JPH01232516A - Thin metallic film type magnetic recording medium - Google Patents

Thin metallic film type magnetic recording medium

Info

Publication number
JPH01232516A
JPH01232516A JP5704288A JP5704288A JPH01232516A JP H01232516 A JPH01232516 A JP H01232516A JP 5704288 A JP5704288 A JP 5704288A JP 5704288 A JP5704288 A JP 5704288A JP H01232516 A JPH01232516 A JP H01232516A
Authority
JP
Japan
Prior art keywords
magnetic
film
alloy
conicr
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5704288A
Other languages
Japanese (ja)
Inventor
Toshio Tani
谷 登志夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5704288A priority Critical patent/JPH01232516A/en
Publication of JPH01232516A publication Critical patent/JPH01232516A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease recording and reproducing noises and to decrease the peak shift of reproduction waveforms by the noises by forming a thin magnetic metallic film of a quaternary alloy formed by adding C to a ternary alloy of a CoNiCr system. CONSTITUTION:The magnetic metallic film has the compsn. expressed by the formula I. IN the formula, x, y, z denote atomic ratios, x is 0.1-0.35; y is 0.05-0.15; z is 0.001-0.01. The compsn. is the quaternary alloy formed by adding the C to the CoNiCr alloy in such a manner. The ternary alloy of the CoNiCr system is the alloy having the high coercive force and high residual magnetic flux density desired as the magnetic film. The remarkable effect of improving the recording and reproducing noise characteristics is obtd. without impairing the magnetic and electrical characteristics possessed by the magnetic ternary allow film of the CoNiCr system 3 by adding the proper ratio of the Co to said alloy. The desired effect is not obtainable if the values x, y, z exceed the respective upper and lower limit values.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属薄膜型磁気記録媒体に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a metal thin film magnetic recording medium.

〔従来の技術〕[Conventional technology]

磁気記録装置における記録媒体として、従来より、非磁
性基体の表面に、酸化鉄粉末と有機バインダとからなる
磁性膜を形成した所謂塗布型磁気記録媒体が使用されて
きたが、近時は磁気記録の高密度化の要請から強磁性金
属薄膜を磁性膜とする金属薄膜型磁気記録媒体へと変わ
りつつある。
So-called coated magnetic recording media, in which a magnetic film made of iron oxide powder and an organic binder is formed on the surface of a non-magnetic substrate, have traditionally been used as recording media in magnetic recording devices. Due to the demand for higher recording density, a shift is being made to metal thin film type magnetic recording media in which a ferromagnetic metal thin film is used as the magnetic film.

その非磁性基体に形成される磁性膜の成分組成は、磁気
的性質、記録再生特性、耐候性等を総合的に評価して決
定されるが、−a的にC01CoNi系、CoCr系、
またはCoNiCr系合金が使用されている。
The component composition of the magnetic film formed on the non-magnetic substrate is determined by comprehensively evaluating magnetic properties, recording/reproducing characteristics, weather resistance, etc.;
Alternatively, a CoNiCr alloy is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記金属薄膜型磁気記録媒体は、これまでの塗布型磁気
記録媒体にまさる高密度の記録が可能であるが、その記
録再生ノイズが大きいため、これ以上の高密度化は期待
し難い。その記録密度の向上を実現するためには、再生
ノイズを低減し、ノイズによる再生波形のピークシフト
を少なくすることが必要である。
The metal thin film type magnetic recording medium allows higher density recording than conventional coating type magnetic recording media, but it is difficult to expect higher densities due to the large recording and reproduction noise. In order to improve the recording density, it is necessary to reduce reproduction noise and reduce the peak shift of the reproduced waveform due to noise.

一本発明は上記に鑑み、記録再生ノイズを低減し、再生
波形ピークシフトが改善された高密度記録用金属薄膜型
磁気記録媒体を提供することを目的としている。
In view of the above, an object of the present invention is to provide a metal thin film magnetic recording medium for high-density recording, which reduces recording and reproduction noise and improves reproduction waveform peak shift.

〔問題点を解決するための手段および作用〕本発明の金
属薄膜型磁気記録媒体は、その金属系磁性膜が、 CO+−x−y−zN i xCr yCz〔但し、x
、y、zは原子比を示し、Xは0.1〜0.35、y′
は0.05〜0.15、Zは0.001〜0.01であ
る〕で示される組成を有することを特徴としている。
[Means and effects for solving the problems] In the metal thin film magnetic recording medium of the present invention, the metal-based magnetic film has CO+-x-y-zN i xCr yCz [however,
, y, z indicate the atomic ratio, X is 0.1 to 0.35, y'
Z is 0.05 to 0.15 and Z is 0.001 to 0.01].

本発明の磁気記録媒体の金属系磁性膜は、上記のように
、CoNiCr系合金にCが添加された4元合金である
。CoNiCr系3元合金は、磁性膜として望まれる高
保磁力(Hc)および高残留磁束密度(Br)を有する
合金であり、本発明に従ってこれに第4元素として適量
のCを添加することにより、CoNiCr系3元合金磁
性膜の有する磁気特性・電気特性を損なうことになく、
記録再生ノイズ特性の顕著な改善効果が得られる。これ
はCの適量添加に伴って磁性膜の結晶磁気異方性の変化
、結晶粒の微細化、クロム炭化物(Cr=C。
As described above, the metal-based magnetic film of the magnetic recording medium of the present invention is a quaternary alloy in which C is added to a CoNiCr-based alloy. The CoNiCr-based ternary alloy is an alloy that has high coercive force (Hc) and high residual magnetic flux density (Br) that are desired as a magnetic film, and by adding an appropriate amount of C as a fourth element according to the present invention, CoNiCr without impairing the magnetic and electrical properties of the ternary alloy magnetic film.
A remarkable improvement effect on recording and reproduction noise characteristics can be obtained. This is due to changes in the magnetocrystalline anisotropy of the magnetic film, refinement of crystal grains, and formation of chromium carbide (Cr=C) with the addition of an appropriate amount of C.

Cr tCI  Cr t3cs等)の微細分散析出等
が生じ、その結果として磁区が微細化・固定化され、磁
化遷移幅が減少するものと考えられる。
It is thought that finely dispersed precipitation of Cr tCI Cr t3cs, etc.) occurs, and as a result, the magnetic domain becomes fine and fixed, and the magnetization transition width decreases.

本発明において磁性膜のCoN1CrC系合金の成分組
成につき、Nilを10〜35at%(x=0.1〜0
.35)としたのは、10at%に満だないと、磁性膜
の耐候性が悪くなり、他方35a t%をこえると、飽
和磁束密度(Bs)が減少し、良好な磁気特性および電
気特性が得られなくなるからである。またCr量を5〜
15at%(y =0.05〜0.15)としたのは、
5at%未満では、耐候性の不足だけでなく、C添加に
伴うクロム炭化物の析出量が不足するからであり、他方
15at%より多くなると、良好な磁気特性・電気特性
を確保できなくなるからである。
In the present invention, the composition of the CoN1CrC alloy of the magnetic film contains 10 to 35 at% of Nil (x=0.1 to 0
.. 35) The reason for this is that if it is less than 10at%, the weather resistance of the magnetic film will deteriorate, while if it exceeds 35at%, the saturation magnetic flux density (Bs) will decrease and good magnetic and electrical properties will be impaired. This is because you will not be able to obtain it. Also, increase the amount of Cr to 5~
The reason for setting it to 15 at% (y = 0.05 to 0.15) is
If it is less than 5 at%, not only will the weather resistance be insufficient, but the amount of chromium carbide precipitated due to the addition of C will be insufficient. On the other hand, if it is more than 15 at%, it will not be possible to ensure good magnetic and electrical properties. .

更に、C量については、その下限を0.1at%(2=
0.001 )としたのは、それより少ないとC添加に
よる磁化遷移幅の減少効果が十分でないからであり、他
方1.Oat%を上限としたのは、それをこえて添加し
ても上記効果の増加はなく、却って磁気特性・電気特性
の低下を招くからである。
Furthermore, regarding the amount of C, the lower limit is set to 0.1 at% (2=
0.001) because if it is less than that, the effect of reducing the magnetization transition width by C addition is insufficient; on the other hand, 1. The reason why Oat % is set as the upper limit is because adding more than this does not increase the above-mentioned effect, but rather causes a decrease in magnetic and electrical properties.

本発明の金属薄膜型磁気記録媒体は、磁気ディスクをは
じめ、各種磁気ドラム、磁気テープ、磁気シート等を包
含する。これらは、いずれもその磁性膜が前記組成を有
するCoN1CrC系4元合金からなる点を除いて、公
知の一般的な工程および条件に従って製作することがで
きる。例えば、面内記録用磁気ディスクについて述べれ
ば、アルミニウム合金板等を基体とし、その表面に無電
解めっきにより硬質のN1−Pめっき膜(膜厚:例えば
15〜25μm)を設け、めっき膜面にテキスチャ処理
を施したのち、磁性膜に面内異方性を与えるための下地
層として、適宜の膜厚(例えば、1300〜5000人
)のCr膜を形成する。そのCr膜面上に、前記組成を
もつCoN1CrC系4元合金磁性膜を成膜する。その
膜厚は、例えば500〜2000人であってよい。つい
で磁性膜の摩耗・損傷を防止するための保護膜として、
潤滑性と耐摩耗性を備えた被膜、例えば炭素質膜(膜厚
:例えば150〜600人)を形成することにより、多
層積層構造を有する面内記録用磁気ディスクを得る。
The metal thin film magnetic recording medium of the present invention includes magnetic disks, various magnetic drums, magnetic tapes, magnetic sheets, and the like. These can be manufactured according to known general processes and conditions, except that the magnetic films are made of a CoN1CrC quaternary alloy having the above composition. For example, regarding a magnetic disk for in-plane recording, the substrate is made of an aluminum alloy plate, etc., and a hard N1-P plating film (film thickness: e.g. 15 to 25 μm) is provided on the surface by electroless plating, and the plating film surface is After the texture treatment, a Cr film having an appropriate thickness (for example, 1,300 to 5,000 thick) is formed as an underlayer for imparting in-plane anisotropy to the magnetic film. A CoN1CrC quaternary alloy magnetic film having the above composition is formed on the Cr film surface. The film thickness may be, for example, 500 to 2000 people. Next, as a protective film to prevent wear and damage to the magnetic film,
By forming a film having lubricity and wear resistance, for example, a carbonaceous film (film thickness: 150 to 600 layers, for example), a magnetic disk for in-plane recording having a multilayer laminated structure is obtained.

なお、その積層構造は上記の例に限定されず、例えば、
磁性膜の上に、炭素質膜を成膜するに先立って、約10
0〜500人の膜厚のCr膜を形成することにより、磁
気ディスクの耐候性をさらに高めることもできる。また
、各層の成膜は、スパッタリング法、イオンブレーティ
ング法、真空蒸着法などにより行うことができる。
Note that the laminated structure is not limited to the above example; for example,
Prior to forming the carbonaceous film on the magnetic film, about 10
By forming a Cr film with a thickness of 0 to 500 nm, the weather resistance of the magnetic disk can be further improved. Furthermore, each layer can be formed by a sputtering method, an ion blating method, a vacuum evaporation method, or the like.

〔実施例〕〔Example〕

裏施■土 (1)供試磁気ディスクの製作 アルミニウム合金基板(外径130mm、内径40M1
厚さ1.9mm)の表面に、N1−P無電解めっき膜(
膜厚20μm)を形成し、表面をテキスチャ処理したの
ち、マグネトロンスパッタリング法(但し、アルゴン雰
囲気圧:0.7 Xl0−”torr)により、まずC
r膜(膜厚: 2500人)を形成し、ついでCoN 
1CrC系4元合金をターゲットとして磁性膜を形成し
た。磁性膜の組成はC06,7N I O,2Cro、
+C0,。。2.であり、膜厚は1000人である。更
に、その磁性膜面上に保護膜として膜厚300人の炭素
質膜を形成して供試磁気ディスク1を得た。その保磁力
(Hc)は8500e、残留磁束密度と膜厚の積(Br
・δ)は630G・μである。
(1) Production of test magnetic disk Aluminum alloy substrate (outer diameter 130mm, inner diameter 40M1)
N1-P electroless plating film (1.9 mm thick)
After forming a film with a thickness of 20 μm and texturing the surface, carbon was first applied by magnetron sputtering (argon atmosphere pressure: 0.7
R film (thickness: 2500) was formed, and then CoN
A magnetic film was formed using a 1CrC quaternary alloy as a target. The composition of the magnetic film is C06,7N IO, 2Cro,
+C0,. . 2. , and the film thickness is 1000 people. Further, a carbonaceous film having a thickness of 300 mm was formed as a protective film on the surface of the magnetic film to obtain a test magnetic disk 1. Its coercive force (Hc) is 8500e, the product of residual magnetic flux density and film thickness (Br
・δ) is 630G・μ.

また、比較例として、CoNiCr系°3元合金をター
ケラトとし、COo、vNio、zCro、+合金磁性
膜を形成した点を除いて上記と同じ工程を経て供試磁気
ディスク2を得た。
In addition, as a comparative example, a test magnetic disk 2 was obtained through the same process as above except that a CoNiCr-based ternary alloy was used as Terkerat and COo, vNio, zCro, + alloy magnetic films were formed.

なお、供試磁気ディスク1および2のノイズ特性の正当
な比較のためには、互いの磁束密度と膜厚の積(Br・
δ)および保磁力(Hc)は同一にすべきであるので、
供試磁気ディスク2のCr膜および磁性膜は、前記供試
磁気ディスク1と同じHeおよびBr・δとなるように
成膜した。
Note that in order to properly compare the noise characteristics of test magnetic disks 1 and 2, the product of their magnetic flux density and film thickness (Br・
δ) and coercive force (Hc) should be the same, so
The Cr film and magnetic film of the magnetic disk under test 2 were formed to have the same He and Br·δ as the magnetic disk under test 1.

(It)ノイズ特性の比較試験 各供試磁気ディスク1および2に信号を記録し、再生時
のノイズのスペクトルをスペクトルアナライザーにより
分析する。但し、記録周波数は2.5MHzおよび7.
 Q MHz、ディスク回転数は2700rpm。
(It) Comparison Test of Noise Characteristics Signals are recorded on each of the magnetic disks 1 and 2 under test, and the noise spectrum during reproduction is analyzed using a spectrum analyzer. However, the recording frequency is 2.5MHz and 7.5MHz.
Q MHz, disk rotation speed is 2700 rpm.

記録電流は45mAp−pであり、使用したベツドは3
370モノシリツクタイプのヘッドである。また、スペ
クトルアナライザーの中心周波数は5MHz、周波数ス
パンは10MHz、分解能は30 K l(zである。
The recording current was 45 mAp-p, and the bed used was 3
It is a 370 monolithic type head. Moreover, the center frequency of the spectrum analyzer is 5 MHz, the frequency span is 10 MHz, and the resolution is 30 Kl(z).

供試磁気ディスク1(発明例)の測定結果を第1図に、
供試磁気ディスク2(比較例)のそれを第2図にそれぞ
れ示す。図中、A、は記録周波数7.0MHzのときの
変調ノイズ、A2は記録周波数2.5M1lzのときの
変8周ノズル、Bはシステムノイズである。両図の比較
から、CoNiCr系にCを添加した磁性膜を有する発
明例はノイズが大きく低減していることがわかる。
The measurement results of test magnetic disk 1 (invention example) are shown in Figure 1.
The test magnetic disk 2 (comparative example) is shown in FIG. In the figure, A is the modulation noise when the recording frequency is 7.0 MHz, A2 is the variable 8-turn nozzle when the recording frequency is 2.5 M1lz, and B is the system noise. From a comparison between the two figures, it can be seen that the noise is greatly reduced in the invention example having a CoNiCr-based magnetic film with C added thereto.

実膳拠主 磁性膜を、、 COo、bqN i o、zoCr O
,1(lcO,o1合金で形成した点を除いて前記実施
例1の供試ディスク1と同一の条件で供試磁気ディスク
3を製作し、記録再生時のバックグランドノイズのスペ
クトル分析を実施例1と同一の条件で行った結果、実施
例1の供試磁気ディスク1と同等の改良されたノイズ特
性を有することが観察された。
The actual main magnetic films are COo, bqNio, zoCrO
A test magnetic disk 3 was manufactured under the same conditions as the test disk 1 of Example 1 except that it was made of lcO, O1 alloy, and a spectrum analysis of the background noise during recording and reproduction was conducted as an example. As a result, it was observed that the test magnetic disk 1 had improved noise characteristics equivalent to those of the magnetic disk 1 of Example 1.

〔発明の効果〕〔Effect of the invention〕

本発明の磁気記録媒体は、CoNiCr3元合金磁性膜
のすぐれた磁気特性・電気特性と、その3元合金磁性膜
を凌ぐ良好なノイズ特性を有しており、再生波形相互の
干渉によるピークシフトに変化を与えずに、ノイズによ
るピークシフトが大幅に改善され、従って磁気記録の−
そうの高密度化、磁気記録媒体のコンパクト化、高品質
・高性能化を可能とするものである。
The magnetic recording medium of the present invention has the excellent magnetic and electrical properties of the CoNiCr ternary alloy magnetic film, as well as the noise characteristics superior to the ternary alloy magnetic film. The peak shift due to noise is significantly improved without any change, and therefore the −
This makes it possible to increase the density of magnetic recording media, make magnetic recording media more compact, and improve quality and performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、磁気ディスクの記録再生時のバック
グランドノイズスペクトル分析を示すグラフである。
FIGS. 1 and 2 are graphs showing background noise spectrum analysis during recording and reproduction of a magnetic disk.

Claims (1)

【特許請求の範囲】 1、非磁性基体上に金属系磁性膜が形成された磁気記録
媒体において、該金属系磁性膜が、CO_1_−_X_
−_Y_−_ZNi_xCr_YC_Z〔但し、x、y
、zは原子比を示し、xは0.1〜0.35、yは0.
05〜0.15、Zは0.001〜0.01である〕で
示される組成を有することを特徴とするノイズ特性にす
ぐれた金属薄膜型磁気記録媒体。
[Claims] 1. In a magnetic recording medium in which a metal-based magnetic film is formed on a non-magnetic substrate, the metal-based magnetic film is CO_1_-_X_
-_Y_-_ZNi_xCr_YC_Z [However, x, y
, z indicates the atomic ratio, x is 0.1 to 0.35, and y is 0.
05 to 0.15, and Z is 0.001 to 0.01]. 1. A metal thin film magnetic recording medium having excellent noise characteristics.
JP5704288A 1988-03-10 1988-03-10 Thin metallic film type magnetic recording medium Pending JPH01232516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5704288A JPH01232516A (en) 1988-03-10 1988-03-10 Thin metallic film type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5704288A JPH01232516A (en) 1988-03-10 1988-03-10 Thin metallic film type magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01232516A true JPH01232516A (en) 1989-09-18

Family

ID=13044387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5704288A Pending JPH01232516A (en) 1988-03-10 1988-03-10 Thin metallic film type magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01232516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516547A (en) * 1991-09-06 1996-05-14 International Business Machines Corporation Method for fabricating magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516547A (en) * 1991-09-06 1996-05-14 International Business Machines Corporation Method for fabricating magnetic recording medium
US5658680A (en) * 1991-09-06 1997-08-19 International Business Machines Corporation Magnetic recording medium and its fabrication method

Similar Documents

Publication Publication Date Title
JPH0714142A (en) Thin film magnetic recording medium
US5057200A (en) Method of forming thin-film recording medium
JPH0750008A (en) Magnetic recording medium
JPH01232516A (en) Thin metallic film type magnetic recording medium
JPH11110732A (en) Magnetic recording medium
JPH0312816A (en) Thin metallic film type magnetic recording medium
US5560786A (en) Magnetic thin film material for magnetic recording
JPH0223511A (en) Thin metallic film type magnetic recording medium
JPH0770037B2 (en) Metal thin film magnetic recording medium for in-plane magnetization recording
JPH01232517A (en) Thin metallic film type magnetic recording medium
JP2527616B2 (en) Metal thin film magnetic recording medium
JPWO2004019322A1 (en) Backed magnetic film
JPH0312814A (en) Thin metallic film type magnetic recording medium
JP2527618B2 (en) Metal thin film magnetic recording medium
JPS61217925A (en) Magnetic recording medium
JP2544205B2 (en) Metal thin film magnetic recording medium for in-plane magnetization recording
JP2832941B2 (en) In-plane magnetic recording media
JPH0460916A (en) Metal thin film type magnetic recording medium
JPH0750009A (en) Magnetic recording medium
JPH10162338A (en) Metallic thin film type magnetic recording medium
JP2834154B2 (en) Metal thin film magnetic recording media for in-plane magnetization recording
JPH0793738A (en) Magnetic recording medium
JPH01133217A (en) Magnetic recording body
JPH06104113A (en) Metal thin film magnetic recording medium
JPH03283016A (en) Magnetic recording medium