JP3041105B2 - Manufacturing method of magnetic recording medium and crucible for vapor deposition - Google Patents

Manufacturing method of magnetic recording medium and crucible for vapor deposition

Info

Publication number
JP3041105B2
JP3041105B2 JP3277079A JP27707991A JP3041105B2 JP 3041105 B2 JP3041105 B2 JP 3041105B2 JP 3277079 A JP3277079 A JP 3277079A JP 27707991 A JP27707991 A JP 27707991A JP 3041105 B2 JP3041105 B2 JP 3041105B2
Authority
JP
Japan
Prior art keywords
molten metal
crucible
electron beam
cross
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3277079A
Other languages
Japanese (ja)
Other versions
JPH0590060A (en
Inventor
充 高井
康二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP3277079A priority Critical patent/JP3041105B2/en
Publication of JPH0590060A publication Critical patent/JPH0590060A/en
Application granted granted Critical
Publication of JP3041105B2 publication Critical patent/JP3041105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非磁性基体上に斜め蒸
着型の磁性層を有する磁気記録媒体を製造する方法およ
びこの方法に用いる蒸着用るつぼに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic recording medium having an obliquely deposited magnetic layer on a non-magnetic substrate and a crucible for vapor deposition used in this method.

【0002】[0002]

【従来の技術】Coを主体とし、さらにNi等を含有
し、斜め蒸着法によって形成された強磁性金属薄膜を磁
性層とする磁気テープは、飽和磁束密度が大きく、しか
も保磁力が高く、すぐれた電磁変換特性を示す。斜め蒸
着法では、強磁性金属の蒸気を非磁性基体の表面に特定
の角度で入射させ、基体に対し傾いた柱状結晶粒子から
なる強磁性金属薄膜を形成する。強磁性金属薄膜は、必
要に応じて多層化される。斜め蒸着を行なうに際して
は、真空槽内で長尺フィルム状の非磁性基体を回転する
冷却ドラムの表面に添わせて搬送しながら、定置された
るつぼ中の強磁性金属の溶湯表面に電子ビームを照射
し、蒸発させる。
2. Description of the Related Art A magnetic tape containing Co as a main component, further containing Ni or the like, and using a ferromagnetic metal thin film formed by an oblique deposition method as a magnetic layer has a high saturation magnetic flux density, a high coercive force, and excellent performance. It shows the electromagnetic conversion characteristics. In the oblique deposition method, a ferromagnetic metal vapor is made incident on the surface of a non-magnetic substrate at a specific angle to form a ferromagnetic metal thin film composed of columnar crystal particles inclined with respect to the substrate. The ferromagnetic metal thin film is multilayered as required. When performing oblique deposition, an electron beam is applied to the surface of the molten ferromagnetic metal in a fixed crucible while transporting a long film-shaped non-magnetic substrate along the surface of a rotating cooling drum in a vacuum chamber. Irradiate and evaporate.

【0003】このような蒸着型磁気テープを低コストで
生産するためには、電子ビームを効率よく使って蒸着効
率を向上させることが必要とされる。すなわち、電子ビ
ームの単位パワー当たりの蒸着レートをできるだけ高め
ることが必要とされる。また、蒸着効率を向上させるこ
とができれば、様々な原因により生じる蒸着レート変動
を、生産効率を落とすことなく補償することができる。
例えば、溶湯に比べ沸点の高いるつぼ構成材の一部が溶
湯中に混入すると、溶湯表面において膜状の浮遊物とな
り、蒸着レートを著しく低下させる。このような浮遊物
は蒸着が進むと蒸発し、蒸着レートは回復する。従っ
て、強磁性金属薄膜の厚さを一定に保つためには、浮遊
物の有無などに応じて電子ビームパワーを増減したり非
磁性基体の搬送速度を増減し、蒸着レートを一定に保つ
ことが必要とされる。非磁性基体の搬送速度を変える
と、それに伴なって変更する条件が極めて多くなって膜
質が変わってしまうので、通常、電子ビームパワーの増
減により蒸着レートを制御する。しかし、良質な強磁性
金属薄膜を安定して形成するためには電子ビームのパワ
ーを一定範囲に保つ必要があり、一方、効率を高めるた
めには非磁性基体の搬送速度をできるだけ高くすること
が望まれるので、電子ビームのパワーは許容される範囲
で最も高くしたい。ところが、上記した浮遊物が存在し
ない場合には電子ビームのパワーを下げなければならな
いため、この場合には効率を敢えて落とさなければなら
なくなる。また、浮遊物が存在しない場合に高効率で蒸
着しようとすれば、浮遊物が存在する場合の電子ビーム
パワーが高くなりすぎて良質な蒸着膜が得られなくな
り、全体的な効率はやはり低下してしまう。
[0003] In order to produce such a vapor-deposited magnetic tape at low cost, it is necessary to improve the vapor deposition efficiency by efficiently using an electron beam. That is, it is necessary to increase the deposition rate per unit power of the electron beam as much as possible. Further, if the vapor deposition efficiency can be improved, fluctuations in the vapor deposition rate caused by various causes can be compensated without lowering the production efficiency.
For example, if a part of the crucible constituent material having a higher boiling point than that of the molten metal is mixed into the molten metal, it becomes a film-like floating substance on the surface of the molten metal, and the deposition rate is significantly reduced. Such suspended matter evaporates as deposition proceeds, and the deposition rate recovers. Therefore, in order to keep the thickness of the ferromagnetic metal thin film constant, it is necessary to increase or decrease the electron beam power or increase or decrease the transport speed of the non-magnetic substrate according to the presence or absence of suspended matter, and to keep the evaporation rate constant. Needed. If the transfer speed of the non-magnetic substrate is changed, the conditions to be changed are extremely increased and the film quality is changed. However, in order to stably form a high-quality ferromagnetic metal thin film, it is necessary to maintain the power of the electron beam within a certain range. On the other hand, in order to increase the efficiency, it is necessary to increase the transport speed of the nonmagnetic substrate as much as possible. As desired, the power of the electron beam should be as high as possible. However, when the above-mentioned suspended matter does not exist, the power of the electron beam must be reduced. In this case, the efficiency must be intentionally reduced. Also, if vapor deposition is attempted with high efficiency in the absence of suspended matter, the electron beam power in the presence of suspended matter will be too high to obtain a good-quality vapor-deposited film, and overall efficiency will still decrease. Would.

【0004】従って、蒸着レートの調整を電子ビームパ
ワーの増減により行なう場合には、電子ビームパワーの
増減範囲をできるだけ狭くすることが望ましいが、電子
ビームの利用効率を高めれば、電子ビームパワーの僅か
な増減により蒸着レートの大幅な増減が可能となるの
で、このためにも電子ビームの利用効率を向上させるこ
とが要求される。
Therefore, when the evaporation rate is adjusted by increasing or decreasing the electron beam power, it is desirable to narrow the increase or decrease range of the electron beam power as much as possible. Since a large increase and a decrease in the deposition rate can be achieved by a small increase and a decrease, it is also required to improve the use efficiency of the electron beam.

【0005】[0005]

【発明が解決しようとする課題】本発明はこのような事
情からなされたものであり、斜め蒸着法による強磁性金
属薄膜を有する磁気記録媒体を量産する際に、電子ビー
ムのエネルギーの利用効率を向上させることにより、強
磁性金属薄膜を効率よく安定して形成することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it has been found that, when mass-producing a magnetic recording medium having a ferromagnetic metal thin film by oblique deposition, the energy use efficiency of the electron beam is reduced. An object is to form a ferromagnetic metal thin film efficiently and stably by improving.

【0006】[0006]

【課題を解決するための手段】このような目的は、下記
(1)〜(6)の本発明により達成される。 (1) 真空槽中において、長尺フィルム状の非磁性基
体を回転する冷却ドラムの表面に添わせて搬送しなが
ら、定置されたるつぼ中の強磁性金属の溶湯表面に電子
ビームを照射して斜め蒸着を行なうことにより、前記非
磁性基体上に強磁性金属薄膜を形成する工程を有する磁
気記録媒体の製造方法であって、前記るつぼ中の前記溶
湯の表面形状が、前記非磁性基体の幅方向を長手方向と
し前記非磁性基体の搬送方向を幅方向とする長手状であ
り、長手方向中央で測った前記溶湯表面の幅をCW
し、長手方向中央で前記溶湯を幅方向に切断したときの
前記溶湯の断面積をCS としたとき、CS /CW 2
0.2〜0.3であり、前記電子ビームを、前記溶湯表
面の長手方向に走査しながら照射することを特徴とする
磁気記録媒体の製造方法。 (2) 前記断面積CS を有する溶湯断面の底部の少な
くとも一部が、溶湯表面とほぼ平行である上記(1)に
記載の磁気記録媒体の製造方法。 (3) 前記断面積CS を有する溶湯断面において、前
記電子ビームが入射する方向の側部の平均傾きが前記側
部に対向する側部の平均傾きよりも小さい上記(1)ま
たは(2)に記載の磁気記録媒体の製造方法。 (4) 前記るつぼが酸化マグネシウムから構成される
上記(1)ないし(3)のいずれかに記載の磁気記録媒
体の製造方法。 (5) 前記溶湯表面と前記るつぼの上縁との距離が5
mm以下である上記(1)ないし(4)のいずれかに記載
の磁気記録媒体の製造方法。 (6) 上記(1)ないし(5)のいずれかに記載の磁
気記録媒体の製造方法に用いられることを特徴とする蒸
着用るつぼ。
This and other objects are achieved by the present invention which is defined below as (1) to (6). (1) In a vacuum chamber, an electron beam is irradiated on the surface of a molten ferromagnetic metal in a fixed crucible while transporting a long film-shaped non-magnetic substrate along the surface of a rotating cooling drum. A method for manufacturing a magnetic recording medium, comprising a step of forming a ferromagnetic metal thin film on the non-magnetic substrate by performing oblique deposition, wherein the surface shape of the molten metal in the crucible has a width of the non-magnetic substrate. The longitudinal direction is the longitudinal direction, and the conveying direction of the non-magnetic substrate is a longitudinal direction with the width direction.The width of the molten metal surface measured at the longitudinal center is CW, and the molten metal is cut in the longitudinal direction at the longitudinal center. when the cross-sectional area of the molten metal was C S of time, the C S / C W 2
0.2 to 0.3 , wherein the electron beam is irradiated while scanning in the longitudinal direction of the surface of the molten metal, wherein the electron beam is irradiated. (2) at least a portion of the bottom of the molten metal section having a sectional area C S The method for producing a magnetic recording medium according to (1) is substantially parallel to the surface of the molten metal. (3) In the section of the molten metal having the cross-sectional area C S , the average inclination of the side in the direction in which the electron beam is incident is smaller than the average inclination of the side opposed to the side. 3. The method for manufacturing a magnetic recording medium according to claim 1. (4) The method for manufacturing a magnetic recording medium according to any one of (1) to (3), wherein the crucible is made of magnesium oxide. (5) The distance between the surface of the molten metal and the upper edge of the crucible is 5
The method for manufacturing a magnetic recording medium according to any one of the above (1) to (4), which is not more than mm. (6) An evaporation crucible used in the method for manufacturing a magnetic recording medium according to any one of (1) to (5).

【0007】[0007]

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】[0011]

【0012】[0012]

【0013】[0013]

【作用】本発明では、強磁性金属を斜め蒸着する際に、
るつぼ中において強磁性金属の溶湯を上記した構成で保
持する。このため、電子ビームの利用効率が高まり、従
来に比べ低パワーの電子ビームで同等の蒸着レートが実
現できるので、低コストで磁気記録媒体の製造が可能と
なる。
According to the present invention, when obliquely depositing a ferromagnetic metal,
The molten ferromagnetic metal is held in the crucible in the above-described configuration. For this reason, the utilization efficiency of the electron beam is increased, and the same deposition rate can be realized with an electron beam having a lower power than in the past, so that a magnetic recording medium can be manufactured at low cost.

【0014】そして、電子ビームの単位パワーあたりの
蒸着レートが高まることから、蒸着レート補償のための
電子ビームパワーの増減量を小さくすることができるの
で、良質な強磁性金属薄膜を効率よく安定して蒸着する
ことが可能となる。
Since the deposition rate per unit power of the electron beam is increased, the amount of increase or decrease in the electron beam power for compensating the deposition rate can be reduced, so that a good quality ferromagnetic metal thin film can be efficiently and stably formed. It is possible to perform evaporation.

【0015】[0015]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。本発明により製造される磁気記録媒体は、
非磁性基体上に斜め蒸着法により形成された強磁性金属
薄膜を含む磁性層を有する。
[Specific Configuration] Hereinafter, a specific configuration of the present invention will be described in detail. The magnetic recording medium manufactured according to the present invention is
A magnetic layer including a ferromagnetic metal thin film formed on a non-magnetic substrate by an oblique evaporation method.

【0016】図1に、斜め蒸着装置の一例を模式的に示
す。同図に示される斜め蒸着装置1では、真空槽10中
において、長尺フィルム状の非磁性基体2を供給ロール
3から繰り出し、回転する冷却ドラム4の表面に添わせ
て搬送しながら、定置されたるつぼ5中の強磁性金属の
溶湯51表面に電子ビーム6を照射して斜め蒸着を行な
うことにより、前記非磁性基体2上に強磁性金属薄膜を
形成する。強磁性金属薄膜が形成された非磁性基体2
は、巻き取りロール7に巻き取られる。遮蔽板91およ
び92は、蒸着される強磁性金属の入射角を規制するた
めに設けられている。また、ポンプ8は、真空槽10内
を所定の圧力に保つために設けられている。
FIG. 1 schematically shows an example of an oblique vapor deposition apparatus. In the oblique vapor deposition apparatus 1 shown in FIG. 1, a long film-shaped non-magnetic substrate 2 is unwound from a supply roll 3 in a vacuum chamber 10 and is fixed while being conveyed along the surface of a rotating cooling drum 4. The surface of the ferromagnetic metal melt 51 in the crucible 5 is irradiated with the electron beam 6 to perform oblique deposition, thereby forming a ferromagnetic metal thin film on the non-magnetic substrate 2. Non-magnetic substrate 2 on which ferromagnetic metal thin film is formed
Is taken up by a take-up roll 7. The shielding plates 91 and 92 are provided to regulate the incident angle of the ferromagnetic metal to be deposited. The pump 8 is provided to keep the inside of the vacuum chamber 10 at a predetermined pressure.

【0017】本発明において、強磁性金属の溶湯51は
るつぼ5中において下記の形態で存在する。
In the present invention, the molten ferromagnetic metal 51 exists in the crucible 5 in the following form.

【0018】図2に、溶湯51が充填されているるつぼ
5の平面図を示す。溶湯51の表面形状は、非磁性基体
2の幅方向を長手方向とし非磁性基体2の搬送方向を幅
方向とする長手状であり、図示例では長手方向両端が弧
状となっている。電子ビーム6は、溶湯51表面の長手
方向に走査しながら照射される。また、電子ビーム6
は、通常、溶湯51表面に対し斜め方向から照射され
る。
FIG. 2 is a plan view of the crucible 5 filled with the molten metal 51. The surface shape of the molten metal 51 is a longitudinal shape whose longitudinal direction is the width direction of the non-magnetic substrate 2 and whose width direction is the transport direction of the non-magnetic substrate 2. In the illustrated example, both ends in the longitudinal direction are arc-shaped. The electron beam 6 is irradiated while scanning in the longitudinal direction of the surface of the molten metal 51. The electron beam 6
Is normally applied to the surface of the molten metal 51 from an oblique direction.

【0019】本発明では、長手方向中央で測った溶湯5
1表面の幅をCW とし、長手方向中央で溶湯51を幅方
向に切断したときの溶湯51の断面積をCS としたと
き、CS /CW 2 が0.2〜0.3である。CS /CW
2 が前記範囲を超えていると本発明の効果が実現せず、
前記範囲未満であると強磁性金属の蒸発量が安定せず均
質な強磁性金属薄膜が得られない。
In the present invention, the molten metal 5 measured at the center in the longitudinal direction is used.
The width of the first surface and C W, the cross-sectional area of the molten metal 51 of a cutaway of the molten metal 51 in the width direction at the longitudinal center when the C S, with C S / C W 2 is 0.2 to 0.3 is there. C S / C W
If 2 exceeds the above range, the effect of the present invention is not realized,
If it is less than the above range, the amount of evaporation of the ferromagnetic metal is not stable, and a uniform ferromagnetic metal thin film cannot be obtained.

【0020】なお、幅方向中央で測った溶湯51表面の
長さCL は、非磁性基体2の幅に応じて適宜設定すれば
よい。
[0020] Incidentally, the length C L of the molten metal 51 surface as measured in the widthwise center, may be appropriately set according to the width of the non-magnetic substrate 2.

【0021】本発明では、前記断面積CS を有する溶湯
断面の底部の少なくとも一部、すなわち、長手方向中央
で溶湯51を幅方向に切断したときの溶湯51の断面の
底部の少なくとも一部が、溶湯51表面とほぼ平行であ
ることが好ましい。このような断面形状としては、例え
ば、図3の(a)および(b)に示されるものが好まし
い。図3は図2のIII −III 線断面図であり、前記断面
積CS を有する溶湯断面を示す。図3の(a)および
(b)において、溶湯51の断面は、底部の少なくとも
一部が溶湯51の表面と平行である。電子ビーム6は、
溶湯51表面の長手方向に添って走査され、その軌跡は
溶湯51の幅方向中央付近を通るが、るつぼ5の位置が
ずれた場合などには電子ビーム6が所定の軌跡からずれ
てしまう。溶湯51の深さが異なると電子ビーム加熱に
よる蒸発し易さも異なるので、電子ビームの軌跡がずれ
ると蒸着レートが変動してしまうが、図3の(a)およ
び(b)に示されるように溶湯断面の底部が溶湯表面と
平行ないし平行に近いと、電子ビームがずれた場合でも
溶湯深さが殆ど変わらないので蒸着レートの変動が抑え
られ、均一な膜厚の強磁性金属薄膜を形成することがで
きる。
In the present invention, at least a part of the bottom of the cross section of the molten metal having the cross-sectional area C S , that is, at least a part of the bottom of the cross section of the molten metal 51 when the molten metal 51 is cut in the width direction at the center in the longitudinal direction. Preferably, it is substantially parallel to the surface of the molten metal 51. As such a cross-sectional shape, for example, those shown in FIGS. 3A and 3B are preferable. Figure 3 is a III -III line cross-sectional view of FIG. 2 shows a molten metal section having a sectional area C S. 3A and 3B, at least a part of the bottom of the cross section of the molten metal 51 is parallel to the surface of the molten metal 51. The electron beam 6
Scanning is performed along the longitudinal direction of the surface of the molten metal 51, and the trajectory passes near the center in the width direction of the molten metal 51. However, when the position of the crucible 5 is shifted, the electron beam 6 is shifted from a predetermined trajectory. If the depth of the molten metal 51 is different, the easiness of evaporation due to the electron beam heating is also different. Therefore, if the trajectory of the electron beam shifts, the deposition rate fluctuates. However, as shown in FIGS. If the bottom of the cross section of the molten metal is parallel or nearly parallel to the surface of the molten metal, even if the electron beam is shifted, the depth of the molten metal hardly changes, so that the fluctuation of the deposition rate is suppressed and a ferromagnetic metal thin film having a uniform thickness is formed. be able to.

【0022】なお、本発明では、図3(a)に示される
ように溶湯断面の側部がほぼ垂直であってもよく、図3
(b)に示されるように電子ビームが入射する方向(図
中右側)の側部の傾きが前記側部に対向する側部の傾き
よりも小さくてもよい。なお、図3(b)では溶湯断面
の側部が直線であるが、側部が曲率をもっている場合に
は側部の平均傾きとして考える。
In the present invention, the side of the cross section of the molten metal may be substantially vertical as shown in FIG.
As shown in (b), the inclination of the side in the direction in which the electron beam is incident (right side in the figure) may be smaller than the inclination of the side facing the side. In FIG. 3B, the side of the cross section of the molten metal is straight, but when the side has a curvature, it is considered as an average inclination of the side.

【0023】図3(c)は従来のるつぼの断面であり、
るつぼ5の断面、すなわち溶湯51の断面は半円状とな
っており、前記したCS /CW 2 を満足することはでき
ない。ただし、CS /CW 2 を満足する形状であれば、
溶湯51の底部全体が曲率をもっていてもよい。
FIG. 3C is a cross section of a conventional crucible.
The cross section of the crucible 5, that is, the cross section of the molten metal 51 is semicircular, and cannot satisfy the above-mentioned C S / C W 2 . However, if the shape satisfies C S / C W 2 ,
The entire bottom of the molten metal 51 may have a curvature.

【0024】なお、図3に示される溶湯断面は、溶湯表
面の長手方向中央における幅方向断面であり、本発明で
はこの断面において上記したCS /CW 2 の関係が成立
していればよいが、図2に示されるように、溶湯表面の
長手方向ほぼ全域において幅方向断面形状が同一となる
ようなるつぼを用いることが好ましい。
The cross section of the molten metal shown in FIG. 3 is a widthwise cross section at the center in the longitudinal direction of the surface of the molten metal. In the present invention, it is sufficient that the above-mentioned relationship of C S / C W 2 is established in this cross section. However, as shown in FIG. 2, it is preferable to use a crucible having the same cross-sectional shape in the width direction substantially over the entire area in the longitudinal direction of the surface of the molten metal.

【0025】るつぼ5の内部寸法および形状は、上記し
た溶湯51の各部の相対寸法および形状に応じて決定さ
れればよい。通常、溶湯51は図2および図3に示され
るようにるつぼ5の上縁付近まで充填された状態、例え
ば溶湯51表面とるつぼ5上縁との距離が5mm以下の状
態で蒸着が行なわれ、かつ蒸着に伴なって強磁性金属が
補充されて溶湯表面の位置が維持されるので、上記した
S 、CW 、CL 等は、るつぼ5内部の寸法とほぼ対応
する。ただし、るつぼ5の上縁まで溶湯51を満たさな
い場合でも本発明の効果は実現する。
The internal size and shape of the crucible 5 may be determined according to the relative size and shape of each part of the molten metal 51 described above. Normally, as shown in FIGS. 2 and 3, vapor deposition is performed in a state in which the molten metal 51 is filled up to near the upper edge of the crucible 5, for example, in a state in which the distance between the surface of the molten metal 51 and the upper edge of the crucible 5 is 5 mm or less. and because Ban is in ferromagnetic metals position of supplemented with melt surface is maintained to the deposition, C S, C W, C L , etc. described above are substantially corresponds to the crucible 5 internal dimensions. However, the effect of the present invention is realized even when the molten metal 51 is not filled up to the upper edge of the crucible 5.

【0026】CS 、CW 、CL 等は、非磁性基体2の幅
や、電子ビームのパワー等の蒸着条件などに応じて適宜
決定すればよく、特に制限はないが、例えばCS は30
0〜10000mm2 程度であり、CW は30〜300mm
程度、CL は500〜5000mm程度である。
[0026] C S, C W, C L, etc., the width and the non-magnetic substrate 2 may be appropriately determined depending on the deposition conditions of the power of the electronic beam is not particularly limited, for example, C S is 30
Is a 0~10000mm 2 about, C W is 30~300mm
The extent, the C L is about 500~5000mm.

【0027】るつぼ5の材質は特に限定されず、通常、
充填される強磁性金属の溶湯と反応しないものから適宜
選択すればよいが、例えば、酸化マグネシウム、ジルコ
ニア、酸化カルシウム等から選択することが好ましい。
The material of the crucible 5 is not particularly limited.
The material may be appropriately selected from those which do not react with the molten ferromagnetic metal to be filled. For example, it is preferable to select from magnesium oxide, zirconia, calcium oxide and the like.

【0028】本発明で用いる強磁性金属の組成は特に限
定されないが、Coを主成分として含有するCo基合金
であることが好ましく、強磁性金属中のCo含有率は、
60原子%以上であることが好ましい。Co基合金とし
ては、CoおよびNiを主成分とするか、またはCo、
NiおよびCrを主成分とする合金が好ましい。Co以
外の各元素の含有率は、要求される磁気特性や耐食性に
応じて適宜選択すればよい。
The composition of the ferromagnetic metal used in the present invention is not particularly limited, but is preferably a Co-based alloy containing Co as a main component.
It is preferably at least 60 atomic%. As the Co-based alloy, Co and Ni are used as main components, or Co,
An alloy containing Ni and Cr as main components is preferable. The content of each element other than Co may be appropriately selected according to the required magnetic properties and corrosion resistance.

【0029】このような強磁性金属からなる蒸着膜は、
非磁性基体に対して傾いた柱状結晶粒子から構成され
る。溶湯51から非磁性基体2に飛来する強磁性金属の
入射角は、蒸着初期の最大入射角θmax から最終の最小
入射角θmin まで連続的に変化し、基体表面に柱状結晶
粒子が弧状に成長する。磁性層を2層の強磁性金属薄膜
から構成する場合は、下層形成時の巻き取りロールを供
給ロールとして、基体の走行方向を逆にして蒸着を行な
えばよい。また、3層以上の多層磁性層とする場合に
は、このような操作を繰り返せばよい。θmax およびθ
min は、目的とする磁気特性等に応じて適宜決定すれば
よいが、通常、θmax は80〜90°程度、θmin は1
0〜60°程度とすることが好ましい。
The deposited film made of such a ferromagnetic metal is
It is composed of columnar crystal grains inclined with respect to the non-magnetic substrate. The incident angle of the ferromagnetic metal flying from the molten metal 51 to the nonmagnetic substrate 2 continuously changes from the maximum incident angle θmax at the initial stage of vapor deposition to the final minimum incident angle θmin, and columnar crystal grains grow in an arc on the substrate surface. . In the case where the magnetic layer is composed of two ferromagnetic metal thin films, deposition may be performed by using the take-up roll for forming the lower layer as a supply roll and reversing the running direction of the substrate. In the case of forming three or more multilayer magnetic layers, such an operation may be repeated. θmax and θ
min may be appropriately determined according to the target magnetic characteristics and the like. Usually, θmax is about 80 to 90 °, and θmin is 1
It is preferable to set it to about 0 to 60 °.

【0030】なお、斜め蒸着の際の雰囲気中に酸素ガス
を導入して、保磁力を向上させたり酸化に対する安定性
を向上させることが好ましい。
It is preferable to introduce an oxygen gas into the atmosphere during the oblique deposition to improve the coercive force and the stability against oxidation.

【0031】非磁性基体2の材質に特に制限はなく、強
磁性金属薄膜蒸着時の熱に耐える各種フィルム、例えば
ポリエチレンテレフタレート等を用いればよい。
The material of the nonmagnetic substrate 2 is not particularly limited, and various films that can withstand heat during the deposition of the ferromagnetic metal thin film, for example, polyethylene terephthalate may be used.

【0032】[0032]

【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail by showing specific examples of the present invention.

【0033】図1に示される構成の斜め蒸着装置を用い
て、厚さ7μm のポリエチレンテレフタレート(PE
T)フィルムからなる非磁性基体2上に、強磁性金属薄
膜を形成した。
A 7 μm thick polyethylene terephthalate (PE) was prepared using an oblique vapor deposition apparatus having the structure shown in FIG.
T) A ferromagnetic metal thin film was formed on a non-magnetic substrate 2 made of a film.

【0034】蒸着の際には、ArガスとO2 ガスとの混
合ガスを真空槽内に流し、真空槽内の圧力を10-4Torr
に保った。混合ガスは、最小入射角付近で蒸着される部
分の非磁性基体に吹き付けるように流した。溶湯51の
組成は、Co80原子%、Ni20原子%とした。最大
入射角θmax は90°、最小入射角θmin は40°と
し、電子ビーム6を溶湯51表面の非磁性基体幅方向に
走査した。
At the time of vapor deposition, a mixed gas of Ar gas and O 2 gas is flowed into the vacuum chamber, and the pressure in the vacuum chamber is set to 10 −4 Torr.
Kept. The mixed gas was flowed so as to be sprayed on the non-magnetic substrate in a portion to be deposited near the minimum incident angle. The composition of the molten metal 51 was 80 atomic% of Co and 20 atomic% of Ni. The maximum incident angle θmax was 90 ° and the minimum incident angle θmin was 40 °, and the electron beam 6 was scanned on the surface of the molten metal 51 in the width direction of the nonmagnetic substrate.

【0035】るつぼ5には、図3の(a)、(b)また
は(c)にそれぞれ示される幅方向断面形状を有する3
種の酸化マグネシウムるつぼA、BまたはCを用い、強
磁性金属の溶湯51をるつぼ5の上縁まで充填した。各
るつぼ内の溶湯51の寸法は下記のとおりとした。な
お、CL は各るつぼともに800mmとした。
The crucible 5 has a sectional shape in the width direction shown in FIG. 3A, 3B or 3C, respectively.
Using a kind of magnesium oxide crucible A, B or C, a molten metal 51 of a ferromagnetic metal was filled up to the upper edge of the crucible 5. The dimensions of the molten metal 51 in each crucible were as follows. Incidentally, C L was 800mm in both the crucible.

【0036】るつぼA (本発明) CS :1557mm2W :80mm CS /CW 2 :0.246 底部と側部を結ぶ曲線の曲率半径は10mm。 Crucible A (Invention) C S : 1557 mm 2 C W : 80 mm C S / C W 2 : 0.246 The radius of curvature of the curve connecting the bottom and the side is 10 mm.

【0037】るつぼB (本発明) CS :1779mm2W :80mm CS /CW 2 :0.278 Crucible B (the present invention) C S : 1779 mm 2 C W : 80 mm C S / C W 2 : 0.278

【0038】電子ビーム入射側(図中右側)の側部に対
向する側部は溶湯表面に垂直、底部と図中左側の側部と
を結ぶ曲線の曲率半径は10mm、底部の平坦部の長さは
30mm、深さは30mm。
The side opposite to the side on the electron beam incident side (right side in the figure) is perpendicular to the surface of the molten metal, the radius of curvature of the curve connecting the bottom and the left side in the figure is 10 mm, and the length of the flat part at the bottom is long. The height is 30mm and the depth is 30mm.

【0039】るつぼC (比較) CS :2513mm2W :80mm CS /CW 2 :0.393 Crucible C (comparison) C S : 2513 mm 2 C W : 80 mm C S / C W 2 : 0.393

【0040】上記各るつぼを用い、非磁性基体の搬送速
度を50m/min として、厚さ0.15μm の強磁性金属
薄膜を形成するために必要な電子ビームのパワーを調べ
た。この結果、本発明のるつぼAおよびるつぼBではそ
れぞれ60kWおよび70kWであったのに対し、るつぼC
では90kWであり、本発明により蒸着効率が著しく向上
することが確認された。
Using each of the above crucibles, the power of the electron beam required to form a ferromagnetic metal thin film having a thickness of 0.15 μm was examined at a conveying speed of the non-magnetic substrate of 50 m / min. As a result, the crucible A and the crucible B of the present invention were 60 kW and 70 kW, respectively, whereas the crucible C was
In this case, it was confirmed that the deposition efficiency was significantly improved by the present invention.

【0041】[0041]

【発明の効果】本発明により斜め蒸着を行なえば、電子
ビームのエネルギーを有効利用できるので、低コストに
て蒸着型磁気記録媒体を製造することができる。
According to the present invention, if the oblique vapor deposition is performed, the energy of the electron beam can be effectively used, so that the vapor deposition type magnetic recording medium can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】斜め蒸着装置を説明するための模式図である。FIG. 1 is a schematic diagram for explaining an oblique deposition apparatus.

【図2】るつぼに充填された強磁性金属の溶湯を示す平
面図である。
FIG. 2 is a plan view showing a ferromagnetic metal melt filled in a crucible.

【図3】図2のIII −III 線断面図であり、(a)およ
び(b)は、本発明のるつぼにおける強磁性金属溶湯の
状態を表わす断面図であり、(c)は従来のるつぼにお
ける強磁性金属溶湯の状態を表わす断面図である。
3 is a sectional view taken along line III-III in FIG. 2, (a) and (b) are sectional views showing a state of a ferromagnetic metal melt in the crucible of the present invention, and (c) is a conventional crucible. FIG. 3 is a cross-sectional view illustrating a state of a molten ferromagnetic metal in FIG.

【符号の説明】[Explanation of symbols]

1 斜め蒸着装置 2 非磁性基体 3 供給ロール 4 冷却ドラム 5 るつぼ 51 溶湯 6 電子ビーム 7 巻き取りロール 8 ポンプ 91 遮蔽板 92 遮蔽板 DESCRIPTION OF SYMBOLS 1 Oblique vapor deposition apparatus 2 Nonmagnetic base 3 Supply roll 4 Cooling drum 5 Crucible 51 Melt 6 Electron beam 7 Take-up roll 8 Pump 91 Shielding plate 92 Shielding plate

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G11B 5/85 C23C 14/24 C23C 14/30 H01F 41/20 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) G11B 5/85 C23C 14/24 C23C 14/30 H01F 41/20

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 真空槽中において、長尺フィルム状の非
磁性基体を回転する冷却ドラムの表面に添わせて搬送し
ながら、定置されたるつぼ中の強磁性金属の溶湯表面に
電子ビームを照射して斜め蒸着を行なうことにより、前
記非磁性基体上に強磁性金属薄膜を形成する工程を有す
る磁気記録媒体の製造方法であって、 前記るつぼ中の前記溶湯の表面形状が、前記非磁性基体
の幅方向を長手方向とし前記非磁性基体の搬送方向を幅
方向とする長手状であり、 長手方向中央で測った前記溶湯表面の幅をCW とし、長
手方向中央で前記溶湯を幅方向に切断したときの前記溶
湯の断面積をCS としたとき、CS /CW 20.2〜
0.3であり、 前記電子ビームを、前記溶湯表面の長手方向に走査しな
がら照射することを特徴とする磁気記録媒体の製造方
法。
An electron beam is irradiated onto a surface of a molten ferromagnetic metal in a fixed crucible while a long film-shaped non-magnetic substrate is transported along a surface of a rotating cooling drum in a vacuum chamber. Forming a ferromagnetic metal thin film on the non-magnetic substrate by performing oblique deposition on the non-magnetic substrate, wherein the surface shape of the molten metal in the crucible is The width direction of the molten metal measured at the center in the longitudinal direction is C W, and the width of the molten metal is the width direction at the center in the longitudinal direction. when the cross-sectional area of the melt when cut was C S, 0.2 to the C S / C W 2
0.3 , and irradiating the electron beam while scanning in a longitudinal direction of the surface of the molten metal.
【請求項2】 前記断面積CS を有する溶湯断面の底部
の少なくとも一部が、溶湯表面とほぼ平行である請求項
1に記載の磁気記録媒体の製造方法。
2. The method for manufacturing a magnetic recording medium according to claim 1, wherein at least a part of the bottom of the cross section of the molten metal having the cross-sectional area C S is substantially parallel to the surface of the molten metal.
【請求項3】 前記断面積CS を有する溶湯断面におい
て、前記電子ビームが入射する方向の側部の平均傾きが
前記側部に対向する側部の平均傾きよりも小さい請求項
1または2に記載の磁気記録媒体の製造方法。
3. The cross section of the molten metal having the cross-sectional area C S , wherein the average inclination of the side in the direction in which the electron beam is incident is smaller than the average inclination of the side facing the side. The manufacturing method of the magnetic recording medium according to the above.
【請求項4】 前記るつぼが酸化マグネシウムから構成
される請求項1ないし3のいずれかに記載の磁気記録媒
体の製造方法。
4. The method according to claim 1, wherein said crucible is made of magnesium oxide.
【請求項5】 前記溶湯表面と前記るつぼの上縁との距
離が5mm以下である請求項1ないし4のいずれかに記載
の磁気記録媒体の製造方法。
5. The method for manufacturing a magnetic recording medium according to claim 1, wherein a distance between the surface of the molten metal and an upper edge of the crucible is 5 mm or less.
【請求項6】 請求項1ないし5のいずれかに記載の磁
気記録媒体の製造方法に用いられることを特徴とする蒸
着用るつぼ。
6. A crucible for vapor deposition, which is used in the method of manufacturing a magnetic recording medium according to claim 1.
JP3277079A 1991-09-27 1991-09-27 Manufacturing method of magnetic recording medium and crucible for vapor deposition Expired - Fee Related JP3041105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3277079A JP3041105B2 (en) 1991-09-27 1991-09-27 Manufacturing method of magnetic recording medium and crucible for vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3277079A JP3041105B2 (en) 1991-09-27 1991-09-27 Manufacturing method of magnetic recording medium and crucible for vapor deposition

Publications (2)

Publication Number Publication Date
JPH0590060A JPH0590060A (en) 1993-04-09
JP3041105B2 true JP3041105B2 (en) 2000-05-15

Family

ID=17578486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3277079A Expired - Fee Related JP3041105B2 (en) 1991-09-27 1991-09-27 Manufacturing method of magnetic recording medium and crucible for vapor deposition

Country Status (1)

Country Link
JP (1) JP3041105B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300982B2 (en) 2003-04-02 2007-11-27 Sumitomo Chemical Company, Limited Process for producing modified polyethylene resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300982B2 (en) 2003-04-02 2007-11-27 Sumitomo Chemical Company, Limited Process for producing modified polyethylene resin

Also Published As

Publication number Publication date
JPH0590060A (en) 1993-04-09

Similar Documents

Publication Publication Date Title
EP0053811B1 (en) Magnetic recording media
JP3041105B2 (en) Manufacturing method of magnetic recording medium and crucible for vapor deposition
JPS5968815A (en) Magnetic recording medium
US4626480A (en) Magnetic recording medium comprising a vacuum-deposited magnetic film of a magnetic material and a tungsten oxide and method for making the same
US4546725A (en) Apparatus for manufacturing magnetic recording media
JP2717611B2 (en) Magnetic recording medium and method of manufacturing the same
Feuerstein et al. Video tape manufacture by high vacuum evaporation—aspects of machine technology
JP2605803B2 (en) Magnetic recording media
JP2729544B2 (en) Magnetic recording medium and method of manufacturing the same
EP0688016A2 (en) Method for manufacturing magnetic recording medium and apparatus therefor
JP3665906B2 (en) Magnetic recording medium
JPH06176360A (en) Production of magnetic recording medium
JPH103659A (en) Apparatus for production of magnetic recording medium and processing therefor
JPH0550052B2 (en)
JPH04328324A (en) Manufacture of magnetic recording medium
JPS6190322A (en) Magnetic recording medium
JPH08306028A (en) Magnetic recording medium and its production
JPS6161445B2 (en)
JPS60209927A (en) Magnetic recording medium and its production
JPH0630134B2 (en) Magnetic recording medium
JPS6190321A (en) Magnetic recording medium
JPH0817050A (en) Magnetic recording medium
JPH10261223A (en) Production of magnetic recording medium
JPH0512657A (en) Thin-film magnetic tape and method and apparatus for producing the tape
JPH05182191A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees