JPS59162427A - Optical temperature sensor - Google Patents

Optical temperature sensor

Info

Publication number
JPS59162427A
JPS59162427A JP58035252A JP3525283A JPS59162427A JP S59162427 A JPS59162427 A JP S59162427A JP 58035252 A JP58035252 A JP 58035252A JP 3525283 A JP3525283 A JP 3525283A JP S59162427 A JPS59162427 A JP S59162427A
Authority
JP
Japan
Prior art keywords
light
optical
temperature sensor
temperature
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58035252A
Other languages
Japanese (ja)
Inventor
Toshie Kaneko
金子 利衛
Kohei Nakada
耕平 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58035252A priority Critical patent/JPS59162427A/en
Publication of JPS59162427A publication Critical patent/JPS59162427A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To improve an S/N ratio and to make it possible to perform highly accurate temperature measurement, by providing a medium having a light converging function in a sensor. CONSTITUTION:Light is transmitted through an incident optical fiber 5, passes a temperature measuring body 3, and becomes a function of a temperature. The light is continuously refracted in a 1/4-pitch, converging light-transmitting body 22, reflected by a reflecting body, and inputted to a light receiving optical fiber 6 as converged light. Since the converging light-transmitting body 22 is provided, light is not diverged in a temperature sensor. Since almost entire incident light is guided to the light receiving optical fiber 6, the S/N ratio is improved, and the highly accurate temperature measurement can be performed.

Description

【発明の詳細な説明】 本発明は、光透過率゛が温度に依存する物質を使用して
温度の検知を行なう光学温度センサに関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical temperature sensor that detects temperature using a material whose light transmittance depends on temperature.

一般に、光透過率が温度に依存する物質(以下側・温体
と称する)としては、例えば、光吸収端による温度依存
性を有するGaAs、 CdTe、Si、Ge、ZnO
等の物質があげられる。第1図はそれらの物質のうち、
−例として半導体結晶の光吸収端の温度依存性を利用し
た温度測定の原理を示した図である。半導体結晶の光吸
収端1は温度が上昇すると長波長側ヘシフトする。光吸
収端1の波長域近辺に発光スペクトル2を有する光源か
らの光を該半導体結晶に透過させると、光吸収端lより
短波長側の光は該半導体結晶に吸収されてしまう。第1
図に示すように、温度が上昇するとともに光源の発光ス
ペクトル2と、半導体結晶の光吸収端1との重なりが減
少する。即ち、温度上昇とともに透過光量は減少するこ
とになる。半導体結晶の種類(光吸収端1の位置)と光
源の発光スペクトル(中心波長と分布)とを選択するこ
とにより、測定温度範囲及び測定精度を決定できる。
In general, materials whose light transmittance depends on temperature (hereinafter referred to as hot bodies) include, for example, GaAs, CdTe, Si, Ge, and ZnO, which have temperature dependence due to the light absorption edge.
Substances such as Figure 1 shows among those substances,
- As an example, it is a diagram showing the principle of temperature measurement using the temperature dependence of the optical absorption edge of a semiconductor crystal. The optical absorption edge 1 of the semiconductor crystal shifts to the longer wavelength side as the temperature rises. When light from a light source having an emission spectrum 2 in the vicinity of the wavelength range of the light absorption edge 1 is transmitted through the semiconductor crystal, light having wavelengths shorter than the light absorption edge 1 is absorbed by the semiconductor crystal. 1st
As shown in the figure, as the temperature rises, the overlap between the emission spectrum 2 of the light source and the light absorption edge 1 of the semiconductor crystal decreases. That is, the amount of transmitted light decreases as the temperature rises. By selecting the type of semiconductor crystal (position of optical absorption edge 1) and the emission spectrum (center wavelength and distribution) of the light source, the measurement temperature range and measurement accuracy can be determined.

従来、以上の原理を利用した温度センサについてはいく
つかの提案がなされている。第2図はその一例を示す概
略図である。これは測温体3の片面に、反射面が平面で
ある反射体4を形成したものである。光源からの光は入
射用光ファイバ5を伝送された後、測温体3に照射され
る。測温体3を透過した光は、反射体4で反射され再び
測温体3を透過後、受光用光ファイバ6に入射し受光部
(不図示)まで導かれる。光は測温体3を透過後に、そ
の特性に従って温度の関数を持った光となるので、その
光量を測定することにより温度測定ができるわけである
Conventionally, several proposals have been made regarding temperature sensors that utilize the above principle. FIG. 2 is a schematic diagram showing an example thereof. In this case, a reflector 4 having a flat reflective surface is formed on one side of a temperature measuring body 3. The light from the light source is transmitted through the input optical fiber 5 and then irradiated onto the temperature measuring body 3 . The light that has passed through the temperature measuring body 3 is reflected by the reflector 4 and passes through the temperature measuring body 3 again, and then enters the light receiving optical fiber 6 and is guided to a light receiving section (not shown). After the light passes through the temperature measuring body 3, it becomes light that has a function of temperature according to its characteristics, so temperature can be measured by measuring the amount of light.

ところが、第2図より明らかなように、入射用光ファイ
バ5から出た光は発散する性質を有するために、反射体
4を経て受光用光ファイバ6に到達するのはほんの一部
でしかない。従って、受光効率が非常に悪くなり、その
ため光信号のS/N比が非常に低下してしまうという問
題点があった。
However, as is clear from FIG. 2, since the light emitted from the input optical fiber 5 has a diverging property, only a portion of the light reaches the light receiving optical fiber 6 via the reflector 4. . Therefore, there is a problem in that the light receiving efficiency becomes very poor and the S/N ratio of the optical signal becomes very low.

そこで、少しでも受光効率を高めるために第3図に示す
ように、測温体3を直角三角プリズムとしたものが提案
されている(米国特許第4136568号)。こうする
ことにより、入射用光ファイバ5からの光は角度を持っ
た反射面7.8で90°ずっ方向を変えられ比較的効率
よく受光用光ファイバ6に入射できるものである。
Therefore, in order to improve the light receiving efficiency even a little, it has been proposed to use a right triangular prism as the temperature measuring body 3, as shown in FIG. 3 (US Pat. No. 4,136,568). By doing so, the direction of the light from the input optical fiber 5 is changed by 90 degrees by the angled reflection surface 7.8, and the light can enter the light receiving optical fiber 6 relatively efficiently.

しかし、第3図に示した例に於いても、光が発散するの
を防止することができず、反射面7.8で方向を変えら
れながらも発散は行なわれるため、やはりまだ所期の目
的を達成できるほど受光効率を高めることは困難である
However, even in the example shown in Figure 3, it is not possible to prevent the light from diverging, and the light continues to diverge even though its direction is changed by the reflective surface 7.8, so the desired result still remains. It is difficult to increase the light receiving efficiency to the extent that the objective can be achieved.

本発明は、以上の問題点を解決するためになされたもの
であり、光透過率の温度に依存する物質よりなる測温体
、及び、光を反射させるための反射体の他に、光を集束
させる働きを持つ光集束媒体を設けるか、あるいは、測
温体自体に光集束性を持たせることにより、効率よく入
反射でき測定精度の高い光学温度センサを得ることを目
的とする。
The present invention has been made to solve the above problems, and includes a temperature measuring body made of a material whose light transmittance depends on temperature, and a reflector for reflecting light. The object of the present invention is to obtain an optical temperature sensor that can efficiently input and reflect light and has high measurement accuracy by providing a light focusing medium that has a focusing function or by providing a temperature measuring body itself with light focusing properties.

以下1本発明をその好ましい実施例について添付図面を
参照しながら説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第4図は本発明の第1実施例を示す概略図である。ここ
に於て、測温体3を入射用光ファイバ5の光出射端面に
設け、測温体3及び受光用光ファイバ6の光入射端面を
同一面に配置し、かつ、この面に密接させて%ピッチ集
束性光伝送体22を設け、測温体3と接する面との反対
面に反射体4を形成しである。%ピッチ集束性光伝送体
22は、その矢印で示すようにその中を光が往復するこ
とにより連続屈折が行なわれ、その出射端に於てちょう
ど集束点を持つような長さにした、連続変化する屈折率
を持つ媒体である。従って、入射用光ファイバ5で伝送
され測温体3を透過して温度の関数となった光は、y4
ピッチ集束性光伝送体22内で連続屈折し、反射体4で
反射され、集束したところで受光用光ファイバ6に導か
れる。
FIG. 4 is a schematic diagram showing a first embodiment of the present invention. Here, the temperature measuring element 3 is provided on the light output end surface of the input optical fiber 5, and the light input end surfaces of the temperature measuring element 3 and the light receiving optical fiber 6 are arranged on the same surface and brought into close contact with this surface. A % pitch convergent optical transmission body 22 is provided, and a reflector 4 is formed on the surface opposite to the surface in contact with the temperature measuring body 3. The % pitch convergent optical transmitter 22 is a continuous beam having a length such that light travels back and forth within it as shown by the arrow, causing continuous refraction, and has a convergence point exactly at its output end. It is a medium with a changing refractive index. Therefore, the light transmitted through the input optical fiber 5, transmitted through the temperature measuring element 3, and becomes a function of temperature is y4
The light is continuously refracted within the pitch-focusing light transmission body 22, reflected by the reflector 4, and guided to the light-receiving optical fiber 6 when it is focused.

以上のように、光集束媒体として翅ピンチ集束性光伝送
体22を用いることにより、温度センサ内部で光が発散
することがなく、入射した光のほとんどを効率よく受光
用光ファイバ6に導くことができる。尚、測温体6は、
受光用光ファイバ6の光入射端に形成しても同様な効果
が得られる。
As described above, by using the wing-pinch focusing optical transmission body 22 as a light focusing medium, the light does not diverge inside the temperature sensor, and most of the incident light can be efficiently guided to the light receiving optical fiber 6. I can do it. In addition, the temperature measuring body 6 is
A similar effect can be obtained even if it is formed at the light incident end of the light receiving optical fiber 6.

第5図は本発明の第2実施例を示す概略図である。これ
は測温体3を、%ピンチ集束性光伝送体22と反射体4
との間にはさみ込んだものである。
FIG. 5 is a schematic diagram showing a second embodiment of the present invention. This consists of a temperature measuring body 3, a pinch focusing light transmitting body 22 and a reflector 4.
It is inserted between.

このようにすれば、入射用光ファイバ5からの光は、%
ピッチ床束性光伝送体22に入射し連続屈折しながら進
行する。その後測温体3を透過して反射体4で反射され
再び測温体3を透過後、温度の関数となった光は、%ピ
ンチ集束性光伝送体22で更に連続屈折を行ない集束さ
れて、受光用光ファイバ6に入射する。
In this way, the light from the input optical fiber 5 is reduced to %
The light enters the pitch-bed bundled light transmission body 22 and travels while being continuously refracted. After that, the light passes through the temperature measuring element 3, is reflected by the reflector 4, and after passing through the temperature measuring element 3 again, the light that becomes a function of temperature is further continuously refracted and focused by the pinch focusing light transmitting body 22. , enters the light-receiving optical fiber 6.

このように、測温体3と属ピンチ集束性光伝送体22の
位置関係類、第4図に示した実施例の他にもいろいろ変
えることにより、同様な受光効率の高いものか得られる
In this way, by making various changes in the positional relationship between the temperature measuring body 3 and the pinch focusing light transmitting body 22 other than the embodiment shown in FIG. 4, it is possible to obtain the same high light receiving efficiency.

第6図は本発明の第3実施例を示す概略図である。これ
は、光集束媒体として、光入射面が平面で、それに相対
する面か円柱面である平凸シリンドリカルJ享膜導波路
28を用いたもので、測温体3を入射用光ファイバ5の
光出射端面に設け、測温体3及び受光用光ファイバ6の
光入射端面を同一面に配置し、かつ、この面に密接させ
て平凸シリンドリカル厚膜導波路28を設け、測温体3
と接、する面との反対面にその曲面と合わせて反射体4
を形成したものである。従って、入射用光ファイバ5で
伝送されX1ll温体3を透過して温度の関数となった
光は平凸シリンドリカル厚膜導波路28内を発散しなが
ら進行するが、円柱状の反射面を持った反射体4で反射
された後は、集束光となり受光用光ファイバ6の入射端
で焦点を結ぶことにより光は受光用光フアイバ6内に伝
達される。
FIG. 6 is a schematic diagram showing a third embodiment of the present invention. This uses a plano-convex cylindrical J-film waveguide 28 whose light incident surface is a flat surface and whose opposing surface is a cylindrical surface as a light focusing medium. A plano-convex cylindrical thick film waveguide 28 is provided on the light emitting end surface, the light incident end surfaces of the temperature measuring element 3 and the light receiving optical fiber 6 are arranged on the same surface, and in close contact with this surface.
A reflector 4 is placed on the surface opposite to the surface in contact with the curved surface.
was formed. Therefore, the light transmitted through the input optical fiber 5 and transmitted through the X1ll hot body 3, which becomes a function of temperature, travels in the plano-convex cylindrical thick film waveguide 28 while diverging, but it has a cylindrical reflective surface. After being reflected by the reflector 4, the light becomes convergent light and is focused at the input end of the light-receiving optical fiber 6, whereby the light is transmitted into the light-receiving optical fiber 6.

このように、光集束媒体として平凸シリンドリカルJソ
膜導波路28を用いることによっても、前記の実施例と
同様に受光効率の高い温度センサを得ることができる。
In this way, by using the plano-convex cylindrical J-sol film waveguide 28 as the light focusing medium, it is possible to obtain a temperature sensor with high light receiving efficiency as in the above embodiment.

また、第4実施例として、第7図に示すように、測温体
3を平凸シリンドリカル厚膜導波路28のシリンドリカ
ル面に形成し、これを反射体4で挾み込んでも同様な効
果が得られる。
Furthermore, as a fourth embodiment, as shown in FIG. 7, the same effect can be obtained by forming the temperature measuring body 3 on the cylindrical surface of the plano-convex cylindrical thick film waveguide 28 and sandwiching it between reflectors 4. can get.

第8図は、本発明の第5実施例を示す概略図である。こ
れは、光集束媒体として、高屈折率を有する球レンズ3
4を用いたものであり、球レンズ34の各光ファイバb
、6の端面に対する面と反対面に反射体4を形成したも
のである。従って、入射用光ファイバ5からの光は、測
温体3を通過後温度の関数となり、球レンズ34に入射
し屈折されることにより集束作用を受け、反射体4で反
射されることにより更に集束されて受光用光ファイバ6
に受光される。
FIG. 8 is a schematic diagram showing a fifth embodiment of the present invention. This uses a ball lens 3 with a high refractive index as a light focusing medium.
4, each optical fiber b of the ball lens 34
, 6, a reflector 4 is formed on a surface opposite to the end surface of the reflector 4. Therefore, the light from the input optical fiber 5 becomes a function of the temperature after passing through the temperature measuring body 3, is incident on the ball lens 34, is refracted, receives a focusing action, and is further reflected by the reflector 4. Optical fiber 6 for focused light reception
The light is received by the

このように、光集束媒体として高屈折率の球レンズ34
を用いることにより、光の集束作用は更に強められ、よ
り受光効率の高い温度センサを得ることができる。また
、前記実施例と同様に、第6実施例として、第9図に示
すように測温体3を球レンズ34と反射体4とで挾み込
んで形成しても同様な効果を得ることができるのはもち
ろんである。
In this way, the high refractive index ball lens 34 is used as a light focusing medium.
By using this, the light focusing effect is further strengthened, and a temperature sensor with higher light receiving efficiency can be obtained. Furthermore, similar to the above-mentioned embodiment, the same effect can be obtained by forming the temperature-measuring body 3 between a ball lens 34 and a reflector 4 as shown in FIG. 9 as a sixth embodiment. Of course it is possible.

以上に示したように、光集束媒体として属ピンチ集束性
光伝送体22、平凸シリンドリカル厚膜導波路28また
は球レンズ34を使用した場合を述べたが、これらの材
質として、測温体3と同じ半導体等の材料そのもので形
成することにより、光集束媒体が測温体を兼用すれば、
同様な受光効果が得られ、かつ、よりコンパクトな温度
センサをつくることが可能となる。
As shown above, the case has been described in which the pinch focusing optical transmitter 22, the plano-convex cylindrical thick film waveguide 28, or the spherical lens 34 is used as the light focusing medium. If the light focusing medium doubles as a temperature measuring element by forming it from the same material as the semiconductor, etc.,
It is possible to obtain a similar light-receiving effect and to create a more compact temperature sensor.

また、反射体4としては、AH,Ag、 Au等の金属
膜または、誘電体多層膜を用いることができる。
Further, as the reflector 4, a metal film such as AH, Ag, or Au, or a dielectric multilayer film can be used.

特に、誘電体多層膜を角いれば、外部の電磁界の影響を
受けることがない。
In particular, if the dielectric multilayer film is angled, it will not be affected by external electromagnetic fields.

そこで、以上に説明したような、本発明による光学温度
センサを使用して、温度測定を行なう場合のその装置の
一例について、第10図にもとついて以下に簡1μに説
明する。発光素子駆動回路40により発光される発光素
子41は、入射用光ファイバ5及び受光用光ファイバ6
と接続する。入射用光フアイバ5内を伝送する光は本発
明の光学温度センサSに入射し、その内部に設けられた
測温体3及び反射体4を経た後、温度の関数となって受
光用光ファイバ6に導かれる。受光用光ファイバ6で導
かれた光は受光素子42で検知され、光出力検出回路4
3に信号として送られる。また、参照光用光ファイバ4
4は発光素子41からの光を受光素子45に伝送する。
Therefore, an example of a device for measuring temperature using the optical temperature sensor according to the present invention as described above will be briefly explained below with reference to FIG. 10. The light emitting element 41 that emits light by the light emitting element driving circuit 40 is connected to an input optical fiber 5 and a light receiving optical fiber 6.
Connect with. The light transmitted through the input optical fiber 5 enters the optical temperature sensor S of the present invention, and after passing through the temperature measuring element 3 and reflector 4 provided inside the optical temperature sensor S, the light transmits through the light receiving optical fiber as a function of temperature. 6. The light guided by the light-receiving optical fiber 6 is detected by the light-receiving element 42, and the light output detection circuit 4
3 as a signal. In addition, reference light optical fiber 4
4 transmits light from the light emitting element 41 to the light receiving element 45.

すると、発光素子41の温度変化等による発光量のバラ
ツキを受光素子45を経て、光出力検出回路46で測定
し、光出力検出回路43で測定された光信号と参照する
ことにより、前記のバラツキによる測定誤差を解消する
ことができる。
Then, the variation in the amount of light emitted by the light emitting element 41 due to temperature changes, etc. is measured by the light output detection circuit 46 via the light receiving element 45, and by referring to the optical signal measured by the light output detection circuit 43, the above-mentioned variation can be detected. It is possible to eliminate measurement errors caused by

従って、以上述べてきたように、本発明は、従来の光学
温度センサにはなかった機能として、光集束機能を有す
る媒体をセンサ内に設けたので、センサ内部で光が発散
するものを防止し、受光効率を非常に高めることができ
たため、正確な温度1i!I11定には欠くことができ
ないS/N比を向上させ、高精度の温度測定を可能にす
るという、非常に優れた効果を奏するものである。
Therefore, as described above, the present invention provides a medium with a light focusing function within the sensor, which is a function that conventional optical temperature sensors do not have, thereby preventing light from being diverged inside the sensor. , because we were able to greatly increase the light receiving efficiency, we were able to achieve an accurate temperature of 1i! This has an extremely excellent effect of improving the S/N ratio, which is essential for I11 constant, and enabling highly accurate temperature measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、半導体結晶の光吸収端の温度依存性を利用し
た温度測定の原理図、第2図及び第3図は従来の光学温
度センサ・の−例及び他の例を示す概略図、第4図、第
5図、第6図、第7図、第8図及び第9図は本発明の第
1、第2、第3、第4、第5及び第6実施例を示す概略
図、第10図は本発明の光学温度センサを使用した温度
測定装置の一例を示す概略図である。 3・・・測温体、      4・・・反射体。 5・・・入射用光ファイバ、6・・・受光用光ファイバ
、22・・・只ピッチ集束性光伝送体、 28・・・平凸シリンドリカル厚膜導波路、34・・・
球レンズ。 第1図 第2因   第3図 6 第4図 第6図 第5図 第7図
FIG. 1 is a diagram of the principle of temperature measurement using the temperature dependence of the optical absorption edge of a semiconductor crystal, and FIGS. 2 and 3 are schematic diagrams showing an example of a conventional optical temperature sensor and other examples. 4, 5, 6, 7, 8 and 9 are schematic diagrams showing first, second, third, fourth, fifth and sixth embodiments of the present invention. , FIG. 10 is a schematic diagram showing an example of a temperature measuring device using the optical temperature sensor of the present invention. 3... Temperature measuring body, 4... Reflector. 5... Optical fiber for incidence, 6... Optical fiber for light reception, 22... Single pitch focusing optical transmission body, 28... Plano-convex cylindrical thick film waveguide, 34...
ball lens. Fig. 1 Fig. 2 Cause Fig. 3 Fig. 6 Fig. 4 Fig. 6 Fig. 5 Fig. 7

Claims (1)

【特許請求の範囲】 (1)光透過率の温度に依存する物質よりなる測温体と
、光を反射させるだめの反射体と、光を1束させる働き
を持つ光集束媒体との組合せからなる光学温度センサ。 (2)光集束媒体か、測温体と反射体との中間に位置す
る特許請求の範囲第1項記載の光学温度センサ。 (3)測温体か、光集束媒体と反射体との中間に位置す
る特許請求の範囲第1項記載の光学温度センサ。 (4)測温体か半導体である特許請求の範囲第1項ない
し第3項記載のいずれかに記載の光学温度センサ。 (5)光集束媒体か%集束性光伝送体である特許請求の
範囲第1項ないし第4項のいずれかに記載の光(6)光
集束媒体が平凸シリンドリカル厚膜導波路である特許請
求の範囲第1項ないし第4項のいずれかに記載の光学温
度計。 (7)光集束媒体が高屈折率球レンズである特許請求の
範囲第1項ないし第4項のいずれかに記載の光学温度計
。 (8)反射体が金属膜でできた特許請求の範囲第1項な
いし第7項のいずれかに記載の光学温度計。 (9)反射体が誘電体多層膜でできた特許請求の範囲第
1項ないし第7項のいずれかに記載の光学温度計。 (10)光透過率が温度に依存する物質よりなる測温体
と、光を反射させるための反射体との組合せからなり、
かつ、該測温体が光を集束させるf動きをも有する光学
温度センサ。 (li)fllll温体が半導体である特許請求の範囲
第10項記載の光学温度センサ。 (12)測温体が曇集束性光伝送体である特許請求の範
囲第10項または第11項記載の光学温度センサ。 特許請求の範囲第10項または第11項記載の光学温度
センサ。 (14)測温体が高屈折率球レンズである特許請求の範
囲第10項または第11項記載の光学温度センサ。 (15)反射体が金属膜でできた特許請求の範囲第1O
項ないし第14項のいずれかに記載の光学温度センサ。 (16)反射体が誘電体多層膜でできた特許請求の範囲
第10項ないし第14項のいずれかに記載の光学温度セ
ンサ。
[Claims] (1) A combination of a temperature measuring body made of a substance whose light transmittance depends on temperature, a reflector that reflects light, and a light focusing medium that functions to bundle light. Optical temperature sensor. (2) The optical temperature sensor according to claim 1, which is located between a light focusing medium or a temperature measuring body and a reflector. (3) The optical temperature sensor according to claim 1, which is located between the temperature measuring body or the optical focusing medium and the reflector. (4) The optical temperature sensor according to any one of claims 1 to 3, wherein the temperature measuring body is a semiconductor. (5) The light according to any one of claims 1 to 4, which is an optical focusing medium or a % focusing optical transmission body. (6) A patent in which the optical focusing medium is a plano-convex cylindrical thick film waveguide. An optical thermometer according to any one of claims 1 to 4. (7) The optical thermometer according to any one of claims 1 to 4, wherein the light focusing medium is a high refractive index spherical lens. (8) The optical thermometer according to any one of claims 1 to 7, wherein the reflector is made of a metal film. (9) The optical thermometer according to any one of claims 1 to 7, wherein the reflector is made of a dielectric multilayer film. (10) Consists of a combination of a temperature measuring body made of a substance whose light transmittance depends on temperature and a reflector for reflecting light,
The optical temperature sensor also has an f-movement in which the temperature measuring body focuses light. (li) The optical temperature sensor according to claim 10, wherein the full hot body is a semiconductor. (12) The optical temperature sensor according to claim 10 or 11, wherein the temperature measuring body is a cloudy focusing light transmitting body. An optical temperature sensor according to claim 10 or 11. (14) The optical temperature sensor according to claim 10 or 11, wherein the temperature measuring body is a high refractive index spherical lens. (15) Claim 1O in which the reflector is made of a metal film
The optical temperature sensor according to any one of Items 1 to 14. (16) The optical temperature sensor according to any one of claims 10 to 14, wherein the reflector is made of a dielectric multilayer film.
JP58035252A 1983-03-05 1983-03-05 Optical temperature sensor Pending JPS59162427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58035252A JPS59162427A (en) 1983-03-05 1983-03-05 Optical temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58035252A JPS59162427A (en) 1983-03-05 1983-03-05 Optical temperature sensor

Publications (1)

Publication Number Publication Date
JPS59162427A true JPS59162427A (en) 1984-09-13

Family

ID=12436628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58035252A Pending JPS59162427A (en) 1983-03-05 1983-03-05 Optical temperature sensor

Country Status (1)

Country Link
JP (1) JPS59162427A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210247A (en) * 2009-03-06 2010-09-24 Yamatake Corp Fluorescent temperature sensor
JP2014167605A (en) * 2013-01-30 2014-09-11 Mitsubishi Cable Ind Ltd Optical sensor device and optical fiber cable used for the same
US20160139337A1 (en) * 2013-10-17 2016-05-19 Ofs Fitel, Llc Dual-Ended Optical Fiber Pathway

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210247A (en) * 2009-03-06 2010-09-24 Yamatake Corp Fluorescent temperature sensor
JP2014167605A (en) * 2013-01-30 2014-09-11 Mitsubishi Cable Ind Ltd Optical sensor device and optical fiber cable used for the same
US20160139337A1 (en) * 2013-10-17 2016-05-19 Ofs Fitel, Llc Dual-Ended Optical Fiber Pathway

Similar Documents

Publication Publication Date Title
JP2557353B2 (en) Optical device
US4678902A (en) Fiber optic transducers with improved sensitivity
US7062125B2 (en) Prismatic reflection optical waveguide device
JPH01502052A (en) Optical sensors and optical fiber networks for optical sensors
US6891620B2 (en) Measuring plate
US4624570A (en) Fiber optic displacement sensor
JPS6095322A (en) Optical measuring method measuring displacement of body and sensor thereof
JPS59162427A (en) Optical temperature sensor
JPS63273042A (en) Optical measuring instrument
JPS63132139A (en) Liquid refractive index meter
JPH0262183B2 (en)
CN109084691B (en) Refractive displacement sensor and measuring method thereof
SU1150488A1 (en) Optical fibre level indicator
JPS61225627A (en) Photometer
RU2297602C1 (en) Liquid level fiber-optic signaling device
JPS6014164Y2 (en) optical measuring device
Suzuki et al. A novel design of a compact, freeform-based condenser lens for use with photomultiplier tubes to achieve high collection efficiencies
US7282729B2 (en) Fabry-Perot resonator apparatus and method for observing low reflectivity surfaces
KR101824475B1 (en) Fiber-optic sensor and measuring device comprising the same
JPS6135492B2 (en)
SU1755123A1 (en) Fiber-optics refractometer
JPS5836033Y2 (en) Liquid amount detection device
KR100407962B1 (en) Optical fiber for keeping polarization
JPS583075Y2 (en) Housiyaondokei
CN117805952A (en) Terahertz multiple attenuation total reflection measuring prism