JPH01224005A - Double-layered hollow yarn microfilter with polyvinylidene fluoride as skeleton - Google Patents

Double-layered hollow yarn microfilter with polyvinylidene fluoride as skeleton

Info

Publication number
JPH01224005A
JPH01224005A JP4970688A JP4970688A JPH01224005A JP H01224005 A JPH01224005 A JP H01224005A JP 4970688 A JP4970688 A JP 4970688A JP 4970688 A JP4970688 A JP 4970688A JP H01224005 A JPH01224005 A JP H01224005A
Authority
JP
Japan
Prior art keywords
polyvinylidene fluoride
membrane
microfilter
skeleton
hollow yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4970688A
Other languages
Japanese (ja)
Inventor
Kazuo Toyomoto
豊本 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4970688A priority Critical patent/JPH01224005A/en
Publication of JPH01224005A publication Critical patent/JPH01224005A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the title precision hollow yarn-shaped microfilter having excellent heat resistance, mechanical strength, and durability and washable with alkali by preferentially fluorinating the base membrane consisting of polyvinylidene fluoride and the pore surface. CONSTITUTION:Polyvinylidene fluoride is used, and a hollow yarn membrane having a three-dimensional reticular structure and having 0.01-5mu mean pore diameter, 20-80% porosity, 0.05-10mm inner diameter, and 0.05-5mm thickness is formed by microphase separation or mixed extraction. The base membrane is deaerated under pressure in a reaction vessel, and then the membrane and the pore surface are preferentially fluorinated by gaseous fluorine. By this method, a double-layered hollow yarn microfilter having 5-40% fluorination rate with polyvinylidene fluoride as the skeleton is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主として製薬工業用水、飲料用水の精製用に
使用される耐熱性に優れかつ耐アルカリ性に優れた高効
率ミクロフィルターに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a highly efficient microfilter with excellent heat resistance and alkali resistance, which is mainly used for purifying water for the pharmaceutical industry and drinking water.

〔従来の技術〕[Conventional technology]

一般に医薬工業用水や飲料用水は、高純度を必要とする
In general, water for the pharmaceutical industry and drinking water requires high purity.

具体的には、菌、微粒子等が高度に除去された品質のも
のを嬰し、そのためには、高度な精密さを有するミクロ
フィルターが必要である。
Specifically, it is necessary to use a filter that is of a high quality that removes bacteria, fine particles, etc., and for this purpose, a microfilter with a high degree of precision is required.

しかし、現実には、そのようなミクロフィルターは存在
せず、不十分のまま使用されている。これらのミクロフ
ィルターの大部分は、具体的には、プリーツ状のもので
あって寿命が短くて、洗浄再生が実質的に不可能であり
、プラント組み込み用には適していない。
However, in reality, such microfilters do not exist and are used in an inadequate manner. Most of these microfilters, in particular pleated ones, have a short lifespan, are virtually impossible to wash and regenerate, and are not suitable for plant integration.

最近、これらの要求を満足するポリオレフィン、ポリテ
トラフルオロエチレン等のクロスフロー可能な中空糸状
タイプのミクロフィルターが実用化されるようになった
Recently, cross-flow hollow fiber type microfilters made of polyolefin, polytetrafluoroethylene, or the like that meet these requirements have been put into practical use.

しかし、上記の中空糸状ミクロフィルターは、いずれも
70〜80℃以上の高温度、高圧力下で使用するには、
機械的強度が不充分で、充分な耐久性を有していない。
However, in order to use the above-mentioned hollow fiber microfilters at high temperatures of 70 to 80°C or higher and high pressures,
Mechanical strength is insufficient and durability is insufficient.

一方、最近、ポリフッ化ビニリデン膜よりなる中空糸状
ミクロフィルターが植物油等の非水系ミクロフィルター
として実用化されている。
On the other hand, recently, hollow fiber microfilters made of polyvinylidene fluoride membranes have been put into practical use as nonaqueous microfilters for vegetable oils and the like.

このポリフッ化ビニリデンはその剛性(弾性率)が他の
ポリオレフィン、ポリテトラフルオロエチレンよりも高
(、かつその耐熱性も優れていることから、前記の耐熱
性ミクロフィルターとして機械的には最も好適である。
This polyvinylidene fluoride has a higher rigidity (modulus of elasticity) than other polyolefins and polytetrafluoroethylene (and also has excellent heat resistance), so it is mechanically the most suitable for the heat-resistant microfilter mentioned above. be.

しかし、ポリフッ化ビニリデンはアルカリに弱いために
、ユーザー側で再度使用される耐アルカリ薬品洗浄操作
が不可能であり、その優れた機械的耐久性にもかかわら
ず、実用上最大の克服すべき欠点があった。
However, because polyvinylidene fluoride is sensitive to alkalis, it is impossible for the user to perform alkali-resistant chemical cleaning operations for reuse, and despite its excellent mechanical durability, this is the biggest practical drawback that must be overcome. was there.

〔本発明の解決しようとする問題点〕[Problems to be solved by the present invention]

本発明の目的は、製薬工業用等の耐熱性と耐機械的性質
が優れ、かつ耐アルカリ洗浄操作が可能な耐久性に優れ
た精密中空糸状ミクロフィルターを提供するものである
An object of the present invention is to provide a precision hollow fiber microfilter for use in the pharmaceutical industry, etc., which has excellent heat resistance and mechanical resistance, and is durable enough to be resistant to alkali cleaning operations.

(問題点を解決するための手段〕 本発明者は、以下の手段によって上記目的を達成できる
ことを見出した。
(Means for Solving the Problems) The present inventors have discovered that the above object can be achieved by the following means.

すなわち、本発明は基材膜の材質がポリフッ化ビニリデ
ンであって、空孔率20ないし80%、内径0.05な
いし1011+1.肉厚0.05ないし51の基材膜の
膜および孔表面が優先的にフッ素化され、かつフッ素化
の割合が5ないし40%である実質的に三次元網目構造
を有する機械的性質及び耐アルカリ性に優れたポリフッ
化ビニリデンを骨格とする複層中空糸状ミクロフィルタ
ーによって達成されることが分かった。
That is, in the present invention, the material of the base film is polyvinylidene fluoride, the porosity is 20 to 80%, and the inner diameter is 0.05 to 1011+1. The membrane and pore surfaces of the base membrane with a wall thickness of 0.05 to 51% are preferentially fluorinated, and the fluorination ratio is 5 to 40%. It has been found that this can be achieved using a multilayer hollow fiber microfilter with a skeleton made of polyvinylidene fluoride, which has excellent alkalinity.

以下、本発明について、さらに詳細に説明する;本発明
における、膜および孔の表面が優先的にフッ素化され、
かつフッ素化の割合が5ないし40%であるポリフッ化
ビニリデンを骨格とする複層中空糸膜は、具体的には、
まず、ポリフッ化ビニリデン中空糸膜を製膜後、フッ素
ガスでフッ素化することによって得られる。
The present invention will be described in more detail below; in the present invention, the surfaces of the membrane and pores are preferentially fluorinated,
Specifically, a multilayer hollow fiber membrane having a backbone of polyvinylidene fluoride with a fluorination ratio of 5 to 40%,
First, a polyvinylidene fluoride hollow fiber membrane is formed and then fluorinated with fluorine gas.

ここで、フッ素化の割合とは、ポリフッ化ビニリデンの
単位分子を構成するフッ化ビニリデン中の水素原子がフ
ッ素化される割合を示し、たとえば、膜の全部の水素が
フッ素によって置換されるときには100%である。
Here, the fluorination rate refers to the rate at which hydrogen atoms in vinylidene fluoride constituting the unit molecule of polyvinylidene fluoride are fluorinated. For example, when all hydrogen in the film is replaced by fluorine, 100% %.

ここで、フッ素化の割合が5ないし40%と言う意味は
、膜及び孔の表面の分子は100%ないしはそれに近く
フッ素化されており、かつ膜の全重量をベースとして測
定した場合は5ないし40%であると言うことを意味す
る。
Here, the fluorination rate of 5 to 40% means that the molecules on the surface of the membrane and pores are 100% or close to fluorinated, and when measured based on the total weight of the membrane, the fluorination rate is 5 to 40%. This means that it is 40%.

また、ここで、フッ素化の割合は、元素分析によって決
められ、例えば、「高分子分析ハンドブック−日本化学
合成、朝食書店発行−106頁、294頁(1985年
)」に記載の仕方によって決定されるが、フッ素ガスに
よるフッ素化反応がクリアーであるので、重量の増加に
よって測定される。
In addition, the fluorination ratio is determined by elemental analysis, for example, as described in "Polymer Analysis Handbook - published by Nihon Kagakusei, Shokusoku Shoten - pages 106 and 294 (1985)". However, since the fluorination reaction with fluorine gas is clear, it is measured by the increase in weight.

この場合に; フッ素化度ζCW+  Wo) / w、x 2 X 
100である。(ここでWo、Wlは夫々フッ素化前後
の膜重量である) 本発のポリフッ化ビニリデンを骨格とする複層中空状ミ
クロフィルターは、平均孔径0.01〜5μの範囲にあ
ることが、コロイド状物質除去性及び透過速度の点で好
ましい。
In this case; degree of fluorination ζCW+ Wo) / w, x 2
It is 100. (Here, Wo and Wl are the membrane weights before and after fluorination, respectively.) The multilayer hollow microfilter with the skeleton of polyvinylidene fluoride of this invention has an average pore size in the range of 0.01 to 5 μm, and the colloidal This is preferable in terms of ability to remove substances and permeation rate.

ここで、平均孔径とは、A37M316−70に記載さ
れている方法で得られた値を指しており、通常エアーフ
ロー法と呼ばれ、空気圧を変えて乾燥膜と湿潤膜との空
気透過流束を測定し、その比から求めるものである。
Here, the average pore diameter refers to the value obtained by the method described in A37M316-70, which is usually called the air flow method, and the air permeation flux between the dry membrane and the wet membrane is is measured and calculated from the ratio.

本発明において、ポリフッ化ビニリデン基材膜のフッ素
化割合は、5ないし40%であるが、この範囲は、極め
て重大な意味を持っている。
In the present invention, the fluorination ratio of the polyvinylidene fluoride base film is 5 to 40%, and this range has extremely important meaning.

前述したように、フッ素ガスによってフッ素化されると
、膜及び孔の表面が最初、優先的にフッ素化され、徐々
に膜の内部にフッ素化が進む。
As mentioned above, when fluorinated by fluorine gas, the surface of the membrane and the pores are first preferentially fluorinated, and the fluorination gradually progresses to the inside of the membrane.

従って、成る過渡期の範囲では、膜の内部(骨格部)は
ポリフッ化ビニリデンであり、外部はポリテトラフルオ
ロエチレン、又は1部がトリフルオロエチレンとテトラ
フルオロエチレン等との共重合体成分状となる。
Therefore, in the transition period, the inside of the membrane (skeleton) is polyvinylidene fluoride, and the outside is polytetrafluoroethylene, or a part is a copolymer component of trifluoroethylene, tetrafluoroethylene, etc. Become.

この事実は、骨格部が機械的に非常に強靭なポリフッ化
ビニリデンと、耐薬品性、とくに、耐アルカリ性に優れ
た、主としてポリテトラフルオロエチレン部との複層中
空糸をなしており、極めて実用特性上優れた中空糸状ミ
クロフィルターとなる。
This fact is due to the fact that it is a multilayer hollow fiber made of polyvinylidene fluoride, which has a very mechanically strong skeleton, and polytetrafluoroethylene, which has excellent chemical resistance, especially alkali resistance, and is extremely practical. It becomes a hollow fiber microfilter with excellent characteristics.

フッ素化の割合が5ないし40%と言う意味は、前述の
優れた性状を示すフッ素化割合を示している。そして、
5%以下の値では、耐アルカリ性が不十分であり、かつ
40%以上では、機械的性質が悪(なる。
The fluorination ratio of 5 to 40% indicates a fluorination ratio that exhibits the above-mentioned excellent properties. and,
If the value is less than 5%, the alkali resistance will be insufficient, and if it is more than 40%, the mechanical properties will be poor.

空孔率は20〜80%の範囲にあることが好ましい、こ
こで、空孔率とは、予めミクロフィルターを水等の液体
に浸漬し、そののち乾燥させて、その前後の重量変化か
ら測定したものである。
The porosity is preferably in the range of 20 to 80%. Here, the porosity is measured by immersing the microfilter in a liquid such as water, drying it, and measuring the weight change before and after. This is what I did.

空孔率が本発明の範囲以外においては、それぞれ透過速
度、機械的性質等の点で好ましくない。
If the porosity is outside the range of the present invention, it is not preferable in terms of permeation rate, mechanical properties, etc.

本発明のミクロフィルターのベースとなる基材多孔膜の
孔構造は、種々の成形加工手段によってうることができ
る。
The pore structure of the base porous membrane, which is the base of the microfilter of the present invention, can be obtained by various molding methods.

具体的には、延伸法や、電子線照射後に化学処理を行う
、いわゆるエツチング法等も適用可能であるが、孔構造
としては延伸法やエツチング法等により得られた直孔貫
通型の空孔構造よりも、たとえば、特公昭40−957
号、特公昭47−17460号、及び特公昭59−37
292号公報に示されたミクロ相分離法や混合抽出法等
により形成される三次元網目構造を有するものが好まし
い。
Specifically, stretching methods and so-called etching methods, in which chemical treatment is performed after electron beam irradiation, can also be applied; Rather than the structure, for example,
No., Special Publication No. 47-17460, and Special Publication No. 59-37
Those having a three-dimensional network structure formed by the microphase separation method, mixed extraction method, etc. shown in Japanese Patent No. 292 are preferred.

本発明のミクロフィルターの形状は、中空糸膜状である
が、とくに、本発明の目的には、内径0.05ないし1
0mm、厚さ0.05ないし5mmの形状を有する中空
糸状のものが好ましい。
The shape of the microfilter of the present invention is a hollow fiber membrane.
A hollow fiber having a shape of 0 mm and a thickness of 0.05 to 5 mm is preferable.

以下、実施例により本発明の構成及び効果を具体的に述
べるが、何れも本発明を限定するものではない。
Hereinafter, the structure and effects of the present invention will be specifically described with reference to Examples, but these are not intended to limit the present invention.

(実施例及び比較例) 微粉珪酸にブシルVN3LP)22重量部、ジオクチル
フタレート(DOP)42重量部、ジブチルフタレート
(DBP)10.5重量部、ポリ77化ヒニ’)テン(
PVDF ; KF−1000(商品名)、呉羽化学社
製)25.5重量部の混合組成物をヘンシェルミキサー
で予備混合後、30ミリ2軸押出し機内で内径0.8m
m、厚み0゜25mmの中空糸状に押出した後、1.1
.1−トリクロロエタン〔クロロセンVC(商品名)〕
中に60分間浸漬し、DOPとDBPを抽出した。
(Examples and Comparative Examples) Finely powdered silicic acid containing 22 parts by weight of butyl VN3LP, 42 parts by weight of dioctyl phthalate (DOP), 10.5 parts by weight of dibutyl phthalate (DBP),
After pre-mixing 25.5 parts by weight of PVDF (KF-1000 (trade name), manufactured by Kureha Kagaku Co., Ltd.) using a Henschel mixer, the mixture was heated to an inner diameter of 0.8 m in a 30 mm twin-screw extruder.
m, after extruding into a hollow fiber shape with a thickness of 0°25mm, 1.1
.. 1-Trichloroethane [chlorocene VC (trade name)]
DOP and DBP were extracted.

さらに、苛性ソーダの40%(80°C)水溶液中に約
40分間浸漬し、微粉珪酸を抽出した後、水洗、乾燥し
た。得られたポリフッ化ビニリデン中空糸膜を、反応容
器中で脱気減圧させ、特開昭61−266442号公報
の実施例に準する方法で、フッ素化を行い下記の性状を
有する実施例膜を得た。
Furthermore, it was immersed in a 40% (80°C) aqueous solution of caustic soda for about 40 minutes to extract the finely divided silicic acid, followed by washing with water and drying. The obtained polyvinylidene fluoride hollow fiber membrane was degassed and depressurized in a reaction vessel, and fluorinated by a method similar to the example of JP-A No. 61-266442 to obtain an example membrane having the following properties. Obtained.

なお、フッ素化しない比較例膜の性状もあわせて示す、
; 裏施■脛  を較洛皿 空孔率(%)      65    66平均孔径(
μ)    0.15   0.16フツ素化率(%)
   25    0ここで、フッ素化率は重量測定方
法で行い、かつ骨格がポリフッ化ビニリデンであること
は、断面をアルカリ処理した後に光学顕微鏡で拡大し、
その着色むらから確認した。
In addition, the properties of a comparative example membrane that is not fluorinated are also shown.
; Compare the lining ■ Porosity (%) 65 66 Average pore diameter (
μ) 0.15 0.16 Fluorination rate (%)
250 Here, the fluorination rate was determined by gravimetric measurement, and the fact that the skeleton was polyvinylidene fluoride was confirmed by enlarging the cross section with an optical microscope after alkali treatment.
I confirmed it from the uneven coloring.

前記の実施例膜及び比較例膜のミクロフィルターとして
の特性を評価するために、下記に示される水質の液を使
用して、実際に濾過テストを行った。
In order to evaluate the characteristics of the above-mentioned example membranes and comparative example membranes as microfilters, a filtration test was actually conducted using liquids of the water quality shown below.

(原液性状) 原液中の微粒子濃度”  2.5X10’個/ccバク
テリヤ濃度”    1.2X103個/cc1)孔径
0.2μポリカーボネート製平膜上で直接に顕微鏡で測
定した値 2)ブロカ染色法によって染色後、顕微鏡によって直接
測定した値 80℃、3 kg / cra ”、線速30C11/
seeで濾過した結果を下記に示す。
(Standard solution properties) Concentration of fine particles in stock solution: 2.5 x 10' particles/cc Bacterial concentration: 1.2 x 103 particles/cc 1) Value measured directly with a microscope on a polycarbonate flat membrane with a pore size of 0.2 μm 2) By Broca staining method After staining, the value directly measured by microscope was 80℃, 3 kg/cra'', and linear speed 30C11/
The results of filtering with see are shown below.

一災益貫  −土較斑 初期透過速度 (L/hr、rrf、atm)      1 0 0
 0     1 1 5 0微粒子除去率(%)  
 99.5   99.4次に、洗浄操作を行うため、
5%苛性ソーダで80°Cで3時間洗浄した。
Initial permeation rate (L/hr, rrf, atm) 1 0 0
0 1 1 5 0 Particulate removal rate (%)
99.5 99.4 Next, to perform the cleaning operation,
Washed with 5% caustic soda at 80°C for 3 hours.

実施例膜は、その膜表面がほとんど着色せずかつ機械的
性質も殆ど変わらなかったのに比して、比較例膜は着色
度が著しく、再度原液を通したところ、濾液が着色した
ために使用は不能となった。
The membrane surface of the example membrane was hardly colored and its mechanical properties were almost unchanged, whereas the membrane of the comparative example had a remarkable degree of coloration, and when the stock solution was passed through it again, the filtrate was colored, so it was not used. became impossible.

さらに、前記濾過テストを24時間行なった後、熱アル
カリ洗浄を含む濾過回復操作を行い、−カ月にわたって
濾過テストを繰り返したが、その濾過特性、機械的性質
は殆ど変わっていなかった。
Furthermore, after conducting the filtration test for 24 hours, a filtration recovery operation including hot alkaline washing was performed, and the filtration test was repeated for months, but the filtration characteristics and mechanical properties remained almost unchanged.

〔発明の効果〕〔Effect of the invention〕

本発明のポリフン化ビニリデンを骨格とし、膜及び孔の
表面が優先的にフン素化された復層中空糸膜はその機械
的性質が良好なため、特に高温部の用水の精製に適して
おり、さらに耐アルカリ性が優れているために、繰り返
し洗浄操作が可能で、製薬工業、飲料水工業等に最適な
ミクロフィルターを提供することが可能になった。
The double-layered hollow fiber membrane of the present invention, which has a skeleton of polyvinylidene fluoride and whose membrane and pore surfaces are preferentially fluorinated, has good mechanical properties and is therefore particularly suitable for purifying water in high-temperature areas. Furthermore, due to its excellent alkali resistance, it is possible to perform repeated cleaning operations, making it possible to provide a microfilter that is ideal for the pharmaceutical industry, drinking water industry, etc.

Claims (1)

【特許請求の範囲】[Claims] 基材膜の材質がポリフッ化ビニリデンであって、平均孔
径0.01ないし5μ、空孔率20ないし80%、内径
0.05ないし10mm、膜厚0.05ないし5mmで
あり、基材膜の膜および孔表面が優先的にフッ素化され
、かつフッ素化の割合が5ないし40%である実質的に
三次元網目構造を有する機械的性質及び耐アルカリ性の
優れたポリフッ化ビニリデンを骨格とする複層中空糸状
ミクロフィルター。
The material of the base film is polyvinylidene fluoride, the average pore diameter is 0.01 to 5 μ, the porosity is 20 to 80%, the inner diameter is 0.05 to 10 mm, and the film thickness is 0.05 to 5 mm. The membrane and pore surfaces are preferentially fluorinated, and the fluorination ratio is 5 to 40%. It has a substantially three-dimensional network structure, has excellent mechanical properties and alkali resistance, and has a skeleton of polyvinylidene fluoride. Layer hollow fiber microfilter.
JP4970688A 1988-03-04 1988-03-04 Double-layered hollow yarn microfilter with polyvinylidene fluoride as skeleton Pending JPH01224005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4970688A JPH01224005A (en) 1988-03-04 1988-03-04 Double-layered hollow yarn microfilter with polyvinylidene fluoride as skeleton

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4970688A JPH01224005A (en) 1988-03-04 1988-03-04 Double-layered hollow yarn microfilter with polyvinylidene fluoride as skeleton

Publications (1)

Publication Number Publication Date
JPH01224005A true JPH01224005A (en) 1989-09-07

Family

ID=12838635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4970688A Pending JPH01224005A (en) 1988-03-04 1988-03-04 Double-layered hollow yarn microfilter with polyvinylidene fluoride as skeleton

Country Status (1)

Country Link
JP (1) JPH01224005A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067013A1 (en) * 1996-12-10 1999-12-29 Asahi Kasei Kogyo Kabushiki Kaisha Porous polyvinylidene fluoride resin film and process for producing the same
JP2001226515A (en) * 2000-02-15 2001-08-21 Asahi Kasei Corp Polymer blend microporous membrane
EP1369168A4 (en) * 2001-03-06 2004-08-18 Asahi Chemical Ind Method for producing hollow yarn film
JP2006239512A (en) * 2005-03-01 2006-09-14 Kureha Corp Porous membrane and production method
EP1897606A2 (en) * 1996-12-10 2008-03-12 Asahi Kasei Kabushiki Kaisha, Ltd. Process for preparing porous polyvinylidene fluoride resin membrane

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067013A1 (en) * 1996-12-10 1999-12-29 Asahi Kasei Kogyo Kabushiki Kaisha Porous polyvinylidene fluoride resin film and process for producing the same
EP1897606A2 (en) * 1996-12-10 2008-03-12 Asahi Kasei Kabushiki Kaisha, Ltd. Process for preparing porous polyvinylidene fluoride resin membrane
EP1897606A3 (en) * 1996-12-10 2008-04-02 Asahi Kasei Kabushiki Kaisha, Ltd. Process for preparing porous polyvinylidene fluoride resin membrane
AU736329B2 (en) * 1998-06-22 2001-07-26 Asahi Kasei Kabushiki Kaisha Porous polyvinylidene fluoride resin membrane and process for preparing the same
US6299773B1 (en) 1998-06-22 2001-10-09 Asahi Kasei Kogyo Kabushiki Kaisha Porous polyvinylidene fluoride resin film and process for producing the same
JP2001226515A (en) * 2000-02-15 2001-08-21 Asahi Kasei Corp Polymer blend microporous membrane
EP1369168A4 (en) * 2001-03-06 2004-08-18 Asahi Chemical Ind Method for producing hollow yarn film
US7128861B2 (en) 2001-03-06 2006-10-31 Asahi Kasei Chemicals Corporation Method for producing hollow yarn film
JP2006239512A (en) * 2005-03-01 2006-09-14 Kureha Corp Porous membrane and production method

Similar Documents

Publication Publication Date Title
JP4939124B2 (en) Fluororesin porous membrane
WO2002102500A1 (en) Membrane polymer compositions
AU2006345112A1 (en) Polymer separation membrane and process for producing the same
WO2005002712A1 (en) Membrane post treatment
EP0245000A2 (en) Microporous membrane structure and method of making
JP2012522882A (en) Non-wetting porous membrane
JPH06254158A (en) Diaphragm and its preparation
WO2015087702A1 (en) Multilayer separation membrane
JP6295456B2 (en) Coated PTFE membrane
JPH01224005A (en) Double-layered hollow yarn microfilter with polyvinylidene fluoride as skeleton
JP2011036848A (en) Separation membrane made of polyvinylidene fluoride resin and method for manufacturing the same
TWI621653B (en) Ptfe/pfsa blended membrane
JP2012187575A (en) Composite membrane and method for manufacturing the same
JP5082347B2 (en) Separation membrane manufacturing method and separation membrane for water treatment
US7745499B2 (en) Metal colloid solution
JP2018008272A (en) Method for producing hollow fiber membrane
WO2009119373A1 (en) Hollow-fiber membrane and process for production thereof
AU715033B2 (en) Polyacrylonitrile-based filtration membrane in a hollow fiber state
Khulbe et al. Pore size, pore size distribution, and roughness at the membrane surface
JPH03258330A (en) Porous hollow fiber membrane
JPH03284326A (en) Porous hollow fiber membrane
JP7369577B2 (en) Manufacturing method of polysulfone porous hollow fiber membrane
JP2006224051A (en) Porous membrane, porous membrane element, and membrane filter apparatus
JP2008221050A (en) Semipermeable membrane
JP4689790B2 (en) Internal hydrophilic membrane of anionic copolymer blend