JPH01221859A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH01221859A
JPH01221859A JP63046168A JP4616888A JPH01221859A JP H01221859 A JPH01221859 A JP H01221859A JP 63046168 A JP63046168 A JP 63046168A JP 4616888 A JP4616888 A JP 4616888A JP H01221859 A JPH01221859 A JP H01221859A
Authority
JP
Japan
Prior art keywords
coke
active material
negative electrode
negative active
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63046168A
Other languages
Japanese (ja)
Inventor
Takayuki Yamahira
隆幸 山平
Susumu Harada
晋 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63046168A priority Critical patent/JPH01221859A/en
Publication of JPH01221859A publication Critical patent/JPH01221859A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a battery having good, uniform cycle performance at low cost by heating crushed coke in an inert gas atmosphere or in a vacuum at temperature at which the coke is not graphitized to prepare a negative active material. CONSTITUTION:Crushed coke is heated in an inert gas atmosphere or in a vacuum at temperature at which the coke is not graphitized to prepare a negative active material. The heating temperature of 300-1800 deg.C is preferable, and that of 900-1600 deg.C is more preferable. In spite of using low cost coke as the negative active material, the coke rarely contains impurities and has large activity. A battery using this negative active material shows good, uniform cycle performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コークスを負極活物質としている二次電池に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a secondary battery using coke as a negative electrode active material.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様な二次電池において、粉砕された状
態において不活性ガスの気流中または真空中で且つ黒鉛
化しない温度で加熱処理されたコークスを負極活物質と
することによって、低コストであるにも拘らず良好且つ
均一なサイクル特性を有することができる様にしたもの
である。
The present invention provides a secondary battery as described above, which uses coke, which has been pulverized and heat-treated in an inert gas stream or vacuum at a temperature that does not cause graphitization, as the negative electrode active material, thereby reducing cost. Despite this, it is possible to have good and uniform cycle characteristics.

〔従来の技術〕[Conventional technology]

二次電池としては、ニッケル・カドミウム電池や鉛電池
等が従来から汎用されている。しかしこれらの二次電池
は、容量保存性が悪く、重く、エネルギ密度も低い。
As secondary batteries, nickel-cadmium batteries, lead batteries, and the like have been commonly used. However, these secondary batteries have poor capacity storage, are heavy, and have low energy density.

これに対して非水リチウム二次電池は、軽く、エネルギ
密度も高い、しかし、負極にリウチム金属を用いると、
このリウチム金属が充電時にデンドライト状またはパウ
ダ状に析出して、充放電効率が低下する。
On the other hand, nonaqueous lithium secondary batteries are lightweight and have high energy density, but when lithium metal is used for the negative electrode,
This lithium metal precipitates in the form of dendrites or powder during charging, resulting in a decrease in charging and discharging efficiency.

そこで、特開昭62−90863号公報や特開昭60−
235372号公報等にも記載されている様に、リウチ
ム金属を吸蔵する各種の活物質を負極とする二次電池が
提案されている。
Therefore, JP-A-62-90863 and JP-A-60-
As described in Japanese Patent No. 235372, etc., secondary batteries using various active materials that occlude lithium metal as negative electrodes have been proposed.

そして、この様な負極活物質の中でも、低コストである
という点からコークスが有望であると考えられる。
Among these negative electrode active materials, coke is considered to be promising because of its low cost.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、後記する様に、コークスをそのまま負極活物質
としても、二次電池のサイクル特性が良くなく、しかも
このサイクル特性自体にばらつきがある。
However, as will be described later, even if coke is used as a negative electrode active material, the cycle characteristics of the secondary battery are not good, and there are variations in the cycle characteristics themselves.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による二次電池は、粉砕された状態において不活
性ガスの気流中または真空中で且つ黒鉛化しない温度で
加熱処理されたコークスを負極活物質としている。
The secondary battery according to the present invention uses, as a negative electrode active material, coke that has been heat-treated in a pulverized state in an inert gas stream or in a vacuum at a temperature that does not cause graphitization.

〔作用〕[Effect]

本発明による二次電池では、低コストのコークスを負極
活物質としているが、コークスの原料中に不純物が不均
一に含まれていても、この不純物は殆ど熱処理によって
飛散しており、コークスは不純物を殆ど含んでいない。
In the secondary battery according to the present invention, low-cost coke is used as the negative electrode active material, but even if impurities are unevenly contained in the coke raw material, most of these impurities are scattered by heat treatment, and the coke contains impurities. Contains almost no

また、コークスは黒鉛化していないので、このコークス
は大きな活性を有している。
Moreover, since the coke is not graphitized, this coke has high activity.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図及び第2図を参照しなが
ら説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2.

これらの実施例の電池は、第2図に示す様に、直径20
m■、高さ2.5鰭のコイン状である。負極ペレット2
は、後述の様に処理されたコークス90重量部とポリプ
ロピレン粉末10重量部とを配合し、直径15.5ws
+、厚さ0. 2mm、重さ36mgのペレットに成形
したものである。
The cells of these examples have a diameter of 20 mm, as shown in FIG.
m■, coin-shaped with 2.5 fins in height. Negative electrode pellet 2
is a mixture of 90 parts by weight of coke treated as described below and 10 parts by weight of polypropylene powder, and a diameter of 15.5 ws.
+, thickness 0. It was molded into pellets with a diameter of 2 mm and a weight of 36 mg.

正極ペレット1は、LiCo0t85重量部と黒鉛10
重量部とテフロン5重量部とを配合し、直径15.51
1、厚さ1.7m、重さ1.1gのペレットに成形した
ものである。
Positive electrode pellet 1 contains 85 parts by weight of LiCo0t and 10 parts by weight of graphite.
parts by weight and 5 parts by weight of Teflon, and the diameter is 15.51.
1. It was molded into a pellet with a thickness of 1.7 m and a weight of 1.1 g.

正、負極ペレット1.2は、ポリプロピレン製のセパレ
ータ3を両者間に介在させた状態で、正極ケース4aと
負極ケース4bとからなるケース4に収容されている。
The positive and negative electrode pellets 1.2 are housed in a case 4 consisting of a positive electrode case 4a and a negative electrode case 4b, with a polypropylene separator 3 interposed therebetween.

またケース4には、プロピレンカーボネート(PC)と
ジメトキシエタン(DME)との混合比が1:1の溶液
に過塩素酸リチウム1モルを溶解させた電解液が注入さ
れている。そしてこのケース4は、正、負極ケース4a
、4bの間にガスケット5を介在させた状態でかしめる
ことによって、密封されている。
Furthermore, an electrolytic solution in which 1 mole of lithium perchlorate is dissolved in a solution of propylene carbonate (PC) and dimethoxyethane (DME) at a mixing ratio of 1:1 is injected into case 4. And this case 4 is positive and negative electrode case 4a
, 4b are crimped with a gasket 5 interposed between them, thereby sealing them.

ところで、下表に示す様に、負極ペレット2を構成して
いるコークスは、従来技術による第1〜第4比較例では
、市販されている各種の塊状コークスをめのう乳鉢で約
10μmの大きさに粉砕したものである。
By the way, as shown in the table below, the coke constituting the negative electrode pellet 2 was obtained by grinding various types of commercially available lump coke into a size of about 10 μm in an agate mortar in the first to fourth comparative examples based on the conventional technology. It is crushed.

(以下、余白次頁に続く) また第1〜第3実施例では、これらの粉状コークスを、
数μmの大きさに再粉砕し、その後、Arの気流中にお
いて、1300℃または1400℃の温度で1時間加熱
処理したものである。
(The following margin continues on the next page) In addition, in the first to third examples, these powdered cokes were
It was re-pulverized to a size of several μm, and then heat-treated in an Ar gas flow at a temperature of 1300° C. or 1400° C. for 1 hour.

第1図は、これらの実施例及び比較例についての充放電
試験の結果を示している。
FIG. 1 shows the results of charge and discharge tests for these Examples and Comparative Examples.

この充放電試験では、充電電流密度1.06mA/cn
”で終止電圧3.6vまで充電を行い、次に放電電流密
度1.06mA/am”で終止電圧2.5vまで放電を
行って、これを1サイクルとし、サイクル数と電池容量
(及び粉状コークスである負極活物質1g当りの容量)
との関係を求めた。
In this charge/discharge test, the charging current density was 1.06 mA/cn.
Charge to a final voltage of 3.6 V at a discharge current density of 1.06 mA/am, and then discharge to a final voltage of 2.5 V at a discharge current density of 1.06 mA/am. Capacity per gram of negative electrode active material which is coke)
I sought a relationship with.

第1図によれば、何れの実施例においても500サイク
ル以上でも容量が殆ど低下せず、また実施例間で差が殆
どなかった。
According to FIG. 1, in any of the examples, the capacity hardly decreased even after 500 cycles, and there was almost no difference between the examples.

これに対して、何れの比較例においても何れの実施例よ
りもサイクル特性が良くなく、しかも比較例間でサイク
ル特性に差があった。
On the other hand, all of the comparative examples had poorer cycle characteristics than any of the examples, and there were differences in cycle characteristics between the comparative examples.

そこで、寿命が尽きた比較例の電池を解体したところ、
電解液が着色していた。これは、負極活物質であるコー
クス中に不純物が不均一に含まれており、この不純物が
溶出したためと考えられる。
So, when we dismantled the comparative example battery that had reached the end of its lifespan, we found that
The electrolyte was colored. This is thought to be because impurities were unevenly contained in the coke, which is the negative electrode active material, and these impurities were eluted.

またこの不純物は、複素環式化合物がある程度高分子化
したものであると考えられる。
Moreover, this impurity is considered to be a heterocyclic compound that has been polymerized to some extent.

この様にコークスが不純物を不均一に含んでいるのは、
その製造工程に起因する。この製造工程では、原料であ
るピッチを焼成して生コークスとし、この生コークスを
粗砕器で粗砕してからか焼することによって、1+u+
〜5cm程度の大きさの塊状コークスを製造する。
The reason why coke contains impurities unevenly is because
This is due to its manufacturing process. In this manufacturing process, raw material pitch is fired to produce raw coke, and this raw coke is crushed in a crusher and then calcined to produce 1+u+
Produce lump coke with a size of ~5 cm.

ところが、か焼は半密閉状態で行われるので、生コーク
スに含まれていた不純物の雰囲気中で行われることにな
る。このため、製造されたコークスもこれらの不純物を
含んでいる。
However, since calcination is carried out in a semi-closed state, it is carried out in an atmosphere containing impurities contained in the raw coke. Therefore, the produced coke also contains these impurities.

シカモ、コークスの製造工程はコークスの種類や生産ロ
フトによって相違しているので、コークス中の不純物の
含有量も均一ではない。
Shikamo and coke manufacturing processes differ depending on the type of coke and production loft, so the content of impurities in coke is not uniform.

一方、実施例の電池の負極活物質として用いたコークス
では、加熱処理によって重量が5%程度減少した。従っ
て、この加熱処理によって、コークス中に含まれていた
不純物が飛散したと考えられる。
On the other hand, the weight of the coke used as the negative electrode active material of the battery of the example decreased by about 5% due to the heat treatment. Therefore, it is considered that impurities contained in the coke were scattered by this heat treatment.

加熱温度は、コークスが黒鉛化する1 800 ”Cを
超えなければ、実施例の13QO’Cや1400℃には
限定されない。つまり、300〜1800℃が好ましく
、900〜1600℃が更に好ましい。そして、加熱温
度が高ければ加熱時間は相対的に短(てよく、逆に加熱
温度が低ければ加熱時間を長(すればよい。
The heating temperature is not limited to 13QO'C or 1400°C in the example as long as it does not exceed 1800"C at which the coke graphitizes. In other words, 300 to 1800°C is preferable, and 900 to 1600°C is more preferable. If the heating temperature is high, the heating time may be relatively short; conversely, if the heating temperature is low, the heating time may be long.

但し、第3及び第4比較例で用いたコークスの様にか焼
温度自体が加熱温度と同等程度のコークスを用いた場合
は、実施例の様な処理を施しても効果がなかった。これ
は、結晶厚みLc等の構造が加熱処理に1つても均一に
ならないためと考えられる。
However, when a coke whose calcination temperature itself is comparable to the heating temperature, such as the coke used in the third and fourth comparative examples, was used, the treatment as in the example had no effect. This is considered to be because the structure, such as the crystal thickness Lc, does not become uniform even after the heat treatment.

また、粉砕されてい゛ない状態のコークスに対して実施
例の様な処理を施しても、やはり効果がなかった。これ
□は、加熱処理を施してもコークスから不純物が飛散し
にくいためと考えられる。
Further, even when the unpulverized coke was treated as in the example, there was still no effect. This □ is thought to be because impurities are difficult to scatter from the coke even after heat treatment.

なお、X線回折を行い、FeKα32″付近の002面
ピークから、上掲の表中の結晶厚みLcを得たが、この
結晶厚みLC自体とサイクル特性との間には明確な関係
を見出せなかった。
Although X-ray diffraction was performed and the crystal thickness Lc in the table above was obtained from the 002 plane peak near FeKα32'', no clear relationship could be found between the crystal thickness LC itself and the cycle characteristics. Ta.

以上、本発明の詳細な説明したが、本発明はこれらの実
施例に限定されるものではなく、種々の変形例が考えら
れ得る。
Although the present invention has been described in detail above, the present invention is not limited to these embodiments, and various modifications can be made.

例えば、粉状コークスの加熱処理を本実施例ではArの
気流中で行ったが、他の不活性ガスや更に水蒸気や二酸
化炭素の気流中で行ってもよく、真空中で行うこともで
きる。
For example, although the heat treatment of powdered coke was performed in an Ar gas flow in this example, it may be performed in an air flow of other inert gases, water vapor, or carbon dioxide, or in a vacuum.

また、本実施例ではLiCo0tを用いて正極ペレット
1を構成したので、二次電池の使用は充電から始めるが
、コークスを用いて構成されている負極ペレット2にL
iを予め含有させておけば、二次電池の使用を放電から
始めることができる。
In addition, in this example, since the positive electrode pellet 1 was constructed using LiCo0t, the use of the secondary battery starts with charging, but the negative electrode pellet 2 constructed using coke is
If i is included in advance, the use of the secondary battery can be started from discharging.

負極ペレット2にLiを予め含有させるには、例えば、
負極ペレット2とLi金属板とを電解液中に潰し、負極
ペレット2の電位をLi金属板の電位より高くして充電
を行えばよい。
To make the negative electrode pellet 2 contain Li in advance, for example,
The negative electrode pellet 2 and the Li metal plate may be crushed in an electrolytic solution, and charging may be performed by making the potential of the negative electrode pellet 2 higher than the potential of the Li metal plate.

従ってこの場合は、Mn01、Tih、FeS、、Mo
S s、v203、V11013 % CrzQ5 、
CrzOs等の様にLiを含有していなしくが充放電の
可能な活物質を用いて正極を構成することができる。こ
の場合でも、放電を行えば、例えばLiMn0zが形成
され、実施例と同様な状態になる。
Therefore, in this case, Mn01, Tih, FeS, ,Mo
S s, v203, V11013% CrzQ5,
The positive electrode can be constructed using an active material that does not contain Li, such as CrzOs, but can be charged and discharged. Even in this case, if discharge is performed, for example, LiMn0z will be formed, resulting in the same state as in the example.

〔発明の効果〕〔Effect of the invention〕

本発明による二次電池では、低コストのコークスを負極
活物質としているにも拘らずこのコークスは不純物を殆
ど含んでおらず且つ大きな活性を有しているので、サイ
クル特性が良好且つ均一である。
In the secondary battery according to the present invention, although low-cost coke is used as the negative electrode active material, this coke contains almost no impurities and has high activity, so the cycle characteristics are good and uniform. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例及び比較例のサイクル特性を示
すグラフ、第2図は本発明を適用し得る電池の側断面図
である。 なお図面に用いた符号において、 2−・−・・−・−・・−−−−−・−・・負極ペレッ
トである。
FIG. 1 is a graph showing cycle characteristics of examples and comparative examples of the present invention, and FIG. 2 is a side sectional view of a battery to which the present invention can be applied. In addition, in the reference numerals used in the drawings, 2-.--.--.-.---.

Claims (1)

【特許請求の範囲】[Claims]  粉砕された状態において不活性ガスの気流中または真
空中で且つ黒鉛化しない温度で加熱処理されたコークス
を負極活物質としている二次電池。
A secondary battery whose negative electrode active material is coke that is pulverized and heat-treated in an inert gas stream or vacuum at a temperature that does not cause graphitization.
JP63046168A 1988-02-29 1988-02-29 Secondary battery Pending JPH01221859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046168A JPH01221859A (en) 1988-02-29 1988-02-29 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046168A JPH01221859A (en) 1988-02-29 1988-02-29 Secondary battery

Publications (1)

Publication Number Publication Date
JPH01221859A true JPH01221859A (en) 1989-09-05

Family

ID=12739489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046168A Pending JPH01221859A (en) 1988-02-29 1988-02-29 Secondary battery

Country Status (1)

Country Link
JP (1) JPH01221859A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287911A (en) * 1995-04-18 1996-11-01 Mitsubishi Chem Corp Nonaqueous secondary battery
US5622793A (en) * 1992-05-25 1997-04-22 Nippon Steel Corporation Method for preparing negative electrode material for a lithium secondary cell
US5958622A (en) * 1996-03-28 1999-09-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Negative electrode material for lithium secondary batteries
WO2010131476A1 (en) 2009-05-15 2010-11-18 新日鐵化学株式会社 Anode active material for lithium secondary batteries, anode electrode for lithium secondary batteries, in-vehicle lithium secondary battery using said anode active material and anode electrode, and method for manufacturing an anode active material for lithium secondary batteries
WO2010131473A1 (en) 2009-05-15 2010-11-18 新日鐵化学株式会社 Anode active material for lithium secondary batteries, anode electrode for lithium secondary batteries, in-vehicle lithium secondary battery using said anode active material and anode electrode, and method for manufacturing an anode active material for lithium secondary batteries
EP2453505A1 (en) 2010-11-12 2012-05-16 Nippon Steel Chemical Co., Ltd. Negative electrode active material of lithium secondary battery, secondary battery using the same, method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622793A (en) * 1992-05-25 1997-04-22 Nippon Steel Corporation Method for preparing negative electrode material for a lithium secondary cell
JPH08287911A (en) * 1995-04-18 1996-11-01 Mitsubishi Chem Corp Nonaqueous secondary battery
US5958622A (en) * 1996-03-28 1999-09-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Negative electrode material for lithium secondary batteries
WO2010131476A1 (en) 2009-05-15 2010-11-18 新日鐵化学株式会社 Anode active material for lithium secondary batteries, anode electrode for lithium secondary batteries, in-vehicle lithium secondary battery using said anode active material and anode electrode, and method for manufacturing an anode active material for lithium secondary batteries
WO2010131473A1 (en) 2009-05-15 2010-11-18 新日鐵化学株式会社 Anode active material for lithium secondary batteries, anode electrode for lithium secondary batteries, in-vehicle lithium secondary battery using said anode active material and anode electrode, and method for manufacturing an anode active material for lithium secondary batteries
US8877384B2 (en) 2009-05-15 2014-11-04 Nippon Steel Chemical Co., Ltd. Negative electrode active material of lithium secondary battery, negative electrode of lithium secondary battery, lithium secondary battery for vehicle installation using the negative electrode active material and negative electrode, and method for manufacturing the negative electrode active material
US9806342B2 (en) 2009-05-15 2017-10-31 Nippon Steel & Sumikin Chemical Co., Ltd. Negative electrode active material of lithium secondary battery, negative electrode of lithium secondary battery, lithium secondary battery for vehicle installation using the negative electrode active material and negative electrode, and method for manufacturing the negative electrode active material
EP2453505A1 (en) 2010-11-12 2012-05-16 Nippon Steel Chemical Co., Ltd. Negative electrode active material of lithium secondary battery, secondary battery using the same, method for manufacturing the same
US9070933B2 (en) 2010-11-12 2015-06-30 Nippon Steel Chemical Co., Ltd. Negative electrode active material of lithium secondary battery, secondary battery using the same, method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2884746B2 (en) Non-aqueous electrolyte secondary battery
EP0845825B1 (en) Lithium secondary battery
JP4185191B2 (en) Method for producing spinel type lithium manganate
JP3047693B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP3133318B2 (en) Rechargeable battery
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
CN113066988A (en) Negative pole piece and preparation method and application thereof
JPH01221859A (en) Secondary battery
JPH0737618A (en) Nonaqueous electrolyte secondary battery
JPH1064592A (en) Lithium secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH04237970A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
JP4165717B2 (en) Lithium secondary battery and manufacturing method thereof
JP3887849B2 (en) Nonaqueous electrolyte secondary battery and method for producing negative electrode for nonaqueous electrolyte secondary battery
JPH07183047A (en) Nonaqueous electrolyte secondary battery
JP2797526B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JPH0554888A (en) Manufacture of nonaqueous electrolyte secondary electrode
JP2526750B2 (en) Lithium secondary battery
JP3009673B2 (en) Non-aqueous electrolyte secondary battery
CN110137482B (en) Carbon-coated negative electrode material, preparation method thereof and battery
JPH0384874A (en) Manufacture of lithium secondary cell
JP2000243399A (en) Nonaqueous electrolyte secondary battery
JP3499180B2 (en) Method for producing spinel type lithium manganate
JPH02267858A (en) Nonaqueous electrolyte secondary battery
JPH02139863A (en) Non-aqueous electrolyte secondary battery