JPH01200605A - Magnetic powder - Google Patents

Magnetic powder

Info

Publication number
JPH01200605A
JPH01200605A JP63025368A JP2536888A JPH01200605A JP H01200605 A JPH01200605 A JP H01200605A JP 63025368 A JP63025368 A JP 63025368A JP 2536888 A JP2536888 A JP 2536888A JP H01200605 A JPH01200605 A JP H01200605A
Authority
JP
Japan
Prior art keywords
magnetic powder
hexagonal ferrite
ratio
uniform
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63025368A
Other languages
Japanese (ja)
Inventor
Shunichi Ota
俊一 太田
Makoto Sano
真 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP63025368A priority Critical patent/JPH01200605A/en
Publication of JPH01200605A publication Critical patent/JPH01200605A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make an aspect ratio uniform, by making a very small amount of at least one kind of metal element selected out of Rh, Pd and Ru, and Pt be contained in magnetic powder of hexagonal system ferrite. CONSTITUTION:In magnetic powder composed of hexagonal system ferrite, at least one kind of element selected out of Rh, Pd and Ru in the range of 5ppm-500ppm, and Pt in the range of 5ppm-1000ppm are contained. By the effect of these additional metals, the aggregation between hexagonal system ferrite fine-grains is prevented at the time of grinding of at the time of melting and eliminating glass component, e.g., in glass crystallizing method. Therefore the aspect ratio (ratio of the maximum grain diameter in the (c) face direction to the thickness in the (c) axis direction) is uniform and its distribution width is narrowed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、高密度磁気記録媒体の製造に遺した磁性粉末
に係り、特に板状比が均一な六方晶系フェライトからな
る磁性粉末に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to magnetic powder used in the manufacture of high-density magnetic recording media, and in particular to magnetic powder made from hexagonal ferrite with a uniform plate ratio. The present invention relates to magnetic powder.

(従来技術) これまで、一般に磁気記録は針状CO−γ−Fe2O3
のような磁性粉末を支持体上に塗着させた記録媒体を用
い、その面内長手方向に磁化する方式で行われてきた。
(Prior art) Until now, magnetic recording has generally been performed using acicular CO-γ-Fe2O3
This method has been carried out using a recording medium in which magnetic powder such as the following is coated on a support, and magnetization is performed in the longitudinal direction within the surface of the recording medium.

しかし、この面内長手方向に磁化する方式では、記録の
高密度化にともなって記録媒体内の減磁界が増加するた
め、再生出力が低下して高密度記録を達成しがたいとい
う問題があった。
However, this method of magnetizing in the in-plane longitudinal direction has the problem that the demagnetizing field within the recording medium increases as the recording density increases, resulting in a decrease in reproduction output and difficulty in achieving high-density recording. Ta.

このため、従来の面内長手方向への磁化記録方式に対し
、記録媒体の記録面に対して垂直方向に磁化する垂直磁
化記録が提案され、この垂直磁化記録に適用される磁気
記録媒体がいろいろと開発されている。このような垂直
磁化型記録媒体としては、フィルムなどの支持体上にス
パッタ法、真空蒸着法などによって形成されるCo−C
r!lなどの磁性材料膜が知られているが、この磁性材
料膜は耐摩耗性や可撓性に問題があり、またその製造も
真空プロセスを要するなど、繰作が煩雑になるという難
点がある。
For this reason, perpendicular magnetization recording, in which magnetization is perpendicular to the recording surface of the recording medium, has been proposed, in contrast to the conventional in-plane longitudinal magnetization recording method, and there are various magnetic recording media that can be applied to this perpendicular magnetization recording. is being developed. Such perpendicular magnetization type recording media include Co-C, which is formed on a support such as a film by sputtering, vacuum evaporation, etc.
r! Magnetic material films such as L are known, but these magnetic material films have problems with wear resistance and flexibility, and their production also requires a vacuum process, making processing complicated. .

これに対し、従来から慣用されてきた塗布法も検討され
ており、塗布法により形成する垂直磁化型記録媒体に適
した磁性粉末としては六方晶系フェライトが知られてい
る。この六方晶系フェライ°トは結晶構造が六角板状を
なしており、かつ磁化容易軸も板面に対して垂直である
ため、塗布法による垂直磁化記録媒体に好適であるが、
単一の六方晶系フェライトでは、保磁力が大きく記録時
に磁気ヘッドが飽和して磁気記録が困難となるため、六
方晶系フェライトの構成原子の一部を特定の他の原子で
置換することにより、その保磁力を磁気記録に適する値
まで低減させることが知られている。このようなrIt
換型六方晶系フェライトは、一般式:AO・n(Fe1
−xMx)203(式中、AはBa、Sr、Ca、Pb
から選ばれた少なくとも1種の元素を、MはC01Ti
、Ni、Mn、Cu、Zn、I n、Ge、Nb。
On the other hand, conventional coating methods have been studied, and hexagonal ferrite is known as a magnetic powder suitable for perpendicular magnetization type recording media formed by coating methods. This hexagonal ferrite has a hexagonal plate-like crystal structure, and the axis of easy magnetization is perpendicular to the plate surface, so it is suitable for perpendicular magnetization recording media using the coating method.
A single hexagonal ferrite has a large coercive force that saturates the magnetic head during recording, making magnetic recording difficult. Therefore, by replacing some of the constituent atoms of the hexagonal ferrite with specific other atoms, It is known that the coercive force can be reduced to a value suitable for magnetic recording. rIt like this
The hexagonal ferrite has the general formula: AO・n(Fe1
-xMx) 203 (wherein A is Ba, Sr, Ca, Pb
M is C01Ti
, Ni, Mn, Cu, Zn, In, Ge, Nb.

Zr、Sbから選ばれた1種の元素または2種以上の元
素の組合せを、nは5〜6の数を、Xは0.08〜0.
2の数をそれぞれ示す、)で表されるものである。
One element or a combination of two or more elements selected from Zr and Sb, n is a number of 5 to 6, and X is 0.08 to 0.
), each representing the number 2.

このような2換型六方晶系フエライト磁性粉末の製造方
法としては、六方晶系フェライトの基本成分、保磁力低
減のための置換成分およびガラス形成成分を混合して加
熱溶融させ、この溶融物を急速に冷却して非晶質体とし
、これを熱処理して六方晶系フェライトの結晶を析出さ
せた後、これを粉砕して、得られた微粉末をリン酸や#
酸などの希酸で処理してガラス形成成分を溶解除去する
ことによって六方晶系フェライトを分離抽出する、いわ
ゆるガラス結晶化法や、共沈−焼成法、水熱法などが知
られている。これら六方晶系フェライト磁性粉末の製造
方法のうち、特にガラス結晶化法が得られる粉末の粒径
が微細でかつ粒度分布がシャープであることなどから多
用されるようになってきている。
A method for producing such a biconverting hexagonal ferrite magnetic powder involves mixing the basic components of hexagonal ferrite, a substitute component for reducing coercive force, and a glass forming component, heating and melting the mixture, and then heating and melting the mixture. It is rapidly cooled to form an amorphous body, which is then heat treated to precipitate hexagonal ferrite crystals, which are then crushed and the resulting fine powder is mixed with phosphoric acid or
Known methods include a so-called glass crystallization method, a coprecipitation-calcination method, a hydrothermal method, and the like, in which hexagonal ferrite is separated and extracted by treatment with a dilute acid such as an acid to dissolve and remove glass-forming components. Among these methods for producing hexagonal ferrite magnetic powder, the glass crystallization method has come to be frequently used because the resulting powder has a fine particle size and a sharp particle size distribution.

(発明が解決しようとする課題) このような垂直磁気記録媒体に用いられる磁性粉末は、
その粒子の板状比(C面方向の最大粒径とC軸方向の厚
さとの比)が均一であることが望ましい、すなわち、磁
性粉末の板状比が不均一であると、保磁力などの磁気特
性のバラツキが大きくなり、磁気記録媒体とした際にS
/N比を低下させる原因となる。
(Problem to be solved by the invention) The magnetic powder used in such perpendicular magnetic recording media is
It is desirable that the plate ratio of the particles (the ratio of the maximum particle diameter in the C-plane direction to the thickness in the C-axis direction) is uniform.In other words, if the plate ratio of the magnetic powder is uneven, the coercive force etc. The variation in the magnetic properties of the S
This causes a decrease in the /N ratio.

ところで、上述したようにガラス結晶化法によって得た
六方晶系フェライト磁性粉末は、他の製法によって作製
した六方晶系フェライト磁性粉末に比べて粒径が微細で
あるなどの特徴を有しているものの、板状比の均一性に
ついてはまだ充分に満足できるものは得られておらず、
さらに磁気記録媒体の特性向上の要求に対して、板状比
の均一な磁性粉末が強く望まれている。
By the way, as mentioned above, the hexagonal ferrite magnetic powder obtained by the glass crystallization method has characteristics such as smaller particle size than hexagonal ferrite magnetic powder produced by other manufacturing methods. However, the uniformity of the plate ratio has not yet been fully satisfied.
Furthermore, in response to the demand for improved characteristics of magnetic recording media, magnetic powder with a uniform platelet ratio is strongly desired.

本発明はこのような従来の事情に対処してなされたもの
で、板状比が均一でその分布幅が狭く、高密度磁気記録
媒体の作製に適した六方晶系フェライトからなる磁性粉
末を提供することを目的とする。
The present invention has been made in response to these conventional circumstances, and provides a magnetic powder made of hexagonal ferrite that has a uniform plate ratio and a narrow distribution width, and is suitable for producing high-density magnetic recording media. The purpose is to

[発明の構成コ (課題を解決するための手段) 本発明の磁性粉末は、六方晶系フェライトからなる磁性
粉末であって、Rh、Pd、Ruから選ばれた少なくと
も 1種の元素を5ppm〜500ppmの範囲で含有
し、かつPtを5ppn 〜11000ppの範囲で含
有することを特徴としている。
[Configuration of the Invention (Means for Solving the Problems) The magnetic powder of the present invention is a magnetic powder made of hexagonal ferrite, and contains at least one element selected from Rh, Pd, and Ru in an amount of 5 ppm to It is characterized by containing Pt in a range of 500 ppm and Pt in a range of 5 ppn to 11,000 ppm.

本発明に用いられる六方晶系フェライトには、たとえば
M型(Haanetopluibite tipe) 
−W型の六方晶系の、Baフェライト、Srフェライト
、pbフェライト、Caフェライトあるいはこれらの固
溶体、もしくはこれらのイオン置換体などが包含され、
たとえば下記一般式で示されるものが例示される。
The hexagonal ferrite used in the present invention includes, for example, M type (Haanetopluibite tip)
- W-type hexagonal Ba ferrite, Sr ferrite, PB ferrite, Ca ferrite, solid solutions thereof, or ion-substituted products thereof, etc.
For example, those represented by the following general formula are exemplified.

一般式: A O−n (F e 1−X M x )
 203(式中、AはBa−Sr、Ca、Pbから選ば
れた少なくとも 1種の元素を、MはCo、Ti、Ni
、Mn、Cu、Zn、I n、Ge、Nb。
General formula: A O-n (F e 1-X M x )
203 (wherein A is at least one element selected from Ba-Sr, Ca, Pb, M is Co, Ti, Ni
, Mn, Cu, Zn, In, Ge, Nb.

Zr、Sbから選ばれた1種の元素または2種以上の元
素の組合せを、nは5〜6の数を、Xは0.08〜0.
2の数をそれぞれ示す、)(作 用) 本発明の磁性粉末は、六方晶系フェライト磁性粉末に対
してRh、Pd、Ruから選ばれた少なくとも1種の元
素とptとを含有させているので、これら添加金属によ
って粉砕時やたとえばガラス結晶化法においてはガラス
成分の溶解除去時において、六方晶系フェライト微粒子
間の凝集などが防止されるため、従来の六方晶系フェラ
イト磁性粉末に比べて板状比(C面方向の最大粒径とC
軸方向の厚さとの比)が均一でその分布幅が狭いものと
なる。また、添加金属の含有量を前述した範囲に限定し
た理由としては、Rh、Pd、Ruから選ばれた少なく
とも1種の金属の含有量が5pp11未満では板状比均
一化の効果があまり現れず、また保磁力のバラツキが大
きくなり、記録媒体としたときS/N比を低下させる一
方、500111111を超えると、板状比均一化の効
果はそれ以上得られず、コストアップの原因となるため
である。さらに、上記金属とptとを共存させることに
より、板状比均一化の効果が著しく改善される。Ptの
含有量が5ppn未満では板状比均一化の改善効果があ
まり得られず、11000ppを超えると六方晶系フェ
ライトの飽和磁化が低下する。
One element or a combination of two or more elements selected from Zr and Sb, n is a number of 5 to 6, and X is 0.08 to 0.
) (Function) The magnetic powder of the present invention contains at least one element selected from Rh, Pd, and Ru and pt in the hexagonal ferrite magnetic powder. Therefore, these added metals prevent agglomeration between hexagonal ferrite fine particles during crushing or, for example, when the glass component is dissolved and removed in the glass crystallization method. Plate ratio (maximum grain size in C-plane direction and C
(to the axial thickness) is uniform and its distribution width is narrow. In addition, the reason why the content of the additive metal is limited to the above-mentioned range is that if the content of at least one metal selected from Rh, Pd, and Ru is less than 5 pp11, the effect of making the plate ratio uniform is not so pronounced. In addition, the variation in coercive force becomes large, which lowers the S/N ratio when used as a recording medium, while if it exceeds 500111111, the effect of making the plate ratio uniformity can no longer be obtained, which causes an increase in cost. It is. Furthermore, by coexisting the metal and PT, the effect of making the plate ratio uniform is significantly improved. If the Pt content is less than 5 ppn, the effect of improving the uniformity of the plate ratio is not so great, and if it exceeds 11,000 ppn, the saturation magnetization of the hexagonal ferrite decreases.

(実施例) 次に、本発明をガラス結晶化法によって製遺される六方
晶系フェライトに適用した実施例について詳細に説明す
る。
(Example) Next, an example in which the present invention is applied to hexagonal ferrite produced by a glass crystallization method will be described in detail.

実施例1〜7 原料混合物を溶融・冷却して非晶質体としたときに、フ
ェライト成分F e 203と、保磁力低減のための置
換成分子i02、Cooと、ガラス形成成分Bad、B
203とが、F e 20322.6no1%、T i
 O24,7+101%、 Co O4,71101%
、Ba038ioIX、B 2033011olXの組
成比となるように、それぞれ原料の弁柄、酸化チタン、
酸化コバルト、炭酸バリウムおよびホウ酸を所定量秤量
する。この混合物中にRh、Pd、Ruから選ばれる少
なくとも 1種の金属微粉末とPtの金属微粉末とを次
表に示すように、添加金属および添加割合いを変化させ
て添加し、これらを十分に混合して7種類の原料混合物
を作製した。
Examples 1 to 7 When the raw material mixture is melted and cooled to form an amorphous body, the ferrite component Fe 203, the substitution components i02 and Coo for reducing coercive force, and the glass forming components Bad and B
203 is F e 20322.6no1%, T i
O24,7+101%, Co O4,71101%
, Ba038ioIX, B2033011olX, the raw materials Bengara, titanium oxide,
Weigh predetermined amounts of cobalt oxide, barium carbonate, and boric acid. At least one metal fine powder selected from Rh, Pd, and Ru and a fine metal powder of Pt were added to this mixture at varying additive metals and addition ratios as shown in the following table, and these were sufficiently added. Seven types of raw material mixtures were prepared by mixing.

次に、これら各原料混合物を、それぞれ白金るつぼに収
容して高周波加熱し−タを用いて1300℃〜1400
℃で加熱溶融し、次いでこの溶融物を水冷双ロール上に
注いで急冷して非晶質体を作製した。
Next, each of these raw material mixtures was placed in a platinum crucible and heated to 1300°C to 1400°C using a high-frequency heater.
The material was melted by heating at .degree. C., and then the melt was poured onto water-cooled twin rolls and rapidly cooled to produce an amorphous material.

次に、これら非晶質体を所定の容器に充填して電気炉内
に収容し、780℃で5時間加熱してBaフェライトの
結晶を析出させた後、これを粉砕し、得られた結晶粉末
を10%酢酸溶液で処理してガラス形成成分を溶解除去
し、さらに水洗を行ってそれぞれ六方晶系Baフェライ
トからなる磁性粉末を得た。
Next, these amorphous bodies were filled into a predetermined container, placed in an electric furnace, and heated at 780°C for 5 hours to precipitate Ba ferrite crystals, which were then crushed to obtain the crystals. The powders were treated with a 10% acetic acid solution to dissolve and remove glass-forming components, and further washed with water to obtain magnetic powders each consisting of hexagonal Ba ferrite.

このようにして得た実施例1〜7の各磁性粉末の特性を
測定したところ、飽和磁化57〜58enu/Ω、保磁
力6900e 〜7100e +比表面積31m’/a
 〜32i’/g、平均粒径490人〜520人であっ
た。
When the characteristics of each of the magnetic powders of Examples 1 to 7 thus obtained were measured, the saturation magnetization was 57 to 58 enu/Ω, the coercive force was 6900e to 7100e, and the specific surface area was 31 m'/a.
-32 i'/g, average particle size 490-520 particles.

また、板状比については、電子顕微鏡による10000
0倍の拡大写真から粒径と厚さとを測定し、平均板状比
と標準偏差・σとして板状比分布幅とを求めた。その結
果を次表に示す。
In addition, regarding the plate ratio, 10000 was determined using an electron microscope.
The grain size and thickness were measured from a 0x magnified photograph, and the average plate-like ratio and standard deviation/σ were determined as the plate-like ratio distribution width. The results are shown in the table below.

また、本発明との比較のため、Rh、Pd、Ruおよび
ptの金属微粉末を添加しない以外は実施例と同一条件
で磁性粉末を作製した。得られた磁性粉末の特性は、飽
和磁化55eiu/a〜57en+u/q 、保磁力6
800e 〜7000e 、比表面積31n2/(1〜
32o’/Q、平均粒径490人〜520人で、実施例
とほぼ同等の特性を示した。板状比については、実施例
と同様にして平均板状比と板状比分布幅を求めた。これ
らの結果も合せて次表に示す。
Further, for comparison with the present invention, magnetic powder was produced under the same conditions as in the example except that fine metal powders of Rh, Pd, Ru, and pt were not added. The properties of the obtained magnetic powder are as follows: saturation magnetization: 55 eiu/a to 57 en+u/q; coercive force: 6
800e to 7000e, specific surface area 31n2/(1 to
32 o'/Q, average particle diameter of 490 to 520 particles, and exhibited properties almost equivalent to those of the Examples. Regarding the plate ratio, the average plate ratio and the plate ratio distribution width were determined in the same manner as in the examples. These results are also shown in the table below.

(以下余白) 前述した各特性の測定結果および前夫から明らかなよう
に、この実施例の磁性粉末は、比較例として示した従来
の磁性粉末に比べて、板状比の分布幅が狭く、より均一
なものであり、保持力や飽和磁化などの他の特性につい
てもほぼ同等である。
(Left below) As is clear from the measurement results of each characteristic mentioned above and the former husband, the magnetic powder of this example has a narrower distribution width of the plate ratio than the conventional magnetic powder shown as a comparative example. They are uniform, and other properties such as coercive force and saturation magnetization are almost the same.

なお、原料混合物中にRh、Pd、Ruから選ばれた少
なくとも 1種の金属元素とptとを添加することによ
り、より均一な磁性粉末が得られることがわかったが、
このような金属成分は六方晶系フェライトの製造過程で
酸処理によって除去されるガラス形成物質中には含まれ
ず、六方晶系フェライト中に濃縮されるため、製造過程
での析出などによる減少分を多少考慮しても、その添加
量は最終生成物である六方晶系フェライト粉末中の含有
量とほぼ等量であればよい。
It has been found that more uniform magnetic powder can be obtained by adding at least one metal element selected from Rh, Pd, and Ru and PT to the raw material mixture.
These metal components are not included in the glass-forming substances that are removed by acid treatment during the manufacturing process of hexagonal ferrite, but are concentrated in the hexagonal ferrite, so they are not included in the glass-forming substances that are removed by acid treatment during the manufacturing process of hexagonal ferrite. Even if some consideration is given, the amount added should be approximately equal to the content in the hexagonal ferrite powder that is the final product.

また、この実施例ではRh、Pd、Ruやptを金属微
粉末として添加したが、その含有量が上記した範囲内と
なるようにすればこれに限らず、その金属酸化物や金属
塩などとして添加しても同様な効果が得られる。
Further, in this example, Rh, Pd, Ru, and pt were added as metal fine powders, but the content is not limited to this as long as the content is within the above range, and metal oxides, metal salts, etc. A similar effect can be obtained by adding it.

[発明の効果] 以上説明したように本発明の磁性粉末は、六方晶系フェ
ライト磁性粉末中にRh、Pd、Ruから選ばれた少な
くとも 1種の金属元素およびptを微量含有させてい
るので、従来よりも板状比が均一となり、この磁性粉末
を用いた磁気記録媒体はS/N比が高く高再生出力が得
られ、高密度磁気記録媒体よう磁性粉末として極めて好
適なものである。
[Effects of the Invention] As explained above, the magnetic powder of the present invention contains trace amounts of at least one metal element selected from Rh, Pd, and Ru and pt in the hexagonal ferrite magnetic powder. The plate ratio is more uniform than in the past, and magnetic recording media using this magnetic powder have a high S/N ratio and high reproduction output, making it extremely suitable as a magnetic powder for high-density magnetic recording media.

出願人      東芝硝子株式会社 代理人 弁理士  須 山 佐 −Applicant: Toshiba Glass Corporation Agent Patent Attorney Suyama Sa

Claims (1)

【特許請求の範囲】[Claims] (1)六方晶系フェライトからなる磁性粉末であって、
Rh、Pd、Ruから選ばれた少なくとも1種の元素を
5ppm〜500ppmの範囲で含有し、かつPtを5
ppm〜1000ppmの範囲で含有することを特徴と
する磁性粉末。
(1) A magnetic powder made of hexagonal ferrite,
Contains at least one element selected from Rh, Pd, and Ru in a range of 5 ppm to 500 ppm, and contains 5 ppm of Pt.
A magnetic powder characterized in that the content is in the range of ppm to 1000 ppm.
JP63025368A 1988-02-05 1988-02-05 Magnetic powder Pending JPH01200605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63025368A JPH01200605A (en) 1988-02-05 1988-02-05 Magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63025368A JPH01200605A (en) 1988-02-05 1988-02-05 Magnetic powder

Publications (1)

Publication Number Publication Date
JPH01200605A true JPH01200605A (en) 1989-08-11

Family

ID=12163887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63025368A Pending JPH01200605A (en) 1988-02-05 1988-02-05 Magnetic powder

Country Status (1)

Country Link
JP (1) JPH01200605A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011846A1 (en) * 1991-01-07 1992-07-23 St George's Enterprises Limited Particulates
US20210032121A1 (en) * 2019-07-30 2021-02-04 Rogers Corporation Multiphase ferrites and composites comprising the same
WO2021087022A1 (en) * 2019-10-30 2021-05-06 Rogers Corporation M-type hexaferrite comprising antimony
US11682509B2 (en) 2018-11-15 2023-06-20 Rogers Corporation High frequency magnetic films, method of manufacture, and uses thereof
US11691892B2 (en) 2020-02-21 2023-07-04 Rogers Corporation Z-type hexaferrite having a nanocrystalline structure
US11783975B2 (en) 2019-10-17 2023-10-10 Rogers Corporation Nanocrystalline cobalt doped nickel ferrite particles, method of manufacture, and uses thereof
US11827527B2 (en) 2019-09-24 2023-11-28 Rogers Corporation Bismuth ruthenium M-type hexaferrite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189606A (en) * 1984-10-09 1986-05-07 Ricoh Co Ltd Metal oxide magnetic substance and magnetic film
JPS6189604A (en) * 1984-10-09 1986-05-07 Ricoh Co Ltd Metal oxide magnetic substance and magnetic film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189606A (en) * 1984-10-09 1986-05-07 Ricoh Co Ltd Metal oxide magnetic substance and magnetic film
JPS6189604A (en) * 1984-10-09 1986-05-07 Ricoh Co Ltd Metal oxide magnetic substance and magnetic film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011846A1 (en) * 1991-01-07 1992-07-23 St George's Enterprises Limited Particulates
US11682509B2 (en) 2018-11-15 2023-06-20 Rogers Corporation High frequency magnetic films, method of manufacture, and uses thereof
US20210032121A1 (en) * 2019-07-30 2021-02-04 Rogers Corporation Multiphase ferrites and composites comprising the same
US11679991B2 (en) * 2019-07-30 2023-06-20 Rogers Corporation Multiphase ferrites and composites comprising the same
US11827527B2 (en) 2019-09-24 2023-11-28 Rogers Corporation Bismuth ruthenium M-type hexaferrite
US11783975B2 (en) 2019-10-17 2023-10-10 Rogers Corporation Nanocrystalline cobalt doped nickel ferrite particles, method of manufacture, and uses thereof
WO2021087022A1 (en) * 2019-10-30 2021-05-06 Rogers Corporation M-type hexaferrite comprising antimony
GB2603655A (en) * 2019-10-30 2022-08-10 Rogers Corp M-Type hexaferrite comprising antimony
GB2603655B (en) * 2019-10-30 2024-01-03 Rogers Corp M-Type hexaferrite comprising antimony
US11691892B2 (en) 2020-02-21 2023-07-04 Rogers Corporation Z-type hexaferrite having a nanocrystalline structure

Similar Documents

Publication Publication Date Title
JPS6015577B2 (en) Method for producing magnetic powder for magnetic recording
JPS6136685B2 (en)
JPH0512842B2 (en)
JPH01200605A (en) Magnetic powder
JPH0986906A (en) Production of functional oxide powder for functional thin film
JP3083891B2 (en) Magnetic powder for magnetic recording medium and method for producing the same
JPS5842203A (en) Manufacture of magnetic powder for high density magnetic recurding medium
JPS6324935B2 (en)
JP2515328B2 (en) Hexagonal ferrite fine particles and method for producing the same
JP2717720B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH05326233A (en) Production of magnetic powder
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JPS6127329B2 (en)
JP2706774B2 (en) Method for producing substitution type hexagonal ferrite magnetic powder
KR960000501B1 (en) Method of preparing high density magnetic hexagonal ferrite powder
KR960000502B1 (en) Method of preparing magnetic hexagonal ferrite powder
JPH0359008B2 (en)
JP2802653B2 (en) Magnetic powder for high-density magnetic recording and method for producing the same
JP2717735B2 (en) Method for producing magnetic powder for magnetic recording medium
JPS6369206A (en) Hexagonal system ferrite system magnetic powder and its manufacture
JPS62291905A (en) Manufacture of hexagonal ferrite particle power
JPH04284604A (en) Manufacture of hexagonal-system ferrite for magnetic recording
JPS6121921A (en) Preparation of magnetic powder
JPH03104201A (en) Magnetic powder for high density magnetic recording medium
JPH03248505A (en) Manufacture of magnetic powder for magnetic recording