・・・ガラス
板、18・・・・・・光の反射部。 代理人の氏名 弁理士 中 尾敏 男 ほか1名剖C頚
噺冊(♂)〈− 讐C塑智鉦(f)〈− ロニ co o−9二臼3 〉 〔 へ
FIG. 1 is a perspective view of an optical temperature sensor according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the configuration of a reflecting section in an embodiment of the present invention, and FIG. An explanatory diagram of the characteristics, FIG. 4 is a configuration diagram of an optical temperature sensor according to another embodiment of the present invention, and FIG. 5 is a perspective view of a conventional optical temperature sensor. 8...Liquid crystal plate, 9...Light reflecting plate, 1o
... Light emitting section, 11 ... Light receiving section, 12 ...
...Arrow indicating outgoing light, 13...Arrow indicating reflected light, 14...Reflecting portion, 16...Arbitrary constant temperature, 16...Liquid crystal material, 17 ...Glass plate, 18...Light reflecting part. Name of agent: Patent attorney Toshi Nakao, and one other person

Claims (1)

【特許請求の範囲】 (1)入射光と略同方向に光を反射する反射部と、この
反射部の前面に設けた一定値の温度を境にして光の波長
透過率特性が変化する光の通過部材とから構成した光温
度センサ。(2)光の通過部材は、一定値の温度を境に
して特定波長光の透過または遮断を行う液晶から構成し
た特許請求の範囲第1項記載の光温度センサ。 (3)反射部は、1組以上の、互いに直角に交わる3つ
の光の反射面から構成した特許請求の範囲第1項または
第2項記載の光温度センサ。
[Scope of Claims] (1) A reflecting part that reflects light in substantially the same direction as the incident light, and a light whose wavelength transmittance characteristics change at a certain temperature level provided in front of the reflecting part. A light temperature sensor composed of a passing member. (2) The optical temperature sensor according to claim 1, wherein the light passing member is made of a liquid crystal that transmits or blocks light of a specific wavelength at a certain temperature. (3) The optical temperature sensor according to claim 1 or 2, wherein the reflecting section is composed of one or more sets of three light reflecting surfaces that intersect at right angles to each other.
JP6394888A 1988-03-17 1988-03-17 Optical temperature sensor Pending JPH01237424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6394888A JPH01237424A (en) 1988-03-17 1988-03-17 Optical temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6394888A JPH01237424A (en) 1988-03-17 1988-03-17 Optical temperature sensor

Publications (1)

Publication Number Publication Date
JPH01237424A true JPH01237424A (en) 1989-09-21

Family

ID=13244074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6394888A Pending JPH01237424A (en) 1988-03-17 1988-03-17 Optical temperature sensor

Country Status (1)

Country Link
JP (1) JPH01237424A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157115A (en) * 2013-02-18 2014-08-28 Univ Of Yamanashi Thermometric method and apparatus with thermosensitive liquid crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108629A (en) * 1980-12-25 1982-07-06 Omron Tateisi Electronics Co Detector for heat
JPS6090750A (en) * 1983-09-19 1985-05-21 スティムソナイト・コーポレーション Retroreflective sheetig and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108629A (en) * 1980-12-25 1982-07-06 Omron Tateisi Electronics Co Detector for heat
JPS6090750A (en) * 1983-09-19 1985-05-21 スティムソナイト・コーポレーション Retroreflective sheetig and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157115A (en) * 2013-02-18 2014-08-28 Univ Of Yamanashi Thermometric method and apparatus with thermosensitive liquid crystal

Similar Documents

Publication Publication Date Title
KR920005443B1 (en) Optical sensor
US4928006A (en) Fluid coupled fiber optic sensor
EP0298091A1 (en) Optical sensors and optical fibre networks for such sensors
JPH01237424A (en) Optical temperature sensor
JPS63132139A (en) Liquid refractive index meter
JP3208996B2 (en) Light receiving method and light receiving module with little polarization dependence
US6041150A (en) Multipass cavity sensor for measuring a tissue-equivalent radiation dose
JPS63163237A (en) Optical temperature sensor
JPS63163238A (en) Optical temperature sensor
JPS6329220A (en) Optical temperature sensor
JPS63163236A (en) Optical temperature sensor
JPS5861408A (en) Transmission type optical coupler
JPS59176637A (en) Temperature sensor
JPS604844A (en) Water-air discriminating apparatus
JPH01237423A (en) Optical temperature sensor
JPH03156332A (en) Temperature sensor
JPS5944013A (en) Optical coupler
JPS6255529A (en) Radiation thermometer
JPS5836033Y2 (en) Liquid amount detection device
JPH0196515A (en) Tube liquid level measuring instrument
JPH0258575B2 (en)
JPS6042347Y2 (en) fiber optic temperature sensor
JPS6336257Y2 (en)
JPS59162427A (en) Optical temperature sensor
JPS6222037A (en) Temperature sensor