JPH01232715A - Manufacture of semiconductor structure - Google Patents

Manufacture of semiconductor structure

Info

Publication number
JPH01232715A
JPH01232715A JP63058263A JP5826388A JPH01232715A JP H01232715 A JPH01232715 A JP H01232715A JP 63058263 A JP63058263 A JP 63058263A JP 5826388 A JP5826388 A JP 5826388A JP H01232715 A JPH01232715 A JP H01232715A
Authority
JP
Japan
Prior art keywords
crystal
electron beam
grow
caf2
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63058263A
Other languages
Japanese (ja)
Inventor
Tadashi Fukuzawa
董 福沢
Kazuhiro Ito
和弘 伊藤
Hitoshi Nakamura
均 中村
Hiroshi Matsuda
広志 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoelectronics Technology Research Laboratory
Original Assignee
Optoelectronics Technology Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoelectronics Technology Research Laboratory filed Critical Optoelectronics Technology Research Laboratory
Priority to JP63058263A priority Critical patent/JPH01232715A/en
Publication of JPH01232715A publication Critical patent/JPH01232715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To easily manufacture a microscopic quantum fine wire structure in a high degree of uniformly by a method wherein, after the constituent atoms of the ion crystal thin film of a substrate are partly removed using an electron beam holography, crystal is caused to grow by the irradiation of a molecular beam and the like, and semiconductor crystal is selectively made to grow. CONSTITUTION:After a buffer layer such as Al0.3Ga0.7As 9, for example, is formed epitaxially by a molecular beam on a GaAs crystal substrate 8, CaF2 is vapor-deposited in several atomic layers, a CaF2 layer 10 is formed, and an electron beam holography is made to irradiate in a high degree of vacuum atmosphere. At this point, atoms F are removed from the CaF2 of the region having high electron density of a standing wave 7, and a region 11, on the surface of which active Ca atoms appear, is formed. Besides, a Ga-As molecular beam is applied to a sample, GaAs crystal is made to grow only on the region 11 where active Ca atoms exist, and a quantum fine wire 12 is obtained. Then, after the remaining CaF2 is removed by application of an ion beam, an Al0.3 Ga0.7As layer 13 is made to grow using a molecular beam epitaxial growth method, and the quantum fine wire 12 is buried.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は量子効果の顕著な半導体構造体の製造に係り、
特に、超高速の受光素子あるいは半導体レーザに好適な
量子細線、量子箱構造の半導体構造体の製造方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the production of semiconductor structures with remarkable quantum effects,
In particular, the present invention relates to a method of manufacturing a semiconductor structure having a quantum wire or quantum box structure suitable for ultra-high-speed light receiving elements or semiconductor lasers.

〔従来の技術〕[Conventional technology]

量子細線を作製する方法については、これまでに、結晶
の異方性エツチングを利用した方法についてアプライド
・フィジックス・レター 第41巻635頁(1982
年) (Appl、 Phys、 Lett、 411
982p、635)に、電子ビームリングラフィ法と超
格子の不純物誘起混晶化とを用いた方法について上記誌
第49巻1275頁(1986年) (Appl、Ph
ys、 Lett。
Regarding the method for producing quantum wires, we have so far described a method using anisotropic etching of crystals in Applied Physics Letters, Vol. 41, p. 635 (1982).
) (Appl, Phys, Lett, 411
982p, 635), the above-mentioned journal Vol. 49, p. 1275 (1986) (Appl, Ph.
ys, Lett.

491986 p、1275)に記載がある。491986 p. 1275).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記従来技術の方法は、細線の幅寸法お
よび均一性の点で不十分であり、量子サイズ効果が顕著
にあられれる200Å以下の量子井戸構造を得ることは
できなかった。すなわち、これらの方法において、量子
細線のパターンは電子ビームを走査させることによって
形成しているが、その寸法の均一性および線量は量子細
線の幅寸法を決定する重要な因子であり、量子準位と密
接に関連しているにもかかわらず、走査電子線の安定性
の点から、優れた均一性を得ることが難しかった。
However, the method of the prior art is insufficient in terms of the width and uniformity of the thin wire, and it has not been possible to obtain a quantum well structure of 200 Å or less in which the quantum size effect is noticeable. In other words, in these methods, the quantum wire pattern is formed by scanning an electron beam, but the uniformity of the dimensions and the dose are important factors that determine the width of the quantum wire, and the quantum level However, it has been difficult to obtain excellent uniformity due to the stability of the scanning electron beam.

また、上記の問題点を解決する方法として、電子線ホロ
グラフィを用いることによって均一な周期と幅とを有す
る量子細線を作製する方法が特開昭第62−14048
5号に開示されているが、この場合、電子線ホログラフ
ィで得られた電子線レジストの微細パターンを化合物半
導体に転写する過程で。
In addition, as a method to solve the above problems, a method for producing quantum wires with uniform period and width by using electron beam holography was published in Japanese Patent Application Laid-Open No. 62-14048.
No. 5, in this case, in the process of transferring a fine pattern of electron beam resist obtained by electron beam holography onto a compound semiconductor.

結晶を真空の外へ取り出したり、現像処理によりレジス
トを除去して結晶を再成長させる手段を用いるため、最
も重要な量子細線部が不純物によって汚染される可能性
があった。また、電子線レジストの微細パターンを基板
結晶に転写する方法として微細パターンによって形成さ
れたマスクを介してGaイオンを打ち込み、これをアニ
ールする際に生ずる超格子の混晶化の現象を利用してい
るため、微細パターンがそのまま微細へテロ構造となら
ず、ぼけを生ずる可能性があった。
Since the method involves taking the crystal out of a vacuum or removing the resist through development treatment to re-grow the crystal, there is a possibility that the most important quantum wire region may be contaminated with impurities. In addition, as a method of transferring a fine pattern of electron beam resist to a substrate crystal, Ga ions are implanted through a mask formed by the fine pattern, and the phenomenon of mixed crystallization of the superlattice that occurs when annealing is used. Therefore, there is a possibility that the fine pattern does not become a fine heterostructure as it is, resulting in blurring.

以上述べたような状況から、従来技術においては、 1
00Å以下の量子細線あるいは量子箱を得ることが極め
て難しい状態にあった。
From the above-mentioned situation, in the conventional technology, 1.
It has been extremely difficult to obtain quantum wires or quantum boxes with a thickness of 00 Å or less.

本発明の目的は、上記従来技術の有していた課題を解消
し、超高速の受光素子あるいは半導体レーザに好適な、
微細な量子細線構造の半導体構造体を、容易に、かつ、
極めて高い均一性をもって製造する方法を提供すること
にある。
An object of the present invention is to solve the problems of the above-mentioned conventional techniques, and to provide a method suitable for ultra-high-speed light receiving elements or semiconductor lasers.
Easily and easily create semiconductor structures with fine quantum wire structures.
The object of the present invention is to provide a manufacturing method with extremely high uniformity.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、極めて均質性の優れた微細パターンを与え
る電子線ホログラフィによる電子の定在波のパターンを
、そのまま、基板結晶上のへテロ構造に転写し、そのパ
ターンを用いて半導体結晶を選択的に成長させること、
特に、ペテロ構造へのパターン転写の方法として、電子
線を照射した場所だけが化学的に活性化し、選択的な半
導体結晶の成長を生じ得る方法をとること、によって、
達成することができる。
The above purpose is to directly transfer the standing wave pattern of electrons produced by electron beam holography, which produces a fine pattern with extremely high homogeneity, onto a heterostructure on a substrate crystal, and use that pattern to selectively form a semiconductor crystal. to grow into
In particular, as a method of pattern transfer to the Peter structure, only the areas irradiated with the electron beam are chemically activated, resulting in selective semiconductor crystal growth.
can be achieved.

具体例を挙げて説明すれば、基板半導体としてGaAs
を用い、該基板上にCaF、層を設け、該層上に電子線
ホログラフィを照射してパターンを作成した後、Gaお
よびAsの分子線を照射してパターン状にGaAsの結
晶成長を行わせることによる。
To explain with a specific example, GaAs is used as a substrate semiconductor.
A CaF layer is provided on the substrate using a method, a pattern is created by irradiating the layer with electron beam holography, and then Ga and As molecular beams are irradiated to grow GaAs crystals in a pattern. It depends.

〔作用〕[Effect]

GaAs基板、結晶上に、バッファ層(例えばA(lG
aAs)を介して、CaF2を数原子層蒸着すると、格
子定数の差が小さいために、CaF2は単結晶の層を形
成する。この表面に電子線ホログラフィを照射すると、
電子線ホログラフィの格子状パターンの電子密度の高い
領域に対応するCaF、のふっ素(F)i子が除去され
、その部分には活性化されたCa原子が残存する。得ら
れた表面にGaおよびAsの分子線を照射すると、まず
、上記活性化CaとAsとが結合し、続いて、その−ヒ
にGaAs結晶が成長する結果、GaAsの量子細線が
電子線ホログラフィのパターン状に形成されることにな
る。
A buffer layer (for example, A(lG
When several atomic layers of CaF2 are deposited through aAs), CaF2 forms a single crystal layer because the difference in lattice constant is small. When this surface is irradiated with electron beam holography,
Fluorine (F) i atoms of CaF corresponding to regions with high electron density in the lattice pattern of electron beam holography are removed, and activated Ca atoms remain in those regions. When the obtained surface is irradiated with molecular beams of Ga and As, the activated Ca and As bond together, and then GaAs crystals grow on the surface. It will be formed in a pattern.

〔実施例〕〔Example〕

以下1本発明の製造方法について実施例によって具体的
に説明する。
Hereinafter, the manufacturing method of the present invention will be specifically explained with reference to Examples.

実施例 1 第7図は、分子線エピタキシ装置に超高真空の搬送路を
介して接続される、本実施例に用いた電子線ホログラフ
ィ照射装置の概略構成を示した図で、非干渉性の良い、
電子ビームを発生する電子線源1、レンズ系2および3
、パイプリズム4からなることを示す。ここで、加速電
圧50k Vをもって電子線源1から取り出された電子
ビームはレンズ系2および3によってコリメートされ、
さらに。
Example 1 Figure 7 is a diagram showing the schematic configuration of the electron beam holography irradiation device used in this example, which is connected to the molecular beam epitaxy device via an ultra-high vacuum conveyance path. good,
An electron beam source 1 that generates an electron beam, lens systems 2 and 3
, shows that it consists of 4 pipe rhythms. Here, the electron beam taken out from the electron beam source 1 with an accelerating voltage of 50 kV is collimated by lens systems 2 and 3,
moreover.

パイプリズム4によって2分割され、2分割された電子
ビーム5は、交差角を調整することによって、試料6上
に定在波(電子線ホログラム)7を生ずる。本実施例に
おいては、定在波7の周期が100人となるようにビー
ム交差角を調整した。
The electron beam 5 is divided into two by the pipe prism 4, and by adjusting the intersection angle, a standing wave (electron beam hologram) 7 is generated on the sample 6. In this example, the beam intersection angle was adjusted so that the period of the standing wave 7 was 100 people.

まず、第1図に示すように1分子線エピタキシ装置にお
いて、G a A s結晶基板8上にバッファ層An、
、3Ga、、7As9を1uraの厚さに分子線エピタ
キシ成長させた後、CaF2を数原子層蒸着し。
First, as shown in FIG. 1, in a single molecular beam epitaxy apparatus, a buffer layer An,
, 3Ga, , 7As9 were grown by molecular beam epitaxy to a thickness of 1 ura, and several atomic layers of CaF2 were then deposited.

CaF2層10を形成した。次いで、この試料を搬送路
を通して電子線ホログラフィ装置に移し、1x10−T
 orr以上の高真空中で電子線ホログラフィ照射を行
った。ここで、定在波7の電子密度の高い領域のCaF
2からF原子が離脱し、活性なCa原子が表面にあられ
れた領域11が形成される。
A CaF2 layer 10 was formed. Next, this sample was transferred to an electron beam holography device through a transport path, and a 1x10-T
Electron beam holography irradiation was performed in a high vacuum of orr or higher. Here, CaF in the region of high electron density of the standing wave 7
F atoms are separated from 2, and a region 11 where active Ca atoms are present on the surface is formed.

さらに、試料を、再び1分子線エピタキシ8AIi!に
戻し、GaおよびAsの分子線の照射を行った。ここで
、第2図に示したように、活性化Ca原子が存在する領
域11のみにGaAs結晶が成長し、幅100人、長さ
2I!mの量子細線12が得られる。次いで、残存する
CaF、をイオンビームの照射により除去した後、分子
線エピタキシにより 4党。、JGao、、As層13を成長させて量子細線
12を埋め込み、第3図に示したような完成品を得た。
Furthermore, the sample was again subjected to single molecular beam epitaxy 8AIi! The temperature was returned to 100.degree., and irradiation with Ga and As molecular beams was performed. Here, as shown in FIG. 2, a GaAs crystal grows only in the region 11 where activated Ca atoms exist, and has a width of 100 mm and a length of 2 I! m quantum wires 12 are obtained. Next, remaining CaF was removed by ion beam irradiation, and then subjected to molecular beam epitaxy. , JGao, , an As layer 13 was grown and a quantum wire 12 was embedded therein to obtain a finished product as shown in FIG.

得られた量子細線について、ホトルミネセンス法を用い
て、77にで評価した結果、680n+aの発光が観測
された。この値は、GaAsのバルク結晶あるいは結晶
の厚さ方向にのみ量子井戸を形成した試料に比べ短波長
であり、このことから、結晶の成長方向に対して直角方
向に、100人の幅で量子閉じ込めの生じていることが
知られた。
The obtained quantum wire was evaluated in 77 using a photoluminescence method, and as a result, light emission of 680n+a was observed. This value is shorter than that of a GaAs bulk crystal or a sample in which quantum wells are formed only in the thickness direction of the crystal. It was known that confinement had occurred.

実施例 2 実施例1の場合と同様にして、まず1分子線エピタキシ
装置において、InP基板上にInAllAsを1−の
厚さに成長させ、さらにBaF、を数原子層形成した後
、試料を電子線ホログラフィ装置に移し、ft!子ホロ
グラフィの照射を行って定在波の電子密度の高い領域の
BaF、のFyX子の脱離を行い、周期150人の格子
状のパターン14を作成した(第4図)0次いで、同装
置中で、試料を90°回転した状態で、再度、電子線ホ
ログラフィ照射を行った。その状態を第5図に示す。次
いで、試料を、再度、分子線エピタキシ装置に戻し、分
子線エピタキシによりInGaAs結晶の成長を行った
Example 2 In the same manner as in Example 1, InAllAs was first grown to a thickness of 1- on an InP substrate using a single molecular beam epitaxy apparatus, and several atomic layers of BaF were then formed, and then the sample was exposed to electrons. Transfer to a line holography device, ft! A lattice-like pattern 14 with a period of 150 people was created by irradiating the electron holography to desorb FyX atoms of BaF in the region of high electron density of the standing wave (Fig. 4). Inside, the sample was rotated 90° and irradiated with electron beam holography again. The state is shown in FIG. Next, the sample was returned to the molecular beam epitaxy apparatus again, and an InGaAs crystal was grown by molecular beam epitaxy.

このとき、電子線照射が重複して行われた領域16は、
Ba原子が脱離しているために、InGaAs結晶が成
長せず、また、電子線照射が行われなかった領域17も
またInGaAs結晶が成長しない19ため、第6図に
みられるように、市松模様状に分布したInGaAs結
晶の量子箱18が得られた。
At this time, the area 16 where the electron beam irradiation was performed in duplicate is
Because the Ba atoms are detached, InGaAs crystals do not grow, and InGaAs crystals also do not grow in the region 17 where electron beam irradiation was not performed19, resulting in a checkered pattern as shown in FIG. A quantum box 18 of InGaAs crystal distributed in a shape was obtained.

〔発明の効果〕 以上述べてきたように、量子効果の顕著な半導体構造体
の製造において、本発明の方法、すなわち、半導体結晶
基板表面にイオン結晶を被着させ、電子線ホログラフィ
によって該イオン結晶の構成原子をパターン状に離脱さ
せ、該原子離脱の領域のみに選択的に半導体結晶成長を
行わせる方法。
[Effects of the Invention] As described above, in the production of semiconductor structures with remarkable quantum effects, the method of the present invention is used: ionic crystals are deposited on the surface of a semiconductor crystal substrate, and the ionic crystals are formed by electron beam holography. A method in which the constituent atoms of are separated in a pattern, and semiconductor crystal growth is selectively performed only in the region where the atoms are separated.

をとることによって、従来技術の有していた課題を解消
し、超高速の受光素子あるいは半導体レーザに好適な量
子細線構造あるいは量子箱を容易に、かつ、極めて高い
均一性をもって製造することができた。
By adopting this method, the problems of conventional technology can be solved, and quantum wire structures or quantum boxes suitable for ultra-high-speed photodetectors or semiconductor lasers can be manufactured easily and with extremely high uniformity. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本発明の方法により量子細線を作成する工
程を示した試料概略断面図、第4〜6図は本発明の方法
により量子箱を作成する工程を示した試料概略平面図、
第7図は電子線ホログラフィ装置の構成を示す概要図で
ある。 1・・・電子線源     2,3・・・レンズ系4・
・・パイプリズム 5・・・2分割された電子ビーム 6・・・試料       7・・・定在波8・・・結
晶基板(GaAs) 9・・・バッファ層(AILII 1a ao、7 A
s)10・・・CaF、層     11・・・F原子
離脱部12−=量子細線(GaAs) 13 ・・・埋め込み層(A1161G an 、 7
 A 9)14、15・・・FM子子離領領 域16・・Ca離脱領域 17・・・電子線照射が行われなかった領域18・・・
量子箱 19・・・結晶成長の行われない領域 代理人弁理士  中 村 純之助 昂ω     〜−■の 門へ+Cr)(1)
1 to 3 are schematic cross-sectional views of a sample showing the steps of creating a quantum wire by the method of the present invention, and FIGS. 4 to 6 are schematic plan views of the sample showing the steps of creating a quantum box by the method of the present invention,
FIG. 7 is a schematic diagram showing the configuration of an electron beam holography device. 1... Electron beam source 2, 3... Lens system 4.
... Pipe rhythm 5 ... Electron beam divided into two 6 ... Sample 7 ... Standing wave 8 ... Crystal substrate (GaAs) 9 ... Buffer layer (AILII 1a ao, 7 A
s) 10...CaF, layer 11...F atom separation part 12-=quantum wire (GaAs) 13...buried layer (A1161G an, 7
A 9) 14, 15... FM separation area 16... Ca separation area 17... Area 18 where electron beam irradiation was not performed...
Quantum Box 19... Area where crystal growth does not occur Junnosuke Nakamura, Attorney-at-Law Patent Attorney Toward the Gate of ~-■+Cr) (1)

Claims (1)

【特許請求の範囲】 1、半導体結晶基板の表面にイオン結晶薄膜を被着させ
、次いで、該イオン結晶の構成原子を電子線ホログラフ
ィ法によりパターン的に離脱させた後、さらに、該表面
に、分子線照射等により、結晶成長を行わせることによ
って、上記原子離脱の生じた領域のみに、選択的に半導
体結晶の成長を行わせることを特徴とする半導体構造体
の製造方法。 2、上記イオン結晶薄膜がCaF_2あるいはBaF_
2からなる薄膜であることを特徴とする特許請求の範囲
第1項記載の半導体構造体の製造方法。
[Claims] 1. After depositing an ionic crystal thin film on the surface of a semiconductor crystal substrate, and then removing the constituent atoms of the ionic crystal in a pattern by electron beam holography, further depositing on the surface, A method for manufacturing a semiconductor structure, characterized in that semiconductor crystal growth is selectively performed only in the region where the atom detachment has occurred by performing crystal growth using molecular beam irradiation or the like. 2. The above ionic crystal thin film is CaF_2 or BaF_
2. The method of manufacturing a semiconductor structure according to claim 1, wherein the thin film is made of 2.
JP63058263A 1988-03-14 1988-03-14 Manufacture of semiconductor structure Pending JPH01232715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058263A JPH01232715A (en) 1988-03-14 1988-03-14 Manufacture of semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058263A JPH01232715A (en) 1988-03-14 1988-03-14 Manufacture of semiconductor structure

Publications (1)

Publication Number Publication Date
JPH01232715A true JPH01232715A (en) 1989-09-18

Family

ID=13079276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058263A Pending JPH01232715A (en) 1988-03-14 1988-03-14 Manufacture of semiconductor structure

Country Status (1)

Country Link
JP (1) JPH01232715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466548A (en) * 1993-07-29 1995-11-14 Nec Corporation Method for producing nanometer order dot pattern by electron holography and drawing apparatus for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466548A (en) * 1993-07-29 1995-11-14 Nec Corporation Method for producing nanometer order dot pattern by electron holography and drawing apparatus for the same

Similar Documents

Publication Publication Date Title
JPS62140485A (en) Semiconductor structure and manufacture thereof
JP4066002B2 (en) Manufacturing method of semiconductor quantum dots
JPH0794494A (en) Manufacture of compound semiconductor device
JPH01232715A (en) Manufacture of semiconductor structure
JPH04137521A (en) Semiconductor super lattice and its manufacture
JP2757258B2 (en) Superlattice element manufacturing method
JP3382971B2 (en) Method of forming quantum wire and quantum box
JP2671089B2 (en) Quantum structure fabrication method
JPH05175175A (en) Dry etching method
JPS63124513A (en) Manufacture of semiconductor structure
JP2650770B2 (en) Manufacturing method of vertical superlattice element
JP3495786B2 (en) Oxygen removal method, contaminant removal method, compound semiconductor device growth method using the same, and growth apparatus used therefor
JPS62108592A (en) Manufacture of semiconductor
JPH0461116A (en) Manufacture of quantum box
JPH0788275B2 (en) Selective crystal growth method
JPH04179220A (en) Manufacture of quantum well box
JP2662727B2 (en) How to make a planar superlattice
JPH04216616A (en) Controlling method for conductivity type of thin film crystal formed by molecular beam epitaxial growth, and molecular beam epitaxial device using the controlling method
JP2717165B2 (en) Method for forming structure of compound semiconductor
JPH06140332A (en) Algaas film formation method
ISHIKAWA et al. Electron Beam Lithography Using GaAs Oxidized Resist for GaAs/AlGaAs Ultrafine Structure Fabrication
JPS63110721A (en) Manufacture of quantum thin line structure
JPH0262033A (en) Growth of compound semiconductor thin-film crystal
JPH0444414B2 (en)
JPS63315600A (en) Method for selective embedding and growth of crystal