JPH01219157A - Formation of extra thin metallic vapor-deposited film - Google Patents

Formation of extra thin metallic vapor-deposited film

Info

Publication number
JPH01219157A
JPH01219157A JP4259488A JP4259488A JPH01219157A JP H01219157 A JPH01219157 A JP H01219157A JP 4259488 A JP4259488 A JP 4259488A JP 4259488 A JP4259488 A JP 4259488A JP H01219157 A JPH01219157 A JP H01219157A
Authority
JP
Japan
Prior art keywords
base material
vapor
metal
strip
boats
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4259488A
Other languages
Japanese (ja)
Inventor
Masahiro Yamaji
山路 雅洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP4259488A priority Critical patent/JPH01219157A/en
Publication of JPH01219157A publication Critical patent/JPH01219157A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To stabilize the film thickness of a metal vapor-deposited onto a base material by disposing plural composite boats equipped with storage tanks in which horizontal cross-sectional areas and depths are specified, respectively, in the lower part of a band-shaped base material to uniformize the quantity of metallic vapor generated. CONSTITUTION:A couple of masks 4 is disposed right under a process drum 2 and a band-shaped base material 1, and an exposure distance 3 is regulated. Plural composite boats 5 are disposed at equal spaces in the lower part of a vapor deposition zone 10 formed by the masks 4. The boats 5 are equipped with storage tanks 50 of 300-700mm<2> horizontal cross-sectional area and >=2mm depth, respectively, where linear metals of Al, etc., supplied are melted by means of resistance heating to generate metallic vapor 6. Only the metallic vapor 6 ascending through the exposure distance 3 formed by the masks 4 is vapor-deposited onto the vapor deposition zone 10 at the rear surface of the base material 1. By this method, Al, etc., can be uniformly vapor-deposited onto the surface of the base material 1 in the width and longitudinal directions.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は真空中で高分子フィルム、紙などの帯状基材表
面に金属を蒸着する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of vapor depositing metal onto the surface of a strip-shaped substrate such as a polymer film or paper in vacuum.

〔従来の技術〕[Conventional technology]

高分子フィルム、紙などの帯状基材の表面にアルミニウ
ムなどの金属を蒸着すると、膓材木来の特性に加え、美
麗な金属光沢が得られる他、ガスおよび水蒸気などに対
する気密性が向上し、また遮光性も極めて向上するとい
った数々の特長が付加されるので、最近極めて使用量が
多くなっている。特に表面色感の向上、高い気密性と優
れた遮光性tよ食品用包装材として最適の特性であるた
め、最近この用途に多くの金属蒸着フィルムが使用され
ている。金属蒸着の方法としては真空中で上方より一定
速度で下降して来た帯状基材を水平に設置した回転する
プロセスドラムによって反転し上方に移送さける工程で
、プロセスドラムの下方に金属蒸発用のコンポジットボ
ートを設け、該ボート上に金属を供給し、加熱、蒸発さ
せることにより、金属蒸気を基材下面に蒸着させる方法
が一般的である。一般に使用されているコンポジットボ
ートの貯槽部の水平断面積は150〇−程度が普通であ
る。そして、金属蒸着の膜厚は基材の移送速度または金
属蒸気の発生量をコントロールすることにより調節され
、包装袋に要求される気密性、遮光性を十分発揮する5
00〜1000人の範囲の膜厚を持つ金属蒸着フィルム
が多り1!J造されていた。
When metals such as aluminum are vapor-deposited on the surface of strip-shaped substrates such as polymer films and paper, in addition to the characteristics of the wood, it not only provides a beautiful metallic luster, but also improves airtightness against gases and water vapor. Recently, it has been used in an extremely large amount because it has many additional features such as extremely improved light-shielding properties. In particular, many metallized films have recently been used for this purpose because they have properties that are ideal for food packaging materials, such as improved surface color, high airtightness, and excellent light-shielding properties. The metal evaporation method is a process in which a strip-shaped substrate descends from above at a constant speed in a vacuum, is reversed by a horizontally installed rotating process drum, and transported upwards. A common method is to provide a composite boat, supply metal onto the boat, and heat and evaporate the metal vapor to deposit the metal vapor onto the lower surface of the substrate. The horizontal cross-sectional area of the storage tank of a commonly used composite boat is normally about 1,500 mm. The thickness of the metal vapor deposition film is adjusted by controlling the transfer speed of the base material or the amount of metal vapor generated, and the film achieves the airtightness and light-shielding properties required for packaging bags.
There are many metallized films with film thicknesses in the range of 00 to 1000 1! It was built in J.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記した帯状基材の移送速度をコントロ
ールする方法および金属の蒸発量をコントロールして膜
厚を調節する方法では、最近普及の著しい電子レンジ加
工食品のこげ目付き調理を可能とする包材においで要求
される40〜1o人という極めて薄い蒸着膜を得ること
は困難であった。
However, the method of controlling the transfer speed of the strip-shaped base material and the method of adjusting the film thickness by controlling the amount of metal evaporation cannot be used as a packaging material that enables browning of microwave-processed foods, which have recently become popular. It was difficult to obtain an extremely thin evaporated film of 40 to 100 ml as required.

すなわち通常は500〜1000人程度の比較的厚い膜
厚の金属蒸着を行っているが、この装置で40〜70人
の膜厚にするためには、現行の帯状基材の移送速度20
0〜600m /分を10倍以上にも速めなければなら
ない。しかし移送速度を10@以上にも速めることは機
械構造上実質的に困難であり、たとえ数倍程度速めるこ
とが可能であっても騒音が異常に大きくなるばかりでな
く、帯状基材は薄い上に金属蒸着部は加熱されているの
で、これを高速で移送すると回転しているプロセスドラ
ムの所で帯状基材が捩じれてしわが出来るなど品質管理
上好ましくない点が多数発生した。
In other words, normally 500 to 1,000 people perform metal vapor deposition with a relatively thick film thickness, but in order to achieve a film thickness of 40 to 70 people with this equipment, the current transfer speed of the strip substrate is 20%.
The speed from 0 to 600 m/min must be increased by more than 10 times. However, it is practically difficult to increase the transfer speed to 10@ or more due to the mechanical structure, and even if it were possible to increase the transfer speed by several times, not only would the noise be abnormally large, but the strip-shaped base material is thin and Since the metal-deposited part is heated, when it is transferred at high speed, the belt-shaped base material is twisted and wrinkled at the rotating process drum, which causes many unfavorable quality control problems.

一方、帯状基材の移送速度は変えずに金属蒸発量を1/
10に減少させることによっても蒸着膜厚を薄くするこ
とが可能である。この場合は通常熱源の温度は一定にし
て、コンポジットボートに供給する金属の供給速度を変
えて蒸発量を調節することになるが、供給の速度が極端
に遅いと、供給金属が瞬時に蒸発してしまい、供給追=
蒸発1となって供給速度の変動が直接金属蒸着mの変動
となるという欠点があり、また、コンポジットボートの
貯槽の水平断面積に比べて溶融する金属Qが少なすぎる
ため、該貯槽の底に部分的に溜るので蒸発が一様でなく
、従って蒸着膜厚の変動も大きいという問題点のあるこ
とが判った。
On the other hand, the amount of metal evaporation is reduced by 1/1 without changing the transfer speed of the strip-shaped base material.
It is also possible to reduce the thickness of the deposited film by reducing the thickness to 10. In this case, the temperature of the heat source is usually kept constant and the amount of evaporation is adjusted by changing the supply rate of the metal supplied to the composite boat, but if the supply rate is extremely slow, the supplied metal will evaporate instantly. Because of this, the supply is delayed.
There is a disadvantage that fluctuations in the supply rate directly result in fluctuations in the metal vapor deposition m due to evaporation 1, and also because there is too little metal Q to melt compared to the horizontal cross-sectional area of the storage tank of the composite boat, It has been found that there is a problem that evaporation is not uniform due to partial accumulation, and therefore, there is a large variation in the thickness of the deposited film.

さらには上記した、帯状基材の移送速度および金属の供
給速度の両者をコントロールした場合であっても、前述
のような極めて薄い蒸着膜を、均一にコントロールする
ことは、実際上不可能であることも判った。
Furthermore, even if both the transport speed of the strip base material and the metal supply speed are controlled, it is practically impossible to uniformly control the extremely thin vapor deposited film as described above. I also realized that.

(i!題を解決するための手段) 本発明は上記した従来技術の持つ課題を考慮してなされ
たもので、真空中で帯状基材が上方より下降し、水平に
設置された回転するプロセスドラムによって反転上昇す
る工程で、プロセスドラムおよび帯状基材の下方に、水
平断面積が300〜700−1深さ2ml+!X上の貯
槽を有するコンポジットボートを帯状基材の幅方向に2
00.以下の開隔で配置し、該コンポジットボートに金
属を連続的に供給、加熱し、金属蒸気を発生させて該基
材の下面に設けた露出距離100〜300mmの蒸着部
に金属を蒸着させることを特徴とする極薄金属蒸着膜の
形成方法を提供するものである。
(i!Means for solving the problem) The present invention has been made in consideration of the problems of the prior art described above, and is a rotating process in which a strip base material is lowered from above in a vacuum and is placed horizontally. In the process of being reversed and raised by the drum, the horizontal cross-sectional area is 300 to 700-1 and the depth is 2 ml+ below the process drum and the strip-shaped substrate! A composite boat with a storage tank on
00. Arranged with the following spacing, metal is continuously supplied to the composite boat, heated, and generates metal vapor to deposit the metal on the evaporation portion with an exposed distance of 100 to 300 mm provided on the lower surface of the base material. The present invention provides a method for forming an ultra-thin metal vapor deposition film characterized by the following.

〔作 用〕[For production]

本発明になる金属蒸着膜の形成方向においては真空中で
帯状基材が上方より一定速度で下降、水平に設置された
プロセスドラムによって反転上昇する工程において、プ
ロセスドラムおよび帯状基材の下方に設けたコンポジッ
トボートの貯槽の水平断面積が十分小さいので、該ボー
トに連続供給される金属は溶融されて該ボートの貯槽内
に溜る。
In the formation direction of the metal vapor deposited film according to the present invention, in a process in which a strip-shaped substrate descends from above at a constant speed in a vacuum, and is reversed and raised by a horizontally installed process drum, the strip-shaped substrate is provided below the process drum and the strip-shaped substrate. The horizontal cross-sectional area of the composite boat storage tank is sufficiently small that the metal continuously fed to the boat is melted and collected in the boat storage tank.

貯槽は2mm以上の深さとしているので、溶融金属の深
さを監視しながら金属を供給することにより、コンポジ
ットボートの貯槽内で不足したり、溢れ出たりすること
がなく、溶融金属の表面積は常に一定し、該表面から蒸
発する金属蒸気の量も一定する。従って立ち登って来る
金属蒸気は帯状基材の下面に請けた露出距離100〜3
00mの蒸着部に一様に蒸着される。
The storage tank has a depth of 2 mm or more, so by supplying metal while monitoring the depth of the molten metal, there is no shortage or overflow in the storage tank of the composite boat, and the surface area of the molten metal is It is always constant and the amount of metal vapor evaporating from the surface is also constant. Therefore, the rising metal vapor has an exposure distance of 100 to 3
It is uniformly deposited on a deposition area of 00 m.

(実施例〕 つぎに本発明を実施例に基づいて詳細に説明する。(Example〕 Next, the present invention will be explained in detail based on examples.

第1図は本発明になる真空蒸着方法の要部を示したもの
で巻き出しロール(図示せず)に巻かれていた前処理を
施した幅50Gmmの帯状基材(例えばポリエチレン)
1が右手上方より一定の速度(例えば500m/分)で
下降して来て、回転しているプロセスドラム2によって
反転、左手上方の巻き取りロール(図示せず)に巻かれ
ている。ブロセスドラム2および帯状基材1の直下に該
基材全幅に渡って該基材の移送方向の露出距離3が自在
に調節できる一対のマスク4が配置され、露出距離3が
180#+1に調整されている。マスク4によって形成
された帯状基材1の蒸着部10の下方に、線状のアルミ
ニウムを連続供給する供給ノズル(図示せず)を備えた
コンポジットボート(グラファイト製金属蒸発用容器)
5が帯状基材1の幅方向に等間隔に5個配置されている
。該ボートは水平断面積450s! (幅151Il#
I、長さ30Ill#I)、深さ3麿の貯槽を備え、抵
抗加熱により供給された線状の金属(例えばアルミニウ
ム)を大略2Mの深さになるように溶融し、金属蒸気6
を発生させている。そして、マスク4によって形成され
た露出距離3の間を上昇する金属蒸気6のみが帯状基材
1の下面の蒸着部10に蒸着している。帯状基材1の表
面にはアルミニウムが50〜60人の厚さで幅および長
手方向に均一に蒸着した。
FIG. 1 shows the main parts of the vacuum deposition method according to the present invention, in which a pretreated strip-shaped base material (for example, polyethylene) with a width of 50 Gmm is wound around an unwinding roll (not shown).
1 comes down from above the right hand at a constant speed (for example, 500 m/min), is reversed by the rotating process drum 2, and is wound onto a take-up roll (not shown) above the left hand. Directly below the process drum 2 and the strip-shaped base material 1, a pair of masks 4 are arranged over the entire width of the base material, and the exposure distance 3 in the transport direction of the base material can be freely adjusted, and the exposure distance 3 is adjusted to 180#+1. has been done. A composite boat (graphite metal evaporation container) equipped with a supply nozzle (not shown) that continuously supplies linear aluminum below the evaporation area 10 of the strip base material 1 formed by the mask 4
5 are arranged at equal intervals in the width direction of the strip-shaped base material 1. The horizontal cross-sectional area of this boat is 450s! (Width 151Il#
It is equipped with a storage tank with a length of 30 Ill#I) and a depth of 3 mm, and a linear metal (for example, aluminum) supplied by resistance heating is melted to a depth of approximately 2 m, and the metal vapor is heated to a depth of 6 m.
is occurring. Then, only the metal vapor 6 rising through the exposure distance 3 formed by the mask 4 is deposited on the deposition portion 10 on the lower surface of the strip-shaped base material 1 . Aluminum was uniformly deposited on the surface of the strip base material 1 to a thickness of 50 to 60 mm in the width and length directions.

コンポジットボート5の貯4ff50の水平断面積は3
00〜700−が望ましい。300−未満では金属の蒸
発Φが少ないため、幅が200〜600sの帯状基材1
を200〜700m /分の移送速度で電子レンジ用包
材に望ましい40〜70人の範囲の蒸@膜を得るには多
数のコンポジットボートを配置しな各プればならず、全
てのコンポジットボートの蒸発口を一定に制御するのが
困難であり、一方、70〇−超では貯槽50の水平断面
積が大きくなり過ぎて底の一部にしか溶融金属が溜らな
くなるという問題点が発生7る。また、貯槽50に温度
ムラが生じて、蒸発量が均一でなくなるという問題点も
発生量る。
The horizontal cross-sectional area of the storage 4ff50 of composite boat 5 is 3
00-700- is desirable. If it is less than 300, the metal evaporation Φ is small, so the strip base material 1 with a width of 200 to 600 s
In order to obtain the desired 40 to 70 steaming film for microwave packaging at a transfer speed of 200 to 700 m/min, a large number of composite boats must be arranged, and each composite boat must be It is difficult to control the evaporation port to a constant level, and on the other hand, if the evaporation port exceeds 700, the horizontal cross-sectional area of the storage tank 50 becomes too large, causing the problem that molten metal only accumulates in a part of the bottom. . Further, there is a problem that temperature unevenness occurs in the storage tank 50, and the amount of evaporation becomes uneven.

貯槽50の深さを2M以上とするのは、溶融金属を安定
して貯えるためである。2#1未満の深さでは、金属の
供給量と蒸発量が常に一致していないと、不足して底が
露出したり、過剰となって、溢れるという危険がある。
The reason why the depth of the storage tank 50 is set to 2M or more is to stably store the molten metal. At a depth of less than 2#1, if the amount of metal supplied and the amount of evaporation do not always match, there is a risk that there will be a shortage and the bottom will be exposed, or there will be an excess and it will overflow.

しかし、2sa+以上の深さがあれば供給量と蒸発量に
少し位いの誤差があっても溶融金属の深さを監視しなが
ら装置を運転中に調整することが充分可能である。尚、
5m+以上深くすると帯状基材1とコンポジットボート
5の位置関係、即ち、上下の距離と帯状基材1の幅方向
への配列の関係によっては、金属蒸気6の発生方向に方
向性が生じるので、帯状基材1の幅方向の蒸着膜厚に変
動が生じる危険がある。この様な場合はコンポジットボ
ー1・5の配置間隔を小さくするなどの配慮が必要とな
る。露出距fi13は狭い方が金属の蒸@吊をより正確
に制御可能となるが、100s+未満ではマスク4に付
着する金属のmが多くなり経済的ではない。一方300
#1llIを越すと貯槽50の水平断面積及び配置関係
にもよるが、蒸着量を制御するのが困難となる。従って
、本発明では露出距離は100〜300s+とした。
However, if the depth is 2 sa+ or more, even if there is a slight error between the supply amount and the evaporation amount, it is possible to adjust the depth of the molten metal while the device is in operation while monitoring the depth of the molten metal. still,
If the depth is 5 m+ or more, depending on the positional relationship between the strip base material 1 and the composite boat 5, that is, the vertical distance and the arrangement of the strip base material 1 in the width direction, directionality will occur in the direction in which the metal vapor 6 is generated. There is a risk that the thickness of the deposited film in the width direction of the strip-shaped base material 1 will vary. In such a case, consideration must be given to reducing the interval between composite bows 1 and 5. The narrower the exposure distance fi13, the more accurately the metal evaporation can be controlled, but if it is less than 100 seconds, the amount of metal attached to the mask 4 increases, which is not economical. On the other hand, 300
If #1llI is exceeded, it becomes difficult to control the amount of vapor deposition, although it depends on the horizontal cross-sectional area and arrangement of the storage tank 50. Therefore, in the present invention, the exposure distance was set to 100 to 300 s+.

コンポジットボート5を帯状基材1の幅方向に200、
以下の間隔で配置するのは、蒸着金属の歩留り向上と幅
方向に金属蒸着膜厚の変動を小さく抑えるためである。
200 of composite boats 5 in the width direction of the strip-shaped base material 1;
The reason why they are arranged at the following intervals is to improve the yield of deposited metal and to suppress variations in the thickness of the deposited metal film in the width direction.

200mを超える間隔で配置し、金属蒸着膜の変動を抑
えるためにはコンポジットボート5を帯状基材1の可成
り下に設けなければならないが、この様な配置では帯状
基材1の下側に設けたマスク4に付着する邑が多くなる
。従って、本発明ではコンポジットボート5は200.
以下の間隔で帯状基材1の下方幅方向に配置する。
In order to arrange the composite boats 5 at intervals of more than 200 m and to suppress fluctuations in the metal vapor deposition film, the composite boats 5 must be provided considerably below the strip-shaped base material 1. This increases the number of particles that adhere to the provided mask 4. Therefore, in the present invention, the composite boat 5 is 200.
The strip base material 1 is arranged in the lower width direction at the following intervals.

帯状基材1の移送速度は250〜5ooTrL/分位で
行うと経済的にも安定した金属蒸暑が行われる。
Economically stable metal steaming can be carried out when the belt-shaped base material 1 is transferred at a rate of about 250 to 5 ooTrL/min.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明になる金属熱@膜の形成方法
によれば、帯状基材の下方に水平断面積300〜700
−1深さ2麿以上の貯槽を有するコンポジットボートを
帯状基材の幅方向に200a+s+以下の間隔で配置し
、幅100〜300#IlNの蒸着部に金属を蒸もさせ
る方法であるので、供給する金属のmが少1であっても
貯槽の水平断面積が十分小さいため溶融金属が安定して
貯槽に溜る。
As explained above, according to the method of forming a metal heat film according to the present invention, a horizontal cross-sectional area of 300 to 700
-1 Composite boats having storage tanks with a depth of 2 mm or more are arranged at intervals of 200a+s+ or less in the width direction of the strip-shaped base material, and the metal is vaporized in the vapor deposition area with a width of 100 to 300 #IIN. Even if the m of the metal to be melted is as small as 1, the horizontal cross-sectional area of the storage tank is sufficiently small, so that the molten metal can stably accumulate in the storage tank.

従って、電子レンジ用包材で要求される40〜70人と
いう極薄金属蒸着膜の製造においても溶融金属の表面か
ら蒸発する金属蒸気の発生量が安定づるので、帯状基材
に蒸着する金属の膜厚が極めて安定した。
Therefore, the amount of metal vapor evaporated from the surface of the molten metal remains stable even in the production of the ultra-thin metal vapor deposition film required for microwave packaging materials by 40 to 70 people. The film thickness was extremely stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す説明図である。 1・・・帯状基材、 2・・・ブOセスドラム、 3・・・露出距離、 4・・・マスク、 5・・・コンポジットボート、 6・・・金属蒸気、 50・・・貯槽。 特許出願人      凸版印刷株式会社外1名 第1図 FIG. 1 is an explanatory diagram showing one embodiment of the present invention. 1... band-shaped base material, 2...Boo Seth Drum, 3...Exposure distance, 4...Mask, 5...Composite boat, 6...metal vapor, 50...Storage tank. Patent applicant: 1 person other than Toppan Printing Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 真空中で帯状基材が上方より下降し、水平に設置された
回転するプロセスドラムによって反転上昇する工程で、
プロセスドラムおよび帯状基材の下方に、水平断面積が
300〜700mm、深さ2mm以上の貯槽を有するコ
ンポジットボートを帯状基材の幅方向に200mm以下
の間隔で配置し、該コンポジットボートに金属を連続的
に供給、加熱し、金属蒸気を発生させて該基材の下面に
設けた露出距離100〜300mmの蒸着部に金属を蒸
着させることを特徴とする極薄金属蒸着膜の形成方法。
A process in which the strip-shaped substrate is lowered from above in a vacuum, and then reversed and raised by a rotating process drum installed horizontally.
Composite boats having storage tanks with a horizontal cross-sectional area of 300 to 700 mm and a depth of 2 mm or more are placed below the process drum and the strip base material at intervals of 200 mm or less in the width direction of the strip base material, and metal is placed in the composite boats. A method for forming an ultra-thin metal vapor deposition film, which comprises continuously supplying and heating to generate metal vapor to vapor deposit a metal onto a vapor deposition area with an exposed distance of 100 to 300 mm provided on the lower surface of the substrate.
JP4259488A 1988-02-25 1988-02-25 Formation of extra thin metallic vapor-deposited film Pending JPH01219157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4259488A JPH01219157A (en) 1988-02-25 1988-02-25 Formation of extra thin metallic vapor-deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4259488A JPH01219157A (en) 1988-02-25 1988-02-25 Formation of extra thin metallic vapor-deposited film

Publications (1)

Publication Number Publication Date
JPH01219157A true JPH01219157A (en) 1989-09-01

Family

ID=12640389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4259488A Pending JPH01219157A (en) 1988-02-25 1988-02-25 Formation of extra thin metallic vapor-deposited film

Country Status (1)

Country Link
JP (1) JPH01219157A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242500A (en) * 1990-08-27 1993-09-07 Leybold Aktiengesellschaft Apparatus for the continuous coating of band-type substrate
WO2006037516A1 (en) * 2004-10-01 2006-04-13 Leybold Optics Gmbh Apparatus for coating a band-shaped substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242500A (en) * 1990-08-27 1993-09-07 Leybold Aktiengesellschaft Apparatus for the continuous coating of band-type substrate
WO2006037516A1 (en) * 2004-10-01 2006-04-13 Leybold Optics Gmbh Apparatus for coating a band-shaped substrate
DE102004047938A1 (en) * 2004-10-01 2006-04-13 Leybold Optics Gmbh Device for coating a band-shaped substrate
DE102004047938B4 (en) * 2004-10-01 2008-10-23 Leybold Optics Gmbh Apparatus for the evaporator coating of a belt-shaped substrate

Similar Documents

Publication Publication Date Title
US4543275A (en) Method of forming thin vapor deposited film of organic material
US20180112305A1 (en) Method for Coating a Substrate and Metal Alloy Vacuum Deposition Facility
CA1267864A (en) Plasma-depositing insulation layer on metal and then electrode by sputtering or vaporization
US7541070B2 (en) Method of vapor-depositing strip-shaped substrates with a transparent barrier layer made of aluminum oxide
KR940011707B1 (en) Appratus for vacuum deposition of sublimative substance
KR100287978B1 (en) MG evaporation method with increased evaporation rate
JPH01219157A (en) Formation of extra thin metallic vapor-deposited film
JPH0377874B2 (en)
CN201037150Y (en) Vacuum induction tin plating device
JPS63274748A (en) Nozzle for molten metal coating device
KR0160067B1 (en) Vapor source heated by resistance for vacuum deposited steel sheet
JPS6468468A (en) Apparatus for producing thin metallic film
JPS6468467A (en) Apparatus for producing thin metallic film
KR0138040B1 (en) Method for arrangement of double vapor source
JPH09324261A (en) Vacuum deposition device and method for controlling film thickness therefor
JPH08165559A (en) Formation of functional film and device therefor
GB2339800A (en) Vacuum deposition on a moving web using a radiant heat supply
JP3041105B2 (en) Manufacturing method of magnetic recording medium and crucible for vapor deposition
KR0140834B1 (en) Manufacturing method zn-al alloy deposited steel sheet
JP3699747B2 (en) Vacuum deposition method
JPH02118072A (en) Vacuum deposition device
JPH09143735A (en) Splash adhesion preventive device and its adhesion preventive method for continuous vacuum deposition apparatus
JPH0735567B2 (en) Continuous vacuum deposition equipment
Feuerstein et al. Video tape manufacture by high vacuum evaporation—aspects of machine technology
JPS6215632B2 (en)