JPH01220853A - Hybrid integrated circuit - Google Patents

Hybrid integrated circuit

Info

Publication number
JPH01220853A
JPH01220853A JP63046576A JP4657688A JPH01220853A JP H01220853 A JPH01220853 A JP H01220853A JP 63046576 A JP63046576 A JP 63046576A JP 4657688 A JP4657688 A JP 4657688A JP H01220853 A JPH01220853 A JP H01220853A
Authority
JP
Japan
Prior art keywords
integrated circuit
semiconductor integrated
circuit element
wiring layer
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63046576A
Other languages
Japanese (ja)
Inventor
Takeo Ozawa
小沢 丈夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63046576A priority Critical patent/JPH01220853A/en
Publication of JPH01220853A publication Critical patent/JPH01220853A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Wire Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To restrain junction failure, improve heat dissipating effect, and increase mounting density, by forming a conductor wiring layer on a ceramic substrate whose main component is aluminum nitride, connecting a bump electrode formed on a semiconductor integrated circuit element to the conductor wiring layer, and mounting the semiconductor integrated circuit element. CONSTITUTION:On an aluminum nitride ceramic substrate 2, a conductor wiring layer 3 and a protective insulating film 4 are formed to constitute a wiring board 1. On the surface of a semiconductor integrated circuit element 11, a bump electrode 12 is formed. By fusion bonding the bump electrode 12 to the conductor wiring layer 3 of the circuit board 1, the semiconductor integrated circuit element 11 is mounted on the circuit board 1, and a hybrid integrated circuit is constituted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は配線基板上に半導体集積回路素子を搭載した混
成集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hybrid integrated circuit in which a semiconductor integrated circuit element is mounted on a wiring board.

〔従来の技術〕[Conventional technology]

従来、この種の混成集積回路は、アルミナ(Aft 0
3 )を主成分とするセラミック基板上に膜厚印刷技術
もしくは薄膜パターン形成技術を以て導体配線層を形成
し、このようにして得られた配線基板上に半導体集積回
路素子を導電性ペーストあるいは絶縁性ペーストなどの
グイボンディング剤を用いて搭載し、更に半導体集積回
路素子の電極と導体配線層をワイヤーボンディングによ
り接続していた。
Conventionally, this type of hybrid integrated circuit is made of alumina (Aft 0
3) A conductive wiring layer is formed on a ceramic substrate mainly composed of the following by using thick film printing technology or thin film patterning technology, and a semiconductor integrated circuit element is placed on the thus obtained wiring board using a conductive paste or an insulating paste. It was mounted using a bonding agent such as paste, and the electrodes of the semiconductor integrated circuit element and the conductor wiring layer were connected by wire bonding.

しかしながら、この構造では配線基板上の半導体集積回
路素子搭載部の周辺にボンディングワイヤを接続する導
体配線層を配置することを必要とし、半導体集積回路素
子の実装効率が低いものとなっている。
However, in this structure, it is necessary to arrange a conductive wiring layer for connecting bonding wires around the semiconductor integrated circuit element mounting portion on the wiring board, resulting in a low mounting efficiency of the semiconductor integrated circuit element.

そこで、従来では第3図に示すようなフリップチップ実
装方式を利用した混成集積回路が提案されている。
Therefore, conventionally, a hybrid integrated circuit using a flip-chip mounting method as shown in FIG. 3 has been proposed.

図において、11は電気的接続を行うために半田を半球
状に盛り上げた端子電極(以下、バンプ電極という)1
2を形成した半導体集積回路素子、21はアルミナセラ
ミック基板22上に導体配線層23が形成された配線基
板である。前記バンプ電極12は配線基板21の導体配
線層23に溶融接続され、これにより半導体集・積回路
素子11は配線基板21に搭載され、かつその電気的接
続がなされている。
In the figure, reference numeral 11 denotes a terminal electrode (hereinafter referred to as a bump electrode) 1 which is a hemispherical hemispherical heap of solder for electrical connection.
2 is a semiconductor integrated circuit element, and 21 is a wiring board in which a conductor wiring layer 23 is formed on an alumina ceramic substrate 22. The bump electrodes 12 are fused and connected to the conductor wiring layer 23 of the wiring board 21, so that the semiconductor integrated circuit element 11 is mounted on the wiring board 21 and electrically connected thereto.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のフリップチップ実装方式による混成集積
回路では、ワイヤーボンディングによって実装する場合
と比較して実装効率を向上できる反面、接合部となるバ
ンプ電極12がフレキシビリティに乏しいため、配線基
板21と半導体集積回路素子11の熱膨張係数の差異に
よる機械的ストレスに起因する接合不良が発生するとい
う問題がある。また配線基板と半導体集積回路素子が接
する部分が少ないために熱放散性に乏しく、放熱対策が
難しいという問題もある。
In the hybrid integrated circuit using the conventional flip-chip mounting method described above, the mounting efficiency can be improved compared to mounting by wire bonding. There is a problem in that bonding failures occur due to mechanical stress due to differences in thermal expansion coefficients of the integrated circuit elements 11. Another problem is that heat dissipation is poor because there are few contact areas between the wiring board and the semiconductor integrated circuit element, making it difficult to take heat dissipation measures.

本発明は上述した接合不良及び放熱対策を改善した混成
集積回路を提供することを目的としている。
An object of the present invention is to provide a hybrid integrated circuit with improved measures against the above-mentioned defective junctions and heat dissipation.

〔課題を解決するための手段] 本発明の混成集積回路は、窒化アルミニウムを主成分と
するセラミック基板上に導体配線層を形成して配線基板
を構成し、半導体集積回路素子に設けたバンプ電極を前
記導体配線層に接続して該半導体集積回路素子を前記配
線基板に搭載した構成としている。
[Means for Solving the Problems] The hybrid integrated circuit of the present invention has a wiring board formed by forming a conductive wiring layer on a ceramic substrate mainly composed of aluminum nitride, and bump electrodes provided on a semiconductor integrated circuit element. is connected to the conductor wiring layer, and the semiconductor integrated circuit element is mounted on the wiring board.

〔作用] 上述した構成では、窒化アルミニウムセラミック基板の
熱膨張係数がシリコンと同等であり、かつその熱伝導率
はアルミナセラミックの5〜8倍あり、シリコンで構成
される半導体集積回路素子との間における機械的ストレ
スを解消し、かつ放熱効果を向上する。
[Function] In the above-described configuration, the aluminum nitride ceramic substrate has a thermal expansion coefficient equivalent to that of silicon, and its thermal conductivity is 5 to 8 times that of alumina ceramic. This eliminates the mechanical stress caused by heat dissipation and improves the heat dissipation effect.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

図において、2は窒化アルミニウムセラミック基板であ
り、この上に導体配線層3と保護絶縁膜4を形成して配
線基板lを構成している。また、11は半導体集積回路
素子であり、その表面にはバンプ電極12を形成してい
る。そして、このバンプ電極12を前記配線基板1の導
体配線層3に溶融接続させることにより、半導体集積回
路素子11を配線基板lに搭載し、混成集積回路を構成
している。
In the figure, reference numeral 2 denotes an aluminum nitride ceramic substrate, on which a conductive wiring layer 3 and a protective insulating film 4 are formed to constitute a wiring board l. Further, 11 is a semiconductor integrated circuit element, and a bump electrode 12 is formed on the surface thereof. Then, by melting and connecting the bump electrodes 12 to the conductor wiring layer 3 of the wiring board 1, the semiconductor integrated circuit element 11 is mounted on the wiring board 1, thereby forming a hybrid integrated circuit.

ここで、前記窒化アルミニウムセラミック基板2は、窒
化アルミニウム粉末に焼結助剤として酸化イツトリウム
粉末を混合し、有機バインダーを加え、ドクターブレー
ド法によって作成した厚さ200μmのグリーンシート
を積層した後、脱バインダーを行い1900°Cで常圧
焼成して形成している。
Here, the aluminum nitride ceramic substrate 2 is made by mixing yttrium oxide powder as a sintering aid with aluminum nitride powder, adding an organic binder, and laminating a green sheet with a thickness of 200 μm made by a doctor blade method. It is formed by applying a binder and firing at 1900°C under normal pressure.

このよう番こして形成される窒化アルミニウムセラミッ
ク基板1の熱膨張係数はシリコンの熱膨張係数と同等の
4.5X10−’/k、熱伝導率は100w/mkであ
った。
The aluminum nitride ceramic substrate 1 thus formed had a thermal expansion coefficient of 4.5×10-'/k, which is equivalent to that of silicon, and a thermal conductivity of 100 w/mk.

また、前記導体配線層3はTi−Pd−Au積層膜から
なり、これを前記基板1に全面形成した後、公知の薄膜
パターン形成工程を以て所要のパターンに形成している
The conductive wiring layer 3 is made of a Ti--Pd--Au laminated film, which is formed on the entire surface of the substrate 1 and then formed into a desired pattern using a known thin film pattern forming process.

なお、半導体集積回路素子11はシリコンで形成され、
かつバンプ電極12はその表面に半球状に形成されてい
ることはこれまでと同じである。
Note that the semiconductor integrated circuit element 11 is made of silicon,
As before, the bump electrode 12 is formed in a hemispherical shape on its surface.

また、図示は省略するが、半導体集積回路素子11を搭
載した配線基板1に外部端子を接続し、かつ外装樹脂に
よる封止を行って混成集積回路を形成することは言うま
でもない。
Although not shown in the drawings, it goes without saying that external terminals are connected to the wiring board 1 on which the semiconductor integrated circuit element 11 is mounted and sealed with an exterior resin to form a hybrid integrated circuit.

ここで、前記窒化アルミニウムセラミック基板2の他の
製造方法として、窒化アルミニウム粉末に焼結助剤とし
て炭化カルシウム粉末を混合し、有機バインダーを加え
、ドクターブレード法によって作成した厚さ100μm
のグリーンシートを積層した後、脱バインダーを行い1
900°Cで常圧焼成する方法も採用できる。この窒化
アルミニウムセラミック基板の熱膨張係数は4.3X1
0−’/k、熱伝導率は160w/mkであった。
Here, as another method for manufacturing the aluminum nitride ceramic substrate 2, a thickness of 100 μm was prepared by mixing aluminum nitride powder with calcium carbide powder as a sintering aid, adding an organic binder, and using a doctor blade method.
After laminating the green sheets, the binder is removed and 1
A method of firing at 900°C under normal pressure can also be adopted. The thermal expansion coefficient of this aluminum nitride ceramic substrate is 4.3X1
0-'/k, and the thermal conductivity was 160 w/mk.

このようにして得られた混成集積回路を一55°C〜1
50°C間の温度サイクル試験により評価したところ第
2図に示すような結果が得られた。
The hybrid integrated circuit thus obtained was heated to 155°C.
When evaluated by a temperature cycle test at 50°C, the results shown in FIG. 2 were obtained.

なお、ここでは、比較のために96%アルミナセラミッ
ク基板からなる配線基板を用いた従来と同じ混成集積回
路の温度サイクル試験を同時に行っている。なお、この
96%アルミナセラミック基板の熱膨張係数は、8X1
0−’/k、熱伝導率は20w/ m kである。
For comparison, a temperature cycle test was also conducted on a conventional hybrid integrated circuit using a wiring board made of a 96% alumina ceramic board. The thermal expansion coefficient of this 96% alumina ceramic substrate is 8X1
0-'/k, and the thermal conductivity is 20w/mk.

第2図において、グラフの横軸は試験サイクル数(対数
目盛)、縦軸は累積不良率である。そして、Aは前記実
施例によって得られた混成集積回路の試験結果、Bは比
較のために形成した従来型の混成集積回路の試験結果で
ある。
In FIG. 2, the horizontal axis of the graph is the number of test cycles (logarithmic scale), and the vertical axis is the cumulative failure rate. A shows the test results of the hybrid integrated circuit obtained in the above embodiment, and B shows the test results of the conventional hybrid integrated circuit formed for comparison.

これより明らかなように、従来型の混成集積回路では2
00サイクル以後不良が多発するのに対し、本例のもの
は300サイクルに至ってもなお不良の発生は皆無であ
り、その改善の効果の著しいことが明確に示されている
As is clear from this, in conventional hybrid integrated circuits, 2
While defects frequently occur after 00 cycles, in this example, no defects occurred even after 300 cycles, clearly showing that the improvement was significant.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、バンプ電極を用いたフリ
ップチップ法により半導体集積回路素子の搭載を行って
いるために、実装効率の向上による高集積化が可能とな
る。
As explained above, in the present invention, since semiconductor integrated circuit elements are mounted by the flip-chip method using bump electrodes, it is possible to achieve high integration by improving mounting efficiency.

また、配線基板にシリコンと同等の熱膨張係数を有する
窒化アルミニウムセラミックを用いているので、熱スト
レスに起因するバンプ電極の接合不良を抑止し、ひいて
は混成集積回路の信頼性を向上することが可能となる。
In addition, since aluminum nitride ceramic, which has a coefficient of thermal expansion equivalent to that of silicon, is used for the wiring board, it is possible to prevent bonding failures of bump electrodes caused by thermal stress, thereby improving the reliability of hybrid integrated circuits. becomes.

更に、窒化アルミニウムセラミックは、従来用いられて
いるアルミナセラミック基板の5〜8倍の熱伝導率を有
しているので、この基板を通して半導体集積回路素子の
放熱効果を向上させ、かつ半導体集積回路素子の実装密
度をさらに向上することが可能となる。
Furthermore, since aluminum nitride ceramic has a thermal conductivity 5 to 8 times higher than that of conventionally used alumina ceramic substrates, it can improve the heat dissipation effect of semiconductor integrated circuit elements through this substrate, and improve the thermal conductivity of semiconductor integrated circuit elements. This makes it possible to further improve the packaging density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の混成集積回路の一実施例の断面図、第
2図は本発明及び従来の混成集積回路の温度サイクル試
験結果を示す図、第3図は従来のフリップチップ実装構
造の混成集積回路の断面図である。 1・・・配線基板、2・・・窒化アルミニウムセラミッ
ク基板、3・・・導体配線層、4・・・保護絶縁層、1
1・・・半導体集積回路素子、12・・・バンプ電極、
21・・・配線基板、22・・・アルミナセラミック、
23・・・導体配線層。
Fig. 1 is a cross-sectional view of an embodiment of the hybrid integrated circuit of the present invention, Fig. 2 is a diagram showing the temperature cycle test results of the inventive and conventional hybrid integrated circuits, and Fig. 3 is a diagram of the conventional flip-chip mounting structure. 1 is a cross-sectional view of a hybrid integrated circuit. DESCRIPTION OF SYMBOLS 1... Wiring board, 2... Aluminum nitride ceramic substrate, 3... Conductor wiring layer, 4... Protective insulating layer, 1
1... Semiconductor integrated circuit element, 12... Bump electrode,
21... Wiring board, 22... Alumina ceramic,
23... Conductor wiring layer.

Claims (1)

【特許請求の範囲】[Claims] 1、窒化アルミニウムを主成分とするセラミック基板上
に導体配線層を形成して配線基板を構成し、半導体集積
回路素子に設けたバンプ電極を前記導体配線層に接続し
て該半導体集積回路素子を前記配線基板に搭載したこと
を特徴とする混成集積回路。
1. A conductive wiring layer is formed on a ceramic substrate mainly composed of aluminum nitride to form a wiring board, and bump electrodes provided on a semiconductor integrated circuit element are connected to the conductive wiring layer to form the semiconductor integrated circuit element. A hybrid integrated circuit mounted on the wiring board.
JP63046576A 1988-02-29 1988-02-29 Hybrid integrated circuit Pending JPH01220853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046576A JPH01220853A (en) 1988-02-29 1988-02-29 Hybrid integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046576A JPH01220853A (en) 1988-02-29 1988-02-29 Hybrid integrated circuit

Publications (1)

Publication Number Publication Date
JPH01220853A true JPH01220853A (en) 1989-09-04

Family

ID=12751127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046576A Pending JPH01220853A (en) 1988-02-29 1988-02-29 Hybrid integrated circuit

Country Status (1)

Country Link
JP (1) JPH01220853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259571A (en) * 1990-03-08 1991-11-19 Fujitsu Ltd Photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259571A (en) * 1990-03-08 1991-11-19 Fujitsu Ltd Photodetector

Similar Documents

Publication Publication Date Title
US5286927A (en) Method of manufacturing circuit board and circuit board itself manufactured by said method
JPH0332914B2 (en)
US4908696A (en) Connector and semiconductor device packages employing the same
US7110241B2 (en) Substrate
JPH0568877B2 (en)
JPH01220853A (en) Hybrid integrated circuit
JPH07162157A (en) Multilayered board
JPS6243155A (en) Integrated circuit package
JPS6016749B2 (en) Packages for integrated circuits
JP2817553B2 (en) Semiconductor package structure and method of manufacturing the same
JP2506270B2 (en) High thermal conductivity circuit board and high thermal conductivity envelope
JPH02106956A (en) Semiconductor device and manufacture thereof
JPH10242324A (en) Electrode-built-in ceramic substrate and manufacture thereof
CN107170878A (en) The ceramic substrate and preparation method of a kind of nanometer Ag composite solder paste LED/light source
JPH01205558A (en) Hybrid integrated circuit
JP2004281470A (en) Wiring board
JPH04167553A (en) Semiconductor device
JP2004288661A (en) Wiring board
JP2004014995A (en) Thermoelectric transformation module and its manufacturing method
JP2000236034A (en) Package for electronic component
JP2000114442A (en) Package for electronic part
JP3148941B2 (en) Ceramic circuit board
JPH0636601Y2 (en) Circuit board
JP3931360B2 (en) Thick film multilayer substrate
JP2798188B2 (en) Semiconductor device test equipment