JPS6222037A - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPS6222037A
JPS6222037A JP60161101A JP16110185A JPS6222037A JP S6222037 A JPS6222037 A JP S6222037A JP 60161101 A JP60161101 A JP 60161101A JP 16110185 A JP16110185 A JP 16110185A JP S6222037 A JPS6222037 A JP S6222037A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
light
reflected light
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60161101A
Other languages
Japanese (ja)
Inventor
Kenichi Hirotsu
研一 弘津
Hiroshi Usami
宇佐見 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60161101A priority Critical patent/JPS6222037A/en
Publication of JPS6222037A publication Critical patent/JPS6222037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To reduce the size of a sensor part of the titled sensor and to measure a temperature of a minute clearance part accurately by detecting the temperature of an object to be measured optically using the same optical fiber for transmission and reception. CONSTITUTION:The projected light of a light emitting source LED 1 is projected on the space from an aperture part K of the tip via the optical fiber 2b via a beam splitter 10 through the optical fiber 2a, and the reflected light of a reflection mirror 11 is reflected on the splitter 10 through the optical fiber 2 and connected with the optical fiber 2c and photodetected with a photodetection part PD 4. The temperature of a storage box 12 on which the reflection mirror 11 is fixed is changed according to the environmental temperature and a radius of curvature of a reflecting film of the mirror 11 is changed according to the change and the focusing position comes close to or separates from the aperture part K and the quantity of the reflected light photodetected by the photodetection part 4 is changed. Accordingly, the unknown environmental temperature can be calculated from the quantity of the photodetected light of the photodetection part 4 by the quantity of the reflected light and the correction of the temperature of the mirror 11.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は光学的な温度センサに係わる。[Detailed description of the invention] <Industrial application field> The present invention relates to optical temperature sensors.

〈従来技術〉 従来の光学的な温度センサとしては投光レンズと受光レ
ンズ間の平行光線が温度変化によって変形するじゃへい
板によって遮光される量から温度変化を検出する温度セ
ンサが知られている。第3図及び第4図にかかる温度セ
ンサの構造を示す。第3図は全体的構成図であり、第4
図は第3図に示すもののセンサ部分の拡大図である。第
3図において、光源lから出射された光は光ファイバ2
1、センサ部3を経由して光ファイバ2□によって受光
部4に受光される。センサ部3の詳細な構造は第4図に
示される。
<Prior art> As a conventional optical temperature sensor, there is a known temperature sensor that detects temperature changes based on the amount of light that is blocked by parallel light rays between a light emitting lens and a light receiving lens by a baffle that deforms due to temperature changes. . 4 shows the structure of the temperature sensor according to FIGS. 3 and 4. FIG. Figure 3 is the overall configuration diagram, and Figure 4
The figure is an enlarged view of the sensor portion of the one shown in FIG. 3. In Fig. 3, the light emitted from the light source l is transmitted through the optical fiber 2.
1. The light passes through the sensor section 3 and is received by the light receiving section 4 through the optical fiber 2□. The detailed structure of the sensor section 3 is shown in FIG.

第3図、第4図に示す温度センサによれば、光源1から
射出された光は光ファイバ2.中を伝送され、光ファイ
バ21の開口端Kから投光側レンズ5に結合され平行光
線となって受光側レンズ6に結合する。また投受光レン
ズ5゜6の間にバイメタル7の先端に取り付けられた遮
蔽板8が配置されている。従って、環境温度によってバ
イメタル7の温度が変化し、バイメタル7はこれによっ
て変形するため、バイメタル7の先端に取り付けられた
遮蔽板8の位置を変化し、投光側レンズ5と受光側レン
ズ6との間に結合きれる平行光線の結合量を変化させる
。従って、受光側レンズ6と光ファイバ22とを介して
受光部4に受光される光量はバイメタル7の温度変化に
よって変化されるため、環境の温度変化に比例した光量
変化を検出することができる。
According to the temperature sensor shown in FIGS. 3 and 4, light emitted from a light source 1 is transmitted through an optical fiber 2. The light is transmitted through the optical fiber 21 and is coupled to the light emitting lens 5 from the open end K of the optical fiber 21, where it becomes a parallel light beam and coupled to the light receiving lens 6. Further, a shielding plate 8 attached to the tip of a bimetal 7 is arranged between the light emitting and receiving lenses 5°6. Therefore, the temperature of the bimetal 7 changes depending on the environmental temperature, and the bimetal 7 is thereby deformed. Therefore, the position of the shielding plate 8 attached to the tip of the bimetal 7 is changed, and the light emitting side lens 5 and the light receiving side lens 6 are changed. Changes the amount of parallel rays that can be combined between the two. Therefore, since the amount of light received by the light receiving section 4 via the light receiving lens 6 and the optical fiber 22 changes depending on the temperature change of the bimetal 7, it is possible to detect a change in the amount of light proportional to a change in the temperature of the environment.

〈発明が解決しようとする問題点〉 第3図及び第4図によって示す従来の温度センサは、セ
ンサ部が大型で微少間隙の温度計測に不適である。セン
サ部は、第4図に示すように、投光側と受光側のレンズ
5,6を必要とし、また、センサ部3は投光側光ファイ
バ2S1受光側光ファイバ22との2本の光ファイバを
必要とする。従って、センサ部を収容する収容箱9は投
光側光ファイバ21と受光側光ファイバ22の端部と投
光側と受光側レンズ5,6とバイメタル7とを収容する
だけの容積が必要となり、小型化が難かしい。
<Problems to be Solved by the Invention> The conventional temperature sensor shown in FIGS. 3 and 4 has a large sensor portion and is unsuitable for temperature measurement in a minute gap. As shown in FIG. 4, the sensor section requires lenses 5 and 6 on the light emitting side and the light receiving side, and the sensor section 3 requires two optical fibers, an optical fiber 2S on the emitting side and an optical fiber 22 on the receiving side. Requires fiber. Therefore, the storage box 9 that accommodates the sensor unit needs to have a volume sufficient to accommodate the ends of the light-emitting optical fiber 21 and the light-receiving optical fiber 22, the light-emitting side, the light-receiving lenses 5 and 6, and the bimetal 7. , it is difficult to downsize.

本発明はかかる従来技術の難点に鑑みてなされたもので
、センサ部を小型化し、被測対象のさらに微少な間隙部
の温度U測を可能とした温度センサを提供することを目
的とする。
The present invention has been made in view of the drawbacks of the prior art, and it is an object of the present invention to provide a temperature sensor that has a smaller sensor section and is capable of measuring the temperature U of an even smaller gap in an object to be measured.

く問題点を解決するための手段〉 かかる目的を達成した本発明による温度センサの構成は
、入射光と反射光とを伝送する光ファイバと、該光ファ
イバの先端開口部から隔てた位置に設けられた、上記光
ファイバからの入射光に対する反射光の上記光ファイバ
開口部への結合量を、環境温度の変化による鏡面の曲率
変化により変化させるバイメタルからなる反射鏡と、上
記光ファイバ先端部−口部と反射鏡を保護するとともに
、上記反射鏡を保持固定する収容箱とからなることを特
徴とするものである。
Means for Solving the Problems> A temperature sensor according to the present invention that achieves the above object includes an optical fiber that transmits incident light and reflected light, and a position separated from the opening at the tip of the optical fiber. a reflecting mirror made of a bimetal that changes the amount of coupling of reflected light to the optical fiber opening with respect to the incident light from the optical fiber by changing the curvature of the mirror surface due to a change in environmental temperature; It is characterized by comprising a housing box that protects the opening and the reflecting mirror and also holds and fixes the reflecting mirror.

く実 施 例〉 本発明による温度センサの一実施例を図面を参照しなが
ら説明する。
Embodiment An embodiment of the temperature sensor according to the present invention will be described with reference to the drawings.

第1図は本発明による温度センサの一実施例の構成図で
ある。第1図において、発光源LEDIの投射光は光フ
ァイバ2aを通じビームスプリッタ10を介して光ファ
イバ2bを分出して光ファイバ先端開口部Kがら空間に
投射され、光ファイバの先端開口部Kから所定の距離隔
てて配置されたバイメタルで構成きれた反射鏡11によ
って反射される。反射光は光ファイバの先端開口部Kに
結合され再び光ファイバ2bを伝搬し、ビームスプリッ
タ10で反射され、光ファイバ2Cへ結合されて、受光
部PD4に受光される。第1図中、12は光ファイバ先
端部と反射鏡11を保護するとともに、反射鏡11を保
持固定する収容箱である。尚、第1図中の反射鏡部の拡
゛大図を第2図に示す。反射鏡11はその中央に固定し
た支持腕13によって収容箱12に熱伝導的に固定され
ている。収容箱12の温度は環境温度と共に変化し、環
境温度は速やかにバイメタルで構成された反射鏡11に
伝達される。反射鏡11はバイメタルで構成され光ファ
イバ2bに面する側は反射率の高い反射膜11aで被覆
されている。また反射III!11はバイメタルで構成
されているため、温度変化に応じて反射鏡11の反射膜
11aの曲率半径rが変化する。したがって、反射鏡1
1の反射膜11aの曲率半径rが、例えば室温で特定の
値r0すると、温度が上昇することによって、曲率半径
rが小さくなるように構成され、それによって焦点位置
が次第(こ光ファイバの開口部Kに接近する場合ζよ、
反射光の光ファイバ2bの開口部にとの結合シよ大きく
なることによって、光ファイ/< 2 bの反射光量が
増加する。このため、ビームスプリッタ10を介して受
光部PDAζこ受光される反射光の量は増加する。反射
光量と反射鏡11の温度を較正しておけば、未知の環境
温度を受光部PD4の受光量から直ちζこ求める乙とが
可能となり温度センサとして利用できる。
FIG. 1 is a configuration diagram of an embodiment of a temperature sensor according to the present invention. In FIG. 1, the projected light from the light emitting source LEDI passes through the optical fiber 2a, splits into the optical fiber 2b via the beam splitter 10, and is projected into space through the optical fiber tip opening K. The light is reflected by a reflecting mirror 11 made of bimetal and placed at a distance of . The reflected light is coupled to the tip opening K of the optical fiber, propagates through the optical fiber 2b again, is reflected by the beam splitter 10, is coupled to the optical fiber 2C, and is received by the light receiving portion PD4. In FIG. 1, reference numeral 12 denotes a housing box that protects the tip of the optical fiber and the reflecting mirror 11, and also holds and fixes the reflecting mirror 11. Incidentally, an enlarged view of the reflecting mirror section in FIG. 1 is shown in FIG. 2. The reflecting mirror 11 is fixed to the storage box 12 in a thermally conductive manner by a supporting arm 13 fixed at the center thereof. The temperature of the storage box 12 changes with the environmental temperature, and the environmental temperature is quickly transmitted to the reflecting mirror 11 made of bimetal. The reflecting mirror 11 is made of bimetal, and the side facing the optical fiber 2b is coated with a reflective film 11a having a high reflectance. Reflection III again! Since the mirror 11 is made of bimetal, the radius of curvature r of the reflective film 11a of the reflective mirror 11 changes according to temperature changes. Therefore, reflector 1
When the radius of curvature r of the reflective film 11a of No. 1 reaches a certain value r0 at room temperature, for example, the radius of curvature r becomes smaller as the temperature rises, and as a result, the focal position gradually changes (the aperture of the optical fiber When approaching part K, ζ,
By increasing the coupling of the reflected light to the opening of the optical fiber 2b, the amount of reflected light from the optical fiber 2b increases. Therefore, the amount of reflected light received by the light receiving unit PDAζ via the beam splitter 10 increases. By calibrating the amount of reflected light and the temperature of the reflecting mirror 11, it becomes possible to immediately determine the unknown environmental temperature from the amount of light received by the light receiving section PD4, and it can be used as a temperature sensor.

〈発明の効果〉 本発明による温度センサによれば、被測対象の温度を光
学的に検出できるため、被測対象物が超高圧装置のよう
な超高圧の部位でも、きわめて安全に被測部位の温度を
正確に検出できるようになった。また従来のものに比べ
て光−yアイパは送受同一の光ファイバが使用できるた
め、装置が小型化され、特にセンサ部分にレンズを使用
しないため、センサ部分が小型化され、被測対象物の狭
い間隙まで押入でき、そのような場所の温度も正確に計
測できるようになった。
<Effects of the Invention> According to the temperature sensor according to the present invention, the temperature of the object to be measured can be detected optically, so even if the object to be measured is a part of ultra-high pressure such as an ultra-high pressure device, the temperature of the object to be measured can be detected extremely safely. temperature can now be detected accurately. In addition, compared to conventional systems, the Optical Y Eyeper can use the same optical fiber for transmission and reception, making the device more compact.In particular, since no lens is used in the sensor part, the sensor part can be made smaller, and the object to be measured can be It is now possible to penetrate into narrow spaces and accurately measure the temperature in such places.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による温度センサの構成図、第2図は第
1図に示す反射鏡部分の拡大図、第3図1よ従来の温度
センサの構成図、第4図は第3図に示すセンサ部の詳細
図である。 図 面 中、 1は発光源、2a、2b、2cは光7フイバ、4は受光
部、10はビームスプリッタ、11は反射鏡、12は収
容箱、13は支持腕である。 特許出願人  住友電気工業株式会社 代理人弁理士   光  石  士  部 (他1名)
第1図 第2図
Fig. 1 is a block diagram of the temperature sensor according to the present invention, Fig. 2 is an enlarged view of the reflector shown in Fig. 1, Fig. 3 is a block diagram of a conventional temperature sensor shown in Fig. 1, and Fig. 4 is the same as Fig. 3. FIG. 3 is a detailed diagram of the sensor section shown in FIG. In the drawing, 1 is a light emitting source, 2a, 2b, and 2c are optical fibers, 4 is a light receiving section, 10 is a beam splitter, 11 is a reflecting mirror, 12 is a storage box, and 13 is a support arm. Patent applicant: Sumitomo Electric Industries, Ltd. Representative Patent Attorney: Shibu Mitsuishi (1 other person)
Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  入射光と反射光とを伝送する光ファイバと、該光ファ
イバの先端開口部から隔てた位置に設けられた、上記光
ファイバからの入射光に対する反射光の上記光ファイバ
開口部への結合量を、環境温度の変化による鏡面の曲率
変化により変化させるバイメタルからなる反射鏡と、上
記光ファイバ先端開口部と反射鏡を保護するとともに、
上記反射鏡を保持固定する収容箱とからなることを特徴
とする温度センサ。
An optical fiber that transmits incident light and reflected light, and an amount of coupling of reflected light from the optical fiber to the optical fiber opening, which is provided at a position apart from the tip opening of the optical fiber, is provided. , a bimetallic reflector whose curvature changes due to changes in environmental temperature, and protects the optical fiber tip opening and the reflector;
A temperature sensor comprising a storage box that holds and fixes the reflecting mirror.
JP60161101A 1985-07-23 1985-07-23 Temperature sensor Pending JPS6222037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60161101A JPS6222037A (en) 1985-07-23 1985-07-23 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60161101A JPS6222037A (en) 1985-07-23 1985-07-23 Temperature sensor

Publications (1)

Publication Number Publication Date
JPS6222037A true JPS6222037A (en) 1987-01-30

Family

ID=15728621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60161101A Pending JPS6222037A (en) 1985-07-23 1985-07-23 Temperature sensor

Country Status (1)

Country Link
JP (1) JPS6222037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105682A1 (en) * 2021-06-18 2022-12-21 Sick Ag Optoelectronic sensor and method for detecting objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105682A1 (en) * 2021-06-18 2022-12-21 Sick Ag Optoelectronic sensor and method for detecting objects

Similar Documents

Publication Publication Date Title
US8322919B2 (en) Miniature fiber optic temperature sensor with edge reflector
US20040246477A1 (en) Optical spectrum analyzer
US20030007148A1 (en) Optical channel monitor
JP2000065566A5 (en)
US4595830A (en) Multimode optical fiber accelerometer
KR20020046147A (en) Spectral reflectance measuring apparatus and spectral reflectance measuring method
JPH0311644B2 (en)
EP1030160A1 (en) Optical position sensor
JPS6222037A (en) Temperature sensor
CN211826704U (en) Laser optical structure and laser ranging system
CN106500891B (en) Glass surface stress detection device and detection prism used for same
KR102547513B1 (en) Apparatus for Optical Inspection
KR20020094994A (en) Light sensing system for automatic meter reading
WO2023182359A1 (en) Interferometer and physical quantity measurement device
JPH0215808B2 (en)
JPS6014164Y2 (en) optical measuring device
JP3227336B2 (en) Gas concentration measurement device
JP2002090302A (en) Light quantity measuring device
JP2003202262A (en) Optical monitor
JPS60235027A (en) Narrow wavelength band light emitting and receiving apparatus
RU2164662C2 (en) Optical displacement transducer
KR101824475B1 (en) Fiber-optic sensor and measuring device comprising the same
JPH10176927A (en) Inclination sensor
JP3283575B2 (en) Fiber end face measuring device
KR200305641Y1 (en) Active light emitting device integrated type automatic focusing measuring device