JPH01232966A - Deodorizing method by photocatalyst - Google Patents

Deodorizing method by photocatalyst

Info

Publication number
JPH01232966A
JPH01232966A JP63058733A JP5873388A JPH01232966A JP H01232966 A JPH01232966 A JP H01232966A JP 63058733 A JP63058733 A JP 63058733A JP 5873388 A JP5873388 A JP 5873388A JP H01232966 A JPH01232966 A JP H01232966A
Authority
JP
Japan
Prior art keywords
oxide
mixed metal
iron
metal oxide
ultraviolet rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63058733A
Other languages
Japanese (ja)
Other versions
JPH0478326B2 (en
Inventor
Shuzo Tokumitsu
修三 徳満
Noboru Naruo
成尾 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63058733A priority Critical patent/JPH01232966A/en
Publication of JPH01232966A publication Critical patent/JPH01232966A/en
Publication of JPH0478326B2 publication Critical patent/JPH0478326B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To effectively decompose a maloder by the action of a photocatalyst, by irradiating a gas containing an oxidizable compound and oxygen with ultraviolet rays in the presence of mixed metal oxide of oxide selected from a group, which consists of iron titanate, iron oxide, bismuth oxide, molybdenum oxide and nickel oxide, and titanium oxide. CONSTITUTION:A gas containing an oxidizable compound and oxygen is irradiated with ultraviolet rays in the presence of mixed metal oxide of oxide selected from a group, which consists of iron titanate, iron oxide, bismuth oxide, molybdenum oxide and nickel oxide, and titanium oxide. By supporting a conductive inorg. substance by said mixed metal oxide, a deodorizing method having further good deodorizing capacity is provided. By this method, the excellent decomposition capacity of aldehydes can be obtained and a nitrogen compound such as ammonia or amines, a sulfur compound such as hydrogen sulfide or mercaptan and an aromatic compound such as ketones, alcohols or fatty acid being other malodorous substances can be deodorized by oxidative decomposition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はトイレのし尿臭、ペットの臭い、たばこの臭い
、調理具および体臭などの光触媒による脱臭方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for deodorizing toilet odors, pet odors, cigarette odors, cooking utensil odors, body odors, etc. using a photocatalyst.

従来の技術 家庭やオフィスで発生するタバコ臭、トイレ臭。Conventional technology Cigarette and toilet odors in your home or office.

ベット臭、調理臭および体臭等の悪臭成分は、アンモニ
ア、アミン類、インドール、スカトールなどの窒素化合
物、硫化水素、メチルメルカプタン。
Bad odor components such as bed odor, cooking odor, and body odor are ammonia, amines, indole, nitrogen compounds such as skatole, hydrogen sulfide, and methyl mercaptan.

硫化メチル、二硫化メチルなどの硫黄化合物、アルデヒ
ド類、ケトン類、アルコール類、脂肪酸および芳香族化
合物等、低沸点から高沸点成分まで多種多様である。
There are a wide variety of components ranging from low to high boiling points, such as sulfur compounds such as methyl sulfide and methyl disulfide, aldehydes, ketones, alcohols, fatty acids, and aromatic compounds.

そして、従来の家庭やオフィスで使われている脱臭方法
としては、発生源に薬剤を注ぎ化学反応させる方法、芳
香剤でマスキングする方法、活性炭やゼオライトで吸着
する方法および薬剤を添着した吸着剤に悪臭を濃縮し反
応させる方法がある。
Conventional deodorizing methods used in homes and offices include pouring chemicals into the source and causing a chemical reaction, masking with aromatics, adsorption with activated carbon or zeolite, and adsorbents impregnated with chemicals. There is a way to concentrate and react with bad odors.

前者の2方法は局所的に消臭する方法であり、トイレや
ペットのいるところなどに使われている。
The former two methods are local deodorization methods and are used in areas such as toilets and areas where pets are present.

一方、後者の2方法は送風機と組み合わせて脱臭装置と
して、狭い空間から広い空間まで汎用的に使うことの出
来る脱臭方法である。中でも活性炭がもっとも有効な手
段であるが、活性炭に於いても悪臭成分のうちアンモニ
ア、メチルアミンなどの低沸点窒素化合物とホルマリン
、アセトアルデヒド、アクロレインなどの低級脂肪族ア
ルデヒドに対する吸着力が弱かった。そこで薬剤を活性
炭に添着した脱臭剤が用いられている。
On the other hand, the latter two methods are deodorizing methods that can be used in combination with a blower as a deodorizing device and can be used for general purposes from narrow spaces to wide spaces. Among them, activated carbon is the most effective means, but even activated carbon has a weak adsorption power for malodorous components such as low-boiling nitrogen compounds such as ammonia and methylamine, and lower aliphatic aldehydes such as formalin, acetaldehyde, and acrolein. Therefore, deodorizers are used in which chemicals are attached to activated carbon.

発明が解決しようとする課題 アンモニア、メチルアミン等の低沸点窒素化合物は、活
性炭に有機酸や無機酸を添着させた脱臭剤で効果的に吸
着でき、その吸着容量も大きいものである。一方ホルマ
リン、アセトアルデヒド。
Problems to be Solved by the Invention Low-boiling nitrogen compounds such as ammonia and methylamine can be effectively adsorbed by a deodorizer made of activated carbon impregnated with an organic acid or an inorganic acid, and the adsorption capacity thereof is also large. On the other hand, formalin and acetaldehyde.

アクロレイン等の低級脂肪族アルデヒドの吸着には、活
性炭にアニリンを添着した脱臭剤が有効であるが、添着
可能なアニリンの量が少ないため、アルデヒドの吸着容
量が小さく寿命が短い。最近問題になっているたばこの
臭いや、新建材・家具から発生する臭いには、ホルマリ
ン、アセトアルデヒド等が多く含まれているが、有効な
脱臭方法がなかった。
A deodorizer made of activated carbon impregnated with aniline is effective for adsorbing lower aliphatic aldehydes such as acrolein, but because the amount of aniline that can be impregnated is small, the aldehyde adsorption capacity is small and the life is short. Cigarette odors, which have become a problem recently, and odors emitted from new construction materials and furniture contain many substances such as formalin and acetaldehyde, but there has been no effective deodorizing method.

本発明は上記従来の課題を解決するものであり、光触媒
作用による悪臭の分解を効果的に行わせる脱臭方法を提
供することを目的とするものである。
The present invention solves the above-mentioned conventional problems, and aims to provide a deodorizing method that effectively decomposes bad odors through photocatalytic action.

課題を解決するための手段 上記の目的を達成するために本発明の光触媒による脱臭
方法は、チタン酸鉄、酸化鉄、酸化ビスマス、酸化モリ
ブデンおよび酸化ニッケルなる群から選択された酸化物
と、酸化チタンとの混合金属酸化物の存在下で、被酸化
性化合物と酸素を含む気体に紫外線を照射するものであ
る。また混合金属酸化物に、導電性無機物質を担持する
ことによって、さらに脱臭性能の良い脱臭方法を提供す
るものである。
Means for Solving the Problems In order to achieve the above object, the photocatalytic deodorizing method of the present invention uses an oxide selected from the group consisting of iron titanate, iron oxide, bismuth oxide, molybdenum oxide, and nickel oxide; In the presence of a mixed metal oxide with titanium, an oxidizable compound and a gas containing oxygen are irradiated with ultraviolet rays. Further, by supporting a conductive inorganic substance on the mixed metal oxide, a deodorizing method with even better deodorizing performance is provided.

作用 本発明者等は、かねてから光触媒作用によって悪臭を分
解し無臭化することを研究してきたが、チタン酸鉄、酸
化鉄、酸化ビスマス、酸化モリブデンおよび酸化ニッケ
ルなる群から選択された酸化物と酸化チタンとの混合金
属酸化物の存在下では、一般に知られている酸化チタン
単独よりも極めてアルデヒド類の酸化分解能力の高いこ
とを見出した。上記本発明の混合金属酸化物は紫外線の
照射によって分解が効率良く起こるものである。
Function The present inventors have been researching the decomposition and deodorization of bad odors through photocatalytic action for some time. It has been found that in the presence of a mixed metal oxide with titanium, the ability to oxidize and decompose aldehydes is much higher than that of the generally known titanium oxide alone. The mixed metal oxide of the present invention is efficiently decomposed by irradiation with ultraviolet rays.

上記混合金属酸化物の作用原理については目下詳細に研
究中であるが、上記各酸化物および酸化チタンの半導体
中の価電子帯の電子が紫外線を吸収して伝導帯に励起さ
れ、そこで生じた価電子帯の正孔は触媒の表面にある水
酸基(OH基)と反応し、伝導帯に励起された電子は酸
素(0)と反応して、活性の高いOHラジカル、0ラジ
カル。
The principle of action of the mixed metal oxides mentioned above is currently being studied in detail, but electrons in the valence band of each of the above oxides and titanium oxide semiconductors absorb ultraviolet light and are excited to the conduction band, which generates electrons in the conduction band. Holes in the valence band react with hydroxyl groups (OH groups) on the surface of the catalyst, and electrons excited in the conduction band react with oxygen (0) to form highly active OH radicals and 0 radicals.

0;が生じ、これが被酸化性化合物を酸化分解するもの
と推測される。また酸化チタンで生じた電子および正□
孔と、上記各酸化物で生じた電子および正孔とが互いに
作用しあって相乗効果があるものと推測される。
0; is generated, which is presumed to oxidize and decompose the oxidizable compound. In addition, the electrons and positive □ generated in titanium oxide
It is presumed that the holes and the electrons and holes generated in each of the oxides interact with each other to produce a synergistic effect.

さらにこの混合金属酸化物に白金、パラジウム。Furthermore, platinum and palladium are added to this mixed metal oxide.

ロジウム、酸化ルテニウム、銀などの導電性無機物質を
担持すると、酸化分解作用は一層強力なものとなる。中
でも白金の効果は著しい。
When a conductive inorganic substance such as rhodium, ruthenium oxide, or silver is supported, the oxidative decomposition effect becomes even stronger. Among them, the effect of platinum is remarkable.

本発明の脱臭方法はアルデヒド類の分解に優れるだけで
無く、他の悪臭物質のアンモニア、アミン類の窒素化合
物、硫化水素、メルカプタン類の硫黄化合物、ケトン類
、アルコール類、脂肪酸および芳香族化合物も酸化分解
して無臭化出来る。
The deodorizing method of the present invention is not only excellent in decomposing aldehydes, but also other malodorous substances such as ammonia, nitrogen compounds of amines, hydrogen sulfide, sulfur compounds of mercaptans, ketones, alcohols, fatty acids, and aromatic compounds. It can be decomposed by oxidation and made odorless.

実施例 次に本発明の実施例について説明する。Example Next, examples of the present invention will be described.

本発明において使用する酸化チタンとしては、アナター
ゼ型が活性が高いが、ルチル型でも良い。
As the titanium oxide used in the present invention, the anatase type has high activity, but the rutile type may also be used.

また、酸化物のうちチタン酸鉄としてはFeTiO3が
活性が高いが、Fe2Ti05でも良い。
Further, among the oxides, FeTiO3 has high activity as iron titanate, but Fe2Ti05 may also be used.

導電性無機物質としては白金がもつとも効果的であるが
、パラジウム、ロジウム、銀などの貴金属や酸化ルテニ
ウム等でも良い。
Platinum is effective as the conductive inorganic substance, but noble metals such as palladium, rhodium, and silver, ruthenium oxide, and the like may also be used.

また紫外線としては波長が400nm以下であれば良く
、遠紫外線でも近紫外線でも良い。これらの紫外線は高
圧水銀灯、超高圧水銀灯、低圧水銀灯、キセノン灯等を
単独で使用又は併用することによって発生させうる。ま
た脱臭方法は、特定の反応器に被処理気体を導入してバ
ッチ処理しても良いし、連続処理しても良い。
Further, the ultraviolet rays only need to have a wavelength of 400 nm or less, and may be far ultraviolet rays or near ultraviolet rays. These ultraviolet rays can be generated by using a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a low-pressure mercury lamp, a xenon lamp, etc. alone or in combination. Further, the deodorizing method may be carried out by introducing the gas to be treated into a specific reactor and performing batch processing, or may be carried out continuously.

本発明に用いる混合金属酸化物は、光源の表面に塗布し
て使用するとか、または光源の周囲に支持体を設けてそ
れに塗布または含浸して使用するなどの方法を用いる。
The mixed metal oxide used in the present invention is used by coating it on the surface of a light source, or by coating or impregnating a support provided around the light source.

次に具体的な実施例について説明する。第1表に示す重
量の金属酸化物粉末をメタノールに懸濁せしめ、この懸
濁液を厚さ0.6M11*幅12oMM*長さ240f
lのアルミナ−シリカ質のセラミックペーパに塗布した
のち乾燥し光触媒とした。また白金の担持は、上記金属
酸化物を付けたセラミックペーパに塩化白金酸のエタノ
ール溶液を含浸し、熱処理して白金微粒子として担持し
た。
Next, specific examples will be described. Metal oxide powder having the weight shown in Table 1 is suspended in methanol, and this suspension is made into a thickness of 0.6M11*width 12oMM*length 240f.
The photocatalyst was prepared by applying the photocatalyst to alumina-silica ceramic paper and drying it. Platinum was supported by impregnating a ceramic paper coated with the metal oxide with an ethanol solution of chloroplatinic acid, and then heat-treating the paper to support the platinum as fine particles.

そして、第1図のように上記構成の触媒1をステンレス
の台2にのせて内容積36gアルミ製の反応容器3の中
に、光源4から100ff離れた位置に置いた。光源4
は10ワツトの殺菌灯(紫外線出力約1.8ワツト、主
波長2541!11)を用いた。
Then, as shown in FIG. 1, the catalyst 1 having the above structure was placed on a stainless steel stand 2 and placed in an aluminum reaction vessel 3 with an internal volume of 36 g, at a distance of 100 ff from a light source 4. light source 4
used a 10 watt germicidal lamp (ultraviolet light output approximately 1.8 watts, dominant wavelength 2541!11).

この反応容器3の中にアセトアルデヒドの飽和ガスを注
入し、ファン6で攪拌して濃度を均一にし初濃度を測定
した。そして次に殺菌灯を点灯し、アセトアルデヒド濃
度の経時変化をガスクロマトグラフィで調べた。その結
果を混合金属酸化物触媒に紫外線を照射しなかった場合
、触媒を使用しないで紫外線だけ照射した場合、および
アナターゼ型酸化チタンだけ、あるいはチタン酸鉄ye
’rio5だけを上記方法でセラミックペーパに塗布し
た触媒に紫外線を照射した場合と比較して第2図に示す
。またそれぞれの条件は第1表に示す。
A saturated acetaldehyde gas was injected into the reaction vessel 3 and stirred with a fan 6 to make the concentration uniform, and the initial concentration was measured. Next, a germicidal lamp was turned on, and changes in acetaldehyde concentration over time were examined using gas chromatography. The results were compared when the mixed metal oxide catalyst was not irradiated with ultraviolet rays, when only ultraviolet rays were irradiated without using a catalyst, and when only anatase-type titanium oxide or iron titanate ye
A comparison is shown in FIG. 2 with the case where only 'rio5 was coated on a ceramic paper by the above method and the catalyst was irradiated with ultraviolet rays. Further, the respective conditions are shown in Table 1.

(以下余白) 第2図に示すように、酸化チタンとチタン酸鉄の混合金
属酸化物の存在下でアセトアルデヒドと酸素を含む気体
に紫外線を照射すると、アセトアルデヒドは極めて効果
的に分解され無臭化する。
(Left below) As shown in Figure 2, when a gas containing acetaldehyde and oxygen is irradiated with ultraviolet rays in the presence of a mixed metal oxide of titanium oxide and iron titanate, acetaldehyde is extremely effectively decomposed and becomes odorless. .

さらに白金を担持した混合金属激化物を用いるとさらに
効果的に分解が進む。また、酸化チタンとチタン酸鉄の
混合金属酸化物は酸化チタン単独よりも光触媒効果が大
きい。このように本発明によれば、従来活性炭で吸着す
ることが難しかったアルデヒドを、極低濃度まで分解し
無臭化することができる。
Furthermore, if a mixed metal agglomerate carrying platinum is used, the decomposition proceeds even more effectively. Further, a mixed metal oxide of titanium oxide and iron titanate has a greater photocatalytic effect than titanium oxide alone. As described above, according to the present invention, aldehydes, which were conventionally difficult to adsorb with activated carbon, can be decomposed to extremely low concentrations and rendered odorless.

またこの実施例によればアルデヒドの分解に限らず、他
の悪臭物質のアンモニア、アミン類等の窒素化合物、硫
化水素、メルカプタン類等の硫黄化合物、ケトン類、ア
ルコール類、脂肪酸及び芳香族化合物も酸化して無臭化
できる。更には一酸化炭素も二酸化炭素に酸化し無害化
出来る。
Furthermore, according to this embodiment, the decomposition is not limited to aldehydes, but also other malodorous substances such as ammonia, nitrogen compounds such as amines, hydrogen sulfide, sulfur compounds such as mercaptans, ketones, alcohols, fatty acids, and aromatic compounds. Can be oxidized and made odorless. Furthermore, carbon monoxide can also be oxidized to carbon dioxide and rendered harmless.

なお、実施例の方法に他の吸着剤や化学的方法を組み合
わせて用いることによってすぐれた脱臭能力を得ること
ができる。
In addition, excellent deodorizing ability can be obtained by using the method of the example in combination with other adsorbents or chemical methods.

次に、上記実施例におけるチタン酸鉄に代えて、順次、
酸化鉄、酸化ビスマス、酸化モリブデンおよび酸化ニッ
ケルを選択して、上記実施例と同様に実験した結果を示
す。
Next, in place of iron titanate in the above example,
The results of an experiment conducted in the same manner as in the above example by selecting iron oxide, bismuth oxide, molybdenum oxide, and nickel oxide are shown below.

酸化鉄の場合の条件は第2表のとおりであり、結果を第
3図に示す。酸化鉄としては活性の高いα−Fe203
を用いたが、r  Fe2O3,”504 eIF60
を使用してもよい。
The conditions for iron oxide are as shown in Table 2, and the results are shown in FIG. α-Fe203 has high activity as iron oxide
was used, r Fe2O3,”504 eIF60
may be used.

(以下余白) 第2表 酸化ビスマスの場合の条件は第3表のとおりであシ、結
果を第4図に示す。酸化ビスマスとしては活性の高いα
−Bi205を用いたが、β型、r型。
(Left space below) Table 2 The conditions for bismuth oxide were as shown in Table 3, and the results are shown in FIG. α has high activity as bismuth oxide
-Bi205 was used, but it was β type and r type.

δ型を使用してもよい。The δ type may also be used.

(以下余白) 第3表 酸化モリブデンの場合の条件は第4表のとおシであり、
結果を第5図に示す。酸化モリブデンとしてはMoO3
を使用したが、MoO2か両者の中間状態の酸化物でも
よい。
(Left below) Conditions for molybdenum oxide in Table 3 are as shown in Table 4.
The results are shown in Figure 5. MoO3 as molybdenum oxide
was used, but MoO2 or an oxide intermediate between the two may also be used.

(以下余白) 第4表 最後に、酸化ニッケルの場合の条件は、第5表のとおり
であり、結果を第6図に示す。酸化ニッケルはNiOで
あるが、過剰酸素を含む灰色または黒色のものが活性が
高い。
(Left space below) Table 4 Finally, the conditions for nickel oxide are as shown in Table 5, and the results are shown in FIG. Nickel oxide is NiO, and the gray or black nickel oxide containing excess oxygen is highly active.

(以下余白) 第6表 発明の効果 上記した各実施例からあきらかなとおシ、本発明の光触
媒による脱臭方法は、活性炭で吸着が難しかったアルデ
ヒドを極めて低い濃度まで分解し無臭化することができ
るとともに、他の悪臭物質のアンモニア、アミン類等の
窒素化合物、硫化水素、メルカプタン類等の硫黄化合物
、ケトン類。
(Left below) Table 6 Effects of the Invention It is clear from the above examples that the photocatalytic deodorizing method of the present invention can decompose aldehydes, which were difficult to adsorb with activated carbon, to an extremely low concentration and make them odorless. In addition, other malodorous substances such as ammonia, nitrogen compounds such as amines, hydrogen sulfide, sulfur compounds such as mercaptans, and ketones.

アルコール類、脂肪酸及び芳香族化合物も酸化して無臭
化できる。さらに−酸化炭素も二酸化炭素に酸化して無
害化できるというすぐれた効果を有している。
Alcohols, fatty acids and aromatic compounds can also be oxidized to make them odorless. Furthermore, carbon oxide also has the excellent effect of being oxidized to carbon dioxide and rendered harmless.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光触媒による分解性能を測定する装置
の断面図、第2図〜第6図は本発明の各実施例における
アセトアルデヒドの分解曲線図である。 1・・・・・・触媒、4・・・・・・光源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
図 許 蘭 (8) 第4図 時間(分) 第 5 図 爵 間 (伽 第6図 Bナト   間   Cθ引ン 手続補正書 昭和n年り月−21日 事件との関係     特 許 出 願 人任 所 大
阪府門真市大字門真1006番地名 称  (582)
松下電器産業株式会社代表者     谷  井  昭
  雄4代理人 〒571 住 所 大阪府門真市大字門真1006番地[連絡先電
話(東京)437−1121東京法務分室】6 補正の
内容 (1)本願明細書中、「2、特許請求の範囲」の項を別
紙のとおり補正します。 (2)同第3頁第20行〜第4頁第4行の「チタン酸鉄
〜するものである。」を「チタン酸鉄、酸化鉄、酸化ビ
スマス、酸化モリブデンおよび酸化ニッケルなる群から
選択された1つの酸化物と酸化チタンとの混合酸化物と
、被酸化性化合物および酸素を含む気体との共存下で、
前記混合金属酸化物に紫外線を照射するものである。」
に補正します。 2、特許請求の範囲 (2)混合金属酸化物に導電性無機物質を担持した請求
項1記載の光触媒による脱臭方法。
FIG. 1 is a sectional view of an apparatus for measuring decomposition performance by a photocatalyst of the present invention, and FIGS. 2 to 6 are decomposition curve diagrams of acetaldehyde in each example of the present invention. 1...Catalyst, 4...Light source. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
Diagram Ran (8) Figure 4 Time (minutes) Figure 5 Time (minutes) Figure 6 Time (minutes) Figure 6 B (Figure 6) Relationship between Cθ drawing procedure amendments and the Showa N-21 case Patent application Appointment Address: 1006 Kadoma, Kadoma City, Osaka Prefecture Name (582)
Matsushita Electric Industrial Co., Ltd. Representative Akio Tanii 4 Agent 571 Address 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture [Contact phone number (Tokyo) 437-1121 Tokyo Legal Affairs Branch] 6 Contents of amendment (1) Specification of the present application The section "2. Scope of Claims" will be amended as shown in the attached sheet. (2) On page 3, line 20 to page 4, line 4, "iron titanate" is replaced with "selected from the group consisting of iron titanate, iron oxide, bismuth oxide, molybdenum oxide, and nickel oxide." In the coexistence of a mixed oxide of one oxide and titanium oxide, an oxidizable compound and a gas containing oxygen,
The mixed metal oxide is irradiated with ultraviolet light. ”
will be corrected. 2. Claims (2) The deodorizing method using a photocatalyst according to claim 1, wherein the mixed metal oxide supports a conductive inorganic substance.

Claims (2)

【特許請求の範囲】[Claims] (1)チタン酸鉄、酸化鉄、酸化ビスマス、酸化モリブ
デンおよび酸化ニッケルなる群から選択された酸化物と
酸化チタンとの混合金属酸化物の存在下で、被酸化性化
合物と酸素を含む気体に紫外線を照射する光触媒による
脱臭方法。
(1) In the presence of a mixed metal oxide of titanium oxide and an oxide selected from the group consisting of iron titanate, iron oxide, bismuth oxide, molybdenum oxide, and nickel oxide, an oxidizable compound and a gas containing oxygen A deodorizing method using a photocatalyst that irradiates ultraviolet rays.
(2)混合金属酸化物に導電性無機物質を担持した請求
項1記載の光触媒による脱臭方法。
(2) The deodorizing method using a photocatalyst according to claim 1, wherein a conductive inorganic substance is supported on the mixed metal oxide.
JP63058733A 1988-03-11 1988-03-11 Deodorizing method by photocatalyst Granted JPH01232966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058733A JPH01232966A (en) 1988-03-11 1988-03-11 Deodorizing method by photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058733A JPH01232966A (en) 1988-03-11 1988-03-11 Deodorizing method by photocatalyst

Publications (2)

Publication Number Publication Date
JPH01232966A true JPH01232966A (en) 1989-09-18
JPH0478326B2 JPH0478326B2 (en) 1992-12-10

Family

ID=13092710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058733A Granted JPH01232966A (en) 1988-03-11 1988-03-11 Deodorizing method by photocatalyst

Country Status (1)

Country Link
JP (1) JPH01232966A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0666107A2 (en) * 1994-02-07 1995-08-09 Ishihara Sangyo Kaisha, Ltd. Titanium oxide photocatalyst and method of producing the same
US5872072A (en) * 1994-12-26 1999-02-16 Takeda Chemcial Industries, Ltd. Catalytic compositions and a deodorizing method using the same
AU702827B2 (en) * 1994-02-07 1999-03-04 Ishihara Sangyo Kaisha Ltd. Titanium oxide photocatalyst and method of producing the same
WO2000018504A1 (en) * 1998-09-30 2000-04-06 Nippon Sheet Glass Co., Ltd. Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
EP1175938A1 (en) * 2000-07-29 2002-01-30 The Hydrogen Solar Production Company Limited Photocatalytic film of iron oxide, electrode with such a photocatalytic film, method of producing such films, photoelectrochemical cell with the electrode and photoelectrochemical system with the cell, for the cleavage of water into hydrogen and oxygen
US6498000B2 (en) 1993-06-28 2002-12-24 Ishihara Sangyo Kaisha, Ltd. Photocatalyst composite and process for producing the same
WO2008154744A1 (en) * 2007-06-21 2008-12-24 Yavorska, Oksana A method of recycling of a mixture of domestic and industrial waste
JP2009166022A (en) * 2008-01-17 2009-07-30 Inha-Industry Partnership Inst Photocatalytic agent having titanium oxide-iron titanate joint structure, and its producing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498000B2 (en) 1993-06-28 2002-12-24 Ishihara Sangyo Kaisha, Ltd. Photocatalyst composite and process for producing the same
SG92785A1 (en) * 1994-02-07 2002-11-19 Ishihara Sangyo Kaisha Titanium oxide for photocatalyst and method of producing the same
EP0666107A2 (en) * 1994-02-07 1995-08-09 Ishihara Sangyo Kaisha, Ltd. Titanium oxide photocatalyst and method of producing the same
AU702827B2 (en) * 1994-02-07 1999-03-04 Ishihara Sangyo Kaisha Ltd. Titanium oxide photocatalyst and method of producing the same
US5759948A (en) * 1994-02-07 1998-06-02 Ishihara Sangyo Kaisha Ltd. Titanium oxide for photocatalyst and method of producing the same
SG81183A1 (en) * 1994-02-07 2001-06-19 Ishihara Sangyo Kaisha Titanium oxide for photocatalyst and method of producing the same
EP0666107A3 (en) * 1994-02-07 1995-11-02 Ishihara Sangyo Kaisha Titanium oxide photocatalyst and method of producing the same.
US5872072A (en) * 1994-12-26 1999-02-16 Takeda Chemcial Industries, Ltd. Catalytic compositions and a deodorizing method using the same
US6576344B1 (en) 1998-09-30 2003-06-10 Nippon Sheet Glass Co., Ltd. Photocatalyst article, anti-fogging, anti-soiling articles, and production method of anti-fogging, anti-soiling articles
WO2000018504A1 (en) * 1998-09-30 2000-04-06 Nippon Sheet Glass Co., Ltd. Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
WO2002009876A1 (en) * 2000-07-29 2002-02-07 The Hydrogen Solar Production Company Limited Photocatalytic film of iron oxide, electrode with such a photocatalytic film, method of producing such films, photoelectrochemical cell with the electrode and photoelectrochemical system with the cell, for the cleavage of water into hydrogen and oxygen
EP1175938A1 (en) * 2000-07-29 2002-01-30 The Hydrogen Solar Production Company Limited Photocatalytic film of iron oxide, electrode with such a photocatalytic film, method of producing such films, photoelectrochemical cell with the electrode and photoelectrochemical system with the cell, for the cleavage of water into hydrogen and oxygen
US7271334B2 (en) 2000-07-29 2007-09-18 The Hydrogen Solar Production Company Limited Photocatalytic film for the cleavage of water into hydrogen and oxygen
WO2008154744A1 (en) * 2007-06-21 2008-12-24 Yavorska, Oksana A method of recycling of a mixture of domestic and industrial waste
JP2009166022A (en) * 2008-01-17 2009-07-30 Inha-Industry Partnership Inst Photocatalytic agent having titanium oxide-iron titanate joint structure, and its producing method

Also Published As

Publication number Publication date
JPH0478326B2 (en) 1992-12-10

Similar Documents

Publication Publication Date Title
JP5775248B2 (en) Photocatalyst material, organic matter decomposition method, interior member, air cleaning device, oxidizer manufacturing device
JPH0512967B2 (en)
JPH01232966A (en) Deodorizing method by photocatalyst
JPH03106420A (en) Deodorizing method for photo-catalyst
JPH07114925B2 (en) Photocatalytic deodorization method
KR20150011062A (en) Deodorizing apparatus using ceramic membrane and plasma
JPH01288322A (en) Deodorization by photocatalyst
JPH01159030A (en) Deodorization by photocatalyst and deodorizing apparatus
KR101046314B1 (en) Preparation method of anti-bacterial and deodorization adsorbents using nano-metal doped metal oxides catalyst powder and thereof anti-bacterial and deoderization adsorbents
JPH02169040A (en) Method for regenerating photocatalyst
JPH02280818A (en) Deodorizing by photocatalyst
JPH0229365B2 (en)
JP2007061806A (en) Method for removing volatile organic compound
JPH01293876A (en) Deodorizing apparatus by photocatalyst
JPH02169039A (en) Method for regenerating photocatalyst
JPH0290924A (en) Deodorizing with photocatalyst
JP2006272062A (en) Harmful substance-decomposition material for medical use
JPH01238867A (en) Deodorizing method by photocatalyst
JPH01159031A (en) Deodorization by photocatalyst and deodorizing apparatus
JPH0532321B2 (en)
JP2004024472A (en) Deodorizer and deodorizing method
JPH01238868A (en) Deodorizing method by photocatalyst
JPH0691137A (en) Deodorizing device
JP3277201B2 (en) Air purifier
JPH02160021A (en) Deodorizing method with photocatalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees