JPH01196112A - Material for forming electrode of grain boundary insulation type porcelain semiconductor capacitor - Google Patents

Material for forming electrode of grain boundary insulation type porcelain semiconductor capacitor

Info

Publication number
JPH01196112A
JPH01196112A JP2161688A JP2161688A JPH01196112A JP H01196112 A JPH01196112 A JP H01196112A JP 2161688 A JP2161688 A JP 2161688A JP 2161688 A JP2161688 A JP 2161688A JP H01196112 A JPH01196112 A JP H01196112A
Authority
JP
Japan
Prior art keywords
glass frit
weight
grain boundary
solid content
total weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2161688A
Other languages
Japanese (ja)
Other versions
JPH0670935B2 (en
Inventor
Akira Nagai
長井 昭
Yasuyuki Naito
康行 内藤
Yoshimasa Azuma
東 吉正
Harufumi Bandai
治文 万代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2161688A priority Critical patent/JPH0670935B2/en
Publication of JPH01196112A publication Critical patent/JPH01196112A/en
Publication of JPH0670935B2 publication Critical patent/JPH0670935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To miniaturize a capacitor, and to reduce price by adjusting the quantity of glass frit to the total weight of a solid content within a specific range while specifying the range of a weight ratio to the total weight of each composition ingredient of the glass frit. CONSTITUTION:In an electrode forming material for a grain boundary insulation type porcelain semiconductor capacitor in which a solid content consisting of aluminum powder and glass frit is mixed with an organic vehicle, the quantity of the glass frit to the total weight of the solid content is adjusted at 1-30wt.% while the glass frit is composed of the composition ingredients of SiO2, B2O3, CaO, ZnO and Bi2O3, and the ratios of each composition ingredient are kept respectively within the ranges of 6-10wt.%, 7-35wt.%, 1-20wt.%, 1-35wt.%, and 1-85wt.% to the total weight of the composition ingredients. According to the constitution, Al is employed as the material for forming an electrode and large capacitance characteristics are acquired while the deterioration of insulation resistance and lifetime characteristics in a high temperature and in moisture due to the usage of Al which is not avoided conventionally can be prevented.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、小型で大容量が得られる粒界絶縁型磁器半導
体コンデンサに係り、特に、このコンデンサの電極形成
用材料に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a grain-boundary insulated ceramic semiconductor capacitor that is small and has a large capacity, and particularly relates to a material for forming electrodes of this capacitor.

〈従来の技術およびその問題点〉 従来から、粒界絶縁型磁器半導体コンデンサとしてはチ
タン酸ストロンチウム(SrTi03)を主体として構
成されたものが知られており、5rTio、からなるコ
ンデンサにおいては、これが有する静電容量変化率およ
び誘電損失(tan δ)がチタン酸バリウム(BaT
i03)を主体とするコンデンサが有するそれに比べて
小さいという利点がある。
<Prior art and its problems> Conventionally, grain boundary insulated ceramic semiconductor capacitors mainly composed of strontium titanate (SrTi03) have been known, and capacitors composed of 5rTio, which have The capacitance change rate and dielectric loss (tan δ) of barium titanate (BaT)
It has the advantage of being smaller than that of capacitors mainly composed of i03).

ところで、このような5rTiO,を主体として構成さ
れたコンデンサにおいては、その電極形成用材料として
銀を使用するのが一般的である。
Incidentally, in a capacitor constructed mainly of 5rTiO, silver is generally used as the material for forming the electrodes.

しかし、銀は良好な電気的特性を有する反面、貴金属材
料であるために高価であり、しかも、銀電極にリード線
などを半田付けした際には、銀が半田中に拡散して「銀
くわれ」といわれるような不都合な現象が発生するとい
う問題点があった。
However, while silver has good electrical properties, it is expensive because it is a precious metal material.Moreover, when lead wires are soldered to silver electrodes, silver diffuses into the solder and becomes "silver". There was a problem in that an inconvenient phenomenon such as "I" occurred.

そこで、このような問題点を回避すべく、高価な銀に代
えて、良好な電気的特性を有し、かつ、安価な卑金属材
料を電極形成用材料として用いることが考えられている
。ところが、卑金属材料を使用する場合には卑金属材料
自体の酸化を防止するため、−鍛型に、中性もしくは還
元性雰囲気中で電極形成処理を行う必要があるにもかか
わらず、このような雰囲気中においてはコンデンサ素子
そのものが還元されてしまうことになるので所要の容量
特性が得られなくなってしまう。
Therefore, in order to avoid such problems, it has been considered to use an inexpensive base metal material that has good electrical properties as an electrode forming material instead of expensive silver. However, when using base metal materials, it is necessary to perform electrode formation on the die in a neutral or reducing atmosphere in order to prevent the base metal material itself from oxidizing. Inside, the capacitor element itself is reduced, making it impossible to obtain the required capacitance characteristics.

一方、空気中においても電極形成処理を行うことが可能
な卑金属材料として、アルミニウム(AI2)やニッケ
ル(NiL 亜鉛(Zn)などが考えられるが、Niお
よびZnではその比抵抗が高いという不都合があり、さ
らに、Znでは密着性が弱いという不都合もある。また
、A12を電極形成用材料として用いる場合には、この
Afiの有する還元力が大きいので、コンデンサ素子の
結晶粒界に拡散された金属酸化物からなる絶縁体部分が
還元されて大きな容量特性が得られる反面、絶縁抵抗が
低くなり、特に、高温中や流中において劣化してしまう
ことが多かった。
On the other hand, aluminum (AI2), nickel (NiL, zinc (Zn), etc.) can be considered as base metal materials that can be subjected to electrode formation processing even in air, but Ni and Zn have the disadvantage of high specific resistance. Furthermore, Zn has the disadvantage of weak adhesion.Furthermore, when A12 is used as an electrode forming material, since Afi has a large reducing power, the metal oxide diffused into the crystal grain boundaries of the capacitor element Although the insulator portion made of solids is reduced and large capacitance characteristics are obtained, the insulation resistance is low, and it often deteriorates, especially in high temperatures or in flowing water.

本発明はかかる従来の問題点に鑑み、かつ、空気中での
電極形成処理が可能な電極形成用材料としてのアルミニ
ウム(AA)に着目して創案されたものであって、特に
、高温中や流中における絶縁抵抗や寿命特性の改善を図
ることができる粒界絶縁型磁器半導体コンデンサの電極
形成用材料の提供を目的としている。
The present invention was devised in view of these conventional problems and focused on aluminum (AA) as an electrode forming material that can be processed for forming electrodes in air. The purpose of the present invention is to provide a material for forming electrodes of grain boundary insulated ceramic semiconductor capacitors, which can improve insulation resistance and life characteristics in a current.

く問題点を解決するための手段〉 本発明は、このような目的を達成するために、アルミニ
ウム粉末とガラスフリットとからなる固形分を有機ビし
クルに混合してなる粒界絶縁型磁器半導体コンデンサの
電極形成用材料であって、前記固形分の総量に対する前
記ガラスフリ・ット量を1〜30重量%に調整するとと
もに、前記ガラスフリットが、S i02、B20< 
、CaO1Zn○、+3i203の組成成分からなり、
かつ、各組成成分の割合がその総量に対してそれぞれ6
〜10重量%、7〜35重景%、1〜20重景%、1〜
35重量%、1〜85重量%の範囲にあることに特徴を
有するものである。
Means for Solving the Problems> In order to achieve the above object, the present invention provides a grain boundary insulated ceramic semiconductor made by mixing a solid content of aluminum powder and glass frit into an organic vehicle. A material for forming an electrode of a capacitor, in which the amount of the glass frit is adjusted to 1 to 30% by weight relative to the total amount of solid content, and the glass frit is Si02, B20<
, CaO1Zn○, +3i203,
and the ratio of each component to the total amount is 6
~10% by weight, 7-35 heavy view%, 1-20 heavy view%, 1~
It is characterized by being in the range of 35% by weight and 1 to 85% by weight.

ところで、本発明におけるガラスフリットの組成成分を
前記範囲に限定したのは、つぎのような理由によってい
る。すなわち、5in2が6重量%未満もしくはB2O
3が7重量%未満の場合には、他の組成成分の増量によ
ってガラスフリットが結晶化してしまうことがあり、こ
のような結晶化はガラス形成上好ましくない。一方、5
iOzが10重量%を越えた場合には作業温度が上昇し
て誘電損失(tan δ)が大きくなってしまい、また
、B2O3が35重量%を越えて増量された場合にはガ
ラスフリットの耐水性や絶縁抵抗が低下してしまう。
By the way, the reason why the composition of the glass frit in the present invention is limited to the above range is as follows. That is, 5in2 is less than 6% by weight or B2O
If 3 is less than 7% by weight, the glass frit may crystallize due to an increase in the amount of other composition components, and such crystallization is not preferable in terms of glass formation. On the other hand, 5
If iOz exceeds 10% by weight, the working temperature will rise and dielectric loss (tan δ) will increase, and if B2O3 exceeds 35% by weight, the water resistance of the glass frit will deteriorate. or the insulation resistance will decrease.

さらに、CaOが20重量%を越えた場合には、ガラス
フリットの粘性が増大してアルミニウム(Aff)粒子
に対する表面保護効果が減少してしまうとともに、Zn
○が前記上限を越えて増量された場合と同様、誘電損失
(tan δ)が増大してしまう。そして、Bi2O3
が85重量%を越えた場合には、ガラスフリットの粘性
が必要以上に低下して誘電損失(tan δ)が低下し
てしまう。なお、CaO1ZnOのいずれもが添加され
ていなければ、流中負荷寿命試験におL′Jる絶縁抵抗
が低下し、B!203が添加されていない場合には、高
温中および流中負荷寿命試験におIJる絶縁抵抗が低下
してしまう。
Furthermore, if CaO exceeds 20% by weight, the viscosity of the glass frit increases and the surface protection effect for aluminum (Aff) particles decreases, and the Zn
Similarly to the case where ○ is increased beyond the above upper limit, the dielectric loss (tan δ) increases. And Bi2O3
If it exceeds 85% by weight, the viscosity of the glass frit decreases more than necessary, resulting in a decrease in dielectric loss (tan δ). Note that if neither CaO nor ZnO is added, the insulation resistance L'J in the flowing load life test will decrease, and B! If 203 is not added, the insulation resistance in high temperature and flowing load life tests will decrease.

〈実施例〉 以下、本発明の実施例について詳細に説明するが、まず
、本発明が適用される粒界絶縁型磁器半導体について説
明したうえで、本発明の要件である電極形成用材料につ
いて説明する。
<Examples> Examples of the present invention will be described in detail below. First, a grain boundary insulated ceramic semiconductor to which the present invention is applied will be explained, and then an electrode forming material, which is a requirement of the present invention, will be explained. do.

粒界絶縁型磁器半導体コンデンサの製作にあたっては、
まず、素子原料であるSrCO2、TXO□、Y2O3
を混合、粉砕、成形および焼成することによってチタン
酸ストロンチウム系、すなわち、(S r O,997
YQ、003 ) T i +、oo+ 03の組成を
有する磁器半導体を形成した。そして、得られた磁器半
導体に、酸化鉛(Pb304)、酸化ビスマス(Bi、
03)、酸化銅(CuO)を有機フェスに混合してなる
酸化剤ペーストを塗布したうえで熱処理することにより
、これらの金属酸化物が磁器半導体の内部に拡散させら
れ、結晶粒界が絶縁体化された粒界絶縁型磁器半導体を
得た。
When manufacturing grain boundary insulated ceramic semiconductor capacitors,
First, the element raw materials SrCO2, TXO□, Y2O3
Strontium titanate, i.e., (S r O, 997
YQ, 003) A ceramic semiconductor having a composition of T i +,oo+ 03 was formed. Then, lead oxide (Pb304), bismuth oxide (Bi,
03), by applying an oxidizer paste made by mixing copper oxide (CuO) with an organic face and then heat-treating it, these metal oxides are diffused into the interior of the ceramic semiconductor, and the grain boundaries become insulators. A grain-boundary insulated ceramic semiconductor was obtained.

一方、電極形成用材料としては、平均粒径が2〜8μm
とされた球状アルミニウム(八り粉末と、第1表(次ペ
ージ参照)に示すような組成成分および割合とされたガ
ラスフリットとからなる固形分(65重量%)を、ブチ
ルカルピトールアセテートおよびα−テルピネオールに
エチルセルロースを溶解してなる有機ビヒクル(35重
量%)に混合することによってアルミニウム(AJ)ペ
ーストを作成した。なお、このAβペーストにおける固
形分の含有率および有機ビヒクルの組成については、上
記数値および成分に限定されるものではなく、その粘度
および作業性などによって任意に調整可能であることは
いうまでもない。
On the other hand, as an electrode forming material, the average particle size is 2 to 8 μm.
A solid content (65% by weight) consisting of spherical aluminum powder and glass frit having the composition and proportions shown in Table 1 (see next page) was mixed with butyl carpitol acetate and α - An aluminum (AJ) paste was prepared by mixing ethyl cellulose in terpineol with an organic vehicle (35% by weight).The solid content in this Aβ paste and the composition of the organic vehicle are as described above. Needless to say, it is not limited to the numerical values and components, and can be arbitrarily adjusted depending on the viscosity, workability, etc.

(以下、余白) 第1表 この第1表における組成成分の割合単位は、いずれも重
量%であり、かつ、この表における試料番号2,4.1
5は本発明の範囲内のガラスフリットからなる電極形成
用材料を用いて構成されたものである。しかし、試料番
号2,4.15以外、すなわち、試料番号1,3.5〜
14のものは、すべて本発明の範囲外のものである。
(Hereinafter, blank space) Table 1 The percentage units of composition components in this Table 1 are all weight %, and sample numbers 2, 4.1 in this table
5 is constructed using an electrode forming material made of glass frit within the scope of the present invention. However, other than sample number 2, 4.15, that is, sample number 1, 3.5~
All 14 are outside the scope of the present invention.

つぎに、このようにして得られた複数の粒界絶縁型磁器
半導体の表面それぞれに、第1表に示すガラスフリット
をそれぞれ含有してなるアルミニウム(Aβ)ペースト
を塗布し、このA1ペーストを800℃の空気中で30
分間にわたって焼き付けてコンデンサ電極を形成するこ
とにより、本発明に係る電極形成用材料の性能試験に用
いる試料となる粒界絶縁型磁器半導体コンデンサを得た
Next, an aluminum (Aβ) paste containing the glass frit shown in Table 1 was applied to each of the surfaces of the plurality of grain boundary insulated ceramic semiconductors obtained in this way, and this A1 paste was coated with 800% 30℃ in air
By baking for a minute to form a capacitor electrode, a grain-boundary insulated porcelain semiconductor capacitor was obtained as a sample to be used in the performance test of the electrode-forming material according to the present invention.

そして、これらの粒界絶縁型磁器半導体コンデンサにお
ける電気的特性として誘電損失(tan δ)を測定す
るとともに、このコンデンサを恒温・恒温槽(40℃、
相対湿度95%)に載置したうえで25V負荷・100
0Hr経過後の絶縁抵抗を測定することにより、第2表
(次ページ参照)に示すような測定結果が得られた。
Then, the dielectric loss (tan δ) was measured as an electrical characteristic of these grain boundary insulated ceramic semiconductor capacitors, and the capacitors were placed in a constant temperature bath (40℃,
Place it at a relative humidity of 95% and apply a 25V load to 100V.
By measuring the insulation resistance after 0 hours, the measurement results shown in Table 2 (see next page) were obtained.

第2表 なお、この表における誘電損失(tan δ)について
はブリッジ法を用いてIKHz、  0.IVの条件で
、また、絶縁抵抗については25■1分経過後にそれぞ
れ測定し、コンデンサの形状によって換算している。
Table 2 Note that the dielectric loss (tan δ) in this table is calculated using the bridge method at IKHz, 0. The insulation resistance was measured under IV conditions and after 25×1 minute had elapsed, and converted based on the shape of the capacitor.

この第2表に示す測定結果によれば、本発明に係る電極
形成用材料としてのアルミニウム(Aβ)ペーストを用
いてなる試料番号2.4.15のコンデンサにおいては
、その誘電損失(tan δ)および絶縁抵抗が最大値
および最小値でそれぞれ1.5%、2.2X10I0Ω
・cmというようなa 好な値を示すとともに、その高
温中および流中における寿命特性が良好で従来例の銀か
らなる電極が形成されたコンデンサよりも改善されてい
ることが明らかである。
According to the measurement results shown in Table 2, in the capacitor of sample number 2.4.15 using aluminum (Aβ) paste as the electrode forming material according to the present invention, the dielectric loss (tan δ) and insulation resistance is 1.5% at maximum and minimum values, respectively, 2.2X10I0Ω
It is clear that the capacitor exhibits a good value of a such as .cm, and its life characteristics at high temperatures and in flowing water are good and are improved over conventional capacitors in which electrodes are made of silver.

これに対して、本発明の範囲外とされたアルミニウム(
Aβ)ペーストからなる電極が形成されたコンデンサに
おいては、つぎのような問題点が発生している。すなわ
ち、試料番号6,7のものではアルミニうム(八β)ペ
ーストがガラス化せず、また、試料番号8〜14のもの
ではその誘電損失(tan δ)もしくは絶縁抵抗のい
ずれか一方が大きく低下している。さらに、試料番号1
.3゜5.9.1.4のものでは、その高温中寿命もし
くは流中寿命のいずれか一方、または、双方が不良とな
っている。
On the other hand, aluminum (
In a capacitor in which an electrode made of Aβ) paste is formed, the following problems occur. That is, in samples No. 6 and 7, the aluminum (8β) paste did not vitrify, and in samples No. 8 to 14, either the dielectric loss (tan δ) or the insulation resistance was large. It is declining. Furthermore, sample number 1
.. In the case of 3°5.9.1.4, either one or both of the high-temperature life and the flowing life were poor.

なお、以」二説明した第1表および第2表には記載して
いないが、アルミニウム(Aβ)ペーストを構成する固
形分、すなわち、Aβ粉末とガラスフリットとの総量に
対するガラスフリアl−量を1重量%未満として前記同
様の測定を行ったところ、Aρの酸化が進み過ぎて電極
抵抗および誘電損失(tan δ)が大きくなってしま
うという不都合な結果が得られた。また、これに対して
、30重量%を越える量のガラスフリットを加えた場合
には、A1の酸化が抑制されるため、Aβによるコンデ
ンサ素子の還元作用によって絶縁抵抗が低下してしまう
ことが確認されている。さらに、−鍛型に使用されてい
るPbO−8iO−B203系ガラスを用いた場合には
、良好な初期特性が得られるにもかかわらず、湿中負荷
寿命試験におりる絶縁抵抗が低下するという不都合な現
象が観察された。
Although it is not listed in Tables 1 and 2 explained below, the solid content constituting the aluminum (Aβ) paste, that is, the amount of glass flier l− relative to the total amount of Aβ powder and glass frit, is When the same measurement as above was performed with less than 1% by weight, the oxidation of Aρ progressed too much, resulting in an unfavorable result in which the electrode resistance and dielectric loss (tan δ) increased. In contrast, when glass frit was added in an amount exceeding 30% by weight, the oxidation of A1 was suppressed, and it was confirmed that the insulation resistance decreased due to the reduction effect of Aβ on the capacitor element. has been done. Furthermore, when using PbO-8iO-B203 glass, which is used in forging molds, although good initial characteristics can be obtained, the insulation resistance during the humid load life test decreases. Unfavorable phenomena were observed.

〈発明の効果〉 以上説明したように、本発明によれば、電極形成用材料
を、アルミニウム粉末と、ガラスフリソ1−とからなる
固形分を有機ビヒクルに混合することによって構成して
おり、前記固形分の総量に対する前記ガラスフリット量
を1〜30重量%に調整するとともに、前記ガラスフリ
ットが、5in2、B20:l 、CaO,、Zn0X
B iz 03の組成成分からなり、かつ、各組成成分
の割合がその総量に対してそれぞれ6〜10重量%、7
〜35重量%、1〜20重量%、1〜35重量%、1〜
85重量%の範囲としているので、この電極形成材料を
使用して粒界絶縁型磁器半導体コンデンサの電極を形成
することにより、銀からなる電極を備えたコンデンサに
比べて、小型、かつ、安価であるとともに、高温中や流
中における絶縁抵抗や寿命特性の良好な粒界絶縁型磁器
半導体コンデンサが得られる。
<Effects of the Invention> As explained above, according to the present invention, the electrode forming material is constituted by mixing a solid component consisting of aluminum powder and glass fris 1- into an organic vehicle, and the solid component The amount of the glass frit is adjusted to 1 to 30% by weight based on the total amount of the glass frit, and the glass frit is
Consisting of the composition components of B iz 03, and the proportion of each composition component is 6 to 10% by weight and 7% by weight, respectively, based on the total amount.
~35% by weight, 1~20% by weight, 1~35% by weight, 1~
85% by weight, so by forming the electrodes of grain boundary insulated ceramic semiconductor capacitors using this electrode forming material, the capacitors are smaller and cheaper than capacitors with electrodes made of silver. At the same time, it is possible to obtain a grain boundary insulated ceramic semiconductor capacitor having good insulation resistance and life characteristics at high temperatures and in flowing water.

出順人 株式会社 相国製作所Junjin Sokoku Seisakusho Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウム粉末とガラスフリットとからなる固
形分を有機ビヒクルに混合してなる粒界絶縁型磁器半導
体コンデンサの電極形成用材料であって、 前記固形分の総量に対する前記ガラスフリット量を1〜
30重量%に調整するとともに、 前記ガラスフリットが、SiO_2、B_2O_3、C
aO、ZnO、Bi_2O_3の組成成分からなり、か
つ、各組成成分の割合がその総量に対してそれぞれ6〜
10重量%、7〜35重量%、1〜20重量%、1〜3
5重量%、1〜85重量%の範囲にあることを特徴とす
る粒界絶縁型磁器半導体コンデンサの電極形成用材料。
(1) A material for forming an electrode of a grain boundary insulated ceramic semiconductor capacitor, which is made by mixing a solid content of aluminum powder and glass frit in an organic vehicle, wherein the amount of the glass frit relative to the total amount of the solid content is 1 to 1.
30% by weight, and the glass frit contains SiO_2, B_2O_3, C
It consists of the composition components aO, ZnO, and Bi_2O_3, and the proportion of each composition component is 6 to 6 to the total amount.
10% by weight, 7-35% by weight, 1-20% by weight, 1-3
5% by weight, in a range of 1 to 85% by weight, a material for forming electrodes of a grain boundary insulated ceramic semiconductor capacitor.
JP2161688A 1988-02-01 1988-02-01 Material for forming electrodes of grain boundary insulated porcelain semiconductor capacitors Expired - Lifetime JPH0670935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2161688A JPH0670935B2 (en) 1988-02-01 1988-02-01 Material for forming electrodes of grain boundary insulated porcelain semiconductor capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2161688A JPH0670935B2 (en) 1988-02-01 1988-02-01 Material for forming electrodes of grain boundary insulated porcelain semiconductor capacitors

Publications (2)

Publication Number Publication Date
JPH01196112A true JPH01196112A (en) 1989-08-07
JPH0670935B2 JPH0670935B2 (en) 1994-09-07

Family

ID=12059980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2161688A Expired - Lifetime JPH0670935B2 (en) 1988-02-01 1988-02-01 Material for forming electrodes of grain boundary insulated porcelain semiconductor capacitors

Country Status (1)

Country Link
JP (1) JPH0670935B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623389A (en) * 1994-06-20 1997-04-22 Murata Manufacturing Co., Ltd. Conductive paste and multilayered ceramic capacitor employing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623389A (en) * 1994-06-20 1997-04-22 Murata Manufacturing Co., Ltd. Conductive paste and multilayered ceramic capacitor employing the same

Also Published As

Publication number Publication date
JPH0670935B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
US4854936A (en) Semiconductive ceramic composition and semiconductive ceramic capacitor
JP2001110232A (en) Conductive paste and semiconductor ceramic electronic parts
JPS63927B2 (en)
JPH0851044A (en) Ceramic capacitor
US5358666A (en) Ohmic electrode materials for semiconductor ceramics and semiconductor ceramics elements made thereof
JPH01196112A (en) Material for forming electrode of grain boundary insulation type porcelain semiconductor capacitor
JPS6127003A (en) Conductive paste composition
JP2830322B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH1012043A (en) Conductive composition and boundary layer ceramic capacitor
JP2808775B2 (en) Varistor manufacturing method
JP2727693B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2555791B2 (en) Porcelain composition and method for producing the same
JPS6221256B2 (en)
JP2808778B2 (en) Varistor manufacturing method
JPH038767A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
KR920009172B1 (en) Semiconductive ceramic composition and semiconductive ceramic capacitor
JP2555790B2 (en) Porcelain composition and method for producing the same
JPH038766A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JPH0443602A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH0578924B2 (en)
JPH03109257A (en) Grain boundary oxidized voltage-nonlinear resistance composition
JPH0459656A (en) Ceramic composition and production thereof
JPS6029211B2 (en) Manufacturing method of semiconductor ceramic capacitor
JPH0258807A (en) Manufacture of voltage nonlinear resistor
JPH05326210A (en) Ceramic composition for voltage nonlinear resistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 14