JP2001110232A - Conductive paste and semiconductor ceramic electronic parts - Google Patents

Conductive paste and semiconductor ceramic electronic parts

Info

Publication number
JP2001110232A
JP2001110232A JP29123199A JP29123199A JP2001110232A JP 2001110232 A JP2001110232 A JP 2001110232A JP 29123199 A JP29123199 A JP 29123199A JP 29123199 A JP29123199 A JP 29123199A JP 2001110232 A JP2001110232 A JP 2001110232A
Authority
JP
Japan
Prior art keywords
conductive paste
external electrode
glass frit
conductive
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29123199A
Other languages
Japanese (ja)
Other versions
JP4244466B2 (en
Inventor
Satoru Noda
悟 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP29123199A priority Critical patent/JP4244466B2/en
Publication of JP2001110232A publication Critical patent/JP2001110232A/en
Application granted granted Critical
Publication of JP4244466B2 publication Critical patent/JP4244466B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a conductive paste capable of forming an external electrode which is put in ohmic contact with a ceramic element, superior in soldering wetness and preventive of migration, and to provide semiconductor ceramic electronic parts with an external electrode formed by using the conductive paste. SOLUTION: A conductive paste contains dominantly conductive powder and glass frit. The conductive powder is formed of copper, tin and phosphorus alloy and the glass frit consists of one type selected out of boro-silicate bismuth based glass, boro-silicate zinc based glass and borate based glass. The addition amount of the glass frit is 3 vol.% or more and less than 40 vol.% in terms of 100 vol.% of the conductive powder. Semiconductor ceramic electronic parts have an external electrode formed by using the conductive paste.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体セラミック
電子部品のオーミック電極形成に用いる導電性ペース
ト、およびそれを用いた半導体セラミック電子部品に関
する。
The present invention relates to a conductive paste for forming an ohmic electrode of a semiconductor ceramic electronic component, and a semiconductor ceramic electronic component using the same.

【0002】[0002]

【従来の技術】また、従来より半導体セラミック電子部
品は、主にセラミック素子と外部電極とからなり、例え
ばセラミック素子は、チタン酸バリウム系、チタン酸ス
トロンチウム系、酸化亜鉛系、酸化鉄系セラミック材料
からなる。
2. Description of the Related Art Conventionally, a semiconductor ceramic electronic component mainly comprises a ceramic element and an external electrode. For example, the ceramic element is made of a barium titanate-based, strontium titanate-based, zinc oxide-based, iron oxide-based ceramic material. Consists of

【0003】外部電極は、亜鉛,アルミニウム,ニッケ
ル等の卑金属元素の金属粉末に低融点の硼ケイ酸鉛系ガ
ラスフリットやホウケイ酸亜鉛系ガラスフリットを添
加、あるいは銀粉を主成分として亜鉛,ガリウム,イン
ジウムを添加した導電性ペーストを、セラミック素子の
両端部に塗布し焼付けして、無電解ニッケルメッキ等を
施したものがある。なお、セラミック素子は外部電極と
オーミック接触している。
[0003] The external electrode is made by adding a low melting point lead borosilicate glass frit or a zinc borosilicate glass frit to a metal powder of a base metal element such as zinc, aluminum, nickel or the like, or zinc, gallium, and zinc as main components. In some cases, a conductive paste containing indium is applied to both ends of a ceramic element, baked, and subjected to electroless nickel plating or the like. Note that the ceramic element is in ohmic contact with the external electrode.

【0004】[0004]

【発明が解決しようとする課題】亜鉛,アルミニウム,
ニッケル等の卑金属元素の粉末を導電成分とする導電性
ペーストは、これを焼成して得られる外部電極とセラミ
ック素子とのオーミック接触性は良好であるが半田濡れ
性が悪く、端子を半田付けで取り付けるタイプの半導体
セラミック電子部品の外部電極として使用できない問題
点がある。
SUMMARY OF THE INVENTION Zinc, aluminum,
A conductive paste containing a powder of a base metal element such as nickel as a conductive component has good ohmic contact between an external electrode obtained by firing the powder and a ceramic element, but has poor solder wettability. There is a problem that it cannot be used as an external electrode of a mounting type semiconductor ceramic electronic component.

【0005】また、銀粉を主成分とし亜鉛,ガリウム,
インジウムを添加した導電性ペーストは、焼成して得ら
れる外部電極とセラミック素子とのオーミック接触性お
よび半田濡れ性は良好であるが、セラミック素子2に高
電圧を印加した場合に、外部電極の正極から負極へ銀が
移動する、いわゆるマイグレーション現象が起きるとい
う問題点がある。
In addition, zinc, gallium,
The conductive paste containing indium has good ohmic contact and solder wettability between the external electrode obtained by firing and the ceramic element, but the positive electrode of the external electrode when a high voltage is applied to the ceramic element 2. There is a problem that so-called migration phenomenon occurs in which silver moves from the anode to the negative electrode.

【0006】本発明の目的は、上述の問題点を解消すべ
くなされたもので、セラミック素子とオーミック接触
し、半田濡れ性に優れ、マイグレーション現象が発生し
ない外部電極を形成できる導電性ペーストを提供し、ま
た、この導電性ペーストを用いて外部電極を形成した半
導体セラミック電子部品を提供することにある。
An object of the present invention is to solve the above-mentioned problems, and to provide a conductive paste capable of forming an external electrode which is in ohmic contact with a ceramic element, has excellent solder wettability, and does not cause migration phenomenon. Another object of the present invention is to provide a semiconductor ceramic electronic component in which an external electrode is formed using the conductive paste.

【0007】[0007]

【課題を解決するための手段】本発明の導電性ペースト
は、導電性粉末と、ガラスフリットと、を主成分とし、
前記導電性粉末は銅錫燐合金からなり、前記ガラスフリ
ットはホウケイ酸ビスマス系ガラス、ホウケイ酸亜鉛系
ガラス、ホウ酸塩系ガラスから選ばれる1種からなり、
前記ガラスフリットの添加量は、前記導電性粉末100
体積%に対して3体積%以上40体積%未満であること
を特徴とする。
Means for Solving the Problems The conductive paste of the present invention comprises a conductive powder and a glass frit as main components,
The conductive powder is made of a copper-tin-phosphorus alloy, and the glass frit is made of one selected from bismuth borosilicate glass, zinc borosilicate glass, and borate glass,
The amount of the glass frit added is 100
It is characterized by being at least 3% by volume and less than 40% by volume with respect to% by volume.

【0008】また、本発明の半導体セラミック電子部品
は、セラミック素体と、外部電極と、からなり、外部電
極は、請求項1または請求項2に記載の導電性ペースト
をセラミック素体の両端部に塗布し乾燥させ焼付けて形
成されていることを特徴とする。
Further, a semiconductor ceramic electronic component according to the present invention comprises a ceramic body and an external electrode, wherein the external electrode is formed by applying the conductive paste according to claim 1 or 2 to both ends of the ceramic body. , Dried and baked.

【0009】[0009]

【発明の実施の形態】本発明に係る導電性ペーストにつ
いて詳細に説明する。本発明の導電性ペーストは、導電
性粉末とガラスフリットを主成分とする。導電性粉末
は、例えばアトマイズ法等で作製された銅錫燐合金から
なる。導電性粉末が銅粉末単独からなる場合、初期抵抗
値R25は無限大となる。また、錫粉末単独からなる場
合、焼成温度で電極を形成することができない。また、
燐粉末単独からなる場合、発火の恐れがあり実用的では
ない。銅錫合金からなる場合、初期抵抗値R25は100
0Ω前後となりセラミック素体とオーミック接触しな
い。
BEST MODE FOR CARRYING OUT THE INVENTION The conductive paste according to the present invention will be described in detail. The conductive paste of the present invention contains conductive powder and glass frit as main components. The conductive powder is made of, for example, a copper-tin-phosphorus alloy produced by an atomizing method or the like. When the conductive powder is made of copper powder alone, the initial resistance value R 25 becomes infinite. In the case of using only tin powder, electrodes cannot be formed at the firing temperature. Also,
When the phosphor powder is used alone, there is a risk of ignition, which is not practical. When made of a copper-tin alloy, the initial resistance value R 25 is 100
It is around 0Ω and does not make ohmic contact with the ceramic body.

【0010】ガラスフリットは、チタン酸バリウム系、
チタン酸ストロンチウム系等のペロブスカイト型半導体
セラミック、酸化亜鉛系半導体セラミック、酸化鉄系半
導体セラミック等と良好なガラスボンドが得られ、銅錫
燐合金に対して濡れ性の優れるものを適宜選択すること
ができ、例えば、低融点のホウケイ酸ビスマス系ガラ
ス、ホウケイ酸亜鉛系ガラス、ホウ酸塩ガラス等が挙げ
られる。
The glass frit is made of barium titanate,
A good glass bond can be obtained with a perovskite-type semiconductor ceramic such as strontium titanate, a zinc oxide-based semiconductor ceramic, an iron oxide-based semiconductor ceramic, or the like. Examples thereof include low melting point bismuth borosilicate glass, zinc borosilicate glass, and borate glass.

【0011】導電性粉末に対するガラスフリットの添加
量は3体積%以上40体積%未満であることが好まし
い。前記体積比が40%以上となると、焼成して得られ
る外部電極の表面にガラスが析出して半田濡れ性が悪く
なる。他方、前記体積比が3%より小さくなると、セラ
ミック素子2とのガラスボンドができず外部電極を形成
できないか、あるいは初期抵抗値が高く、得られた外部
電極3,3がセラミック素子2とオーミック接触しな
い。
The amount of glass frit added to the conductive powder is preferably at least 3% by volume and less than 40% by volume. When the volume ratio is 40% or more, glass is deposited on the surface of the external electrode obtained by firing, and the solder wettability deteriorates. On the other hand, if the volume ratio is less than 3%, glass bonding with the ceramic element 2 cannot be performed and an external electrode cannot be formed, or the initial resistance value is high, and the obtained external electrodes 3 and 3 are in ohmic contact with the ceramic element 2. Do not touch.

【0012】こうして得られた導電性ペーストをセラミ
ック素子2に塗布し、セラミック素子2を還元しない雰
囲気において500〜800℃で焼成すると、セラミッ
ク素子2とオーミック接触する外部電極3,3が得られ
る。
When the conductive paste thus obtained is applied to the ceramic element 2 and fired at 500 to 800 ° C. in an atmosphere in which the ceramic element 2 is not reduced, the external electrodes 3 and 3 in ohmic contact with the ceramic element 2 are obtained.

【0013】なお、セラミック素子を還元しない雰囲気
とは、酸素濃度が最低150ppmであることが好まし
い。酸素濃度が150ppmより低くなると、半導体セ
ラミック電子部品が正特性サーミスタである場合、図2
に示すように抵抗温度特性を示さなくなる。また、大気
雰囲気において焼成すると、図3に示すように酸化して
比抵抗が高くなる。
The atmosphere in which the ceramic element is not reduced preferably has an oxygen concentration of at least 150 ppm. When the oxygen concentration is lower than 150 ppm, when the semiconductor ceramic electronic component is a positive temperature coefficient thermistor, FIG.
As shown in FIG. Further, when sintering is performed in an air atmosphere, oxidation occurs as shown in FIG. 3 to increase the specific resistance.

【0014】次に、本発明に係る半導体セラミック電子
部品の一つの実施形態について、図1に基づいて詳細に
説明する。半導体セラミック電子部品1は、セラミック
素子2と、外部電極3,3からなる。セラミック素子2
は、チタン酸バリウム系、チタン酸ストロンチウム系等
のペロブスカイト型半導体セラミック、酸化亜鉛系半導
体セラミック、酸化鉄系半導体セラミック等からなる。
外部電極3,3は、セラミック素子2の両主面に形成さ
れている。この外部電極3,3は、本発明の導電性ペー
ストをセラミック素子2の両主面に塗布し焼付けして得
られる。
Next, one embodiment of a semiconductor ceramic electronic component according to the present invention will be described in detail with reference to FIG. The semiconductor ceramic electronic component 1 includes a ceramic element 2 and external electrodes 3 and 3. Ceramic element 2
Is made of a perovskite semiconductor ceramic such as barium titanate or strontium titanate, a zinc oxide semiconductor ceramic, an iron oxide semiconductor ceramic, or the like.
The external electrodes 3 are formed on both main surfaces of the ceramic element 2. The external electrodes 3 and 3 are obtained by applying and baking the conductive paste of the present invention to both main surfaces of the ceramic element 2.

【0015】[0015]

【実施例】まず、チタン酸バリウムを主成分とする正特
性サーミスタ材料を直径13mmの円板状に成形したセ
ラミック素子2を用意した。
EXAMPLE First, a ceramic element 2 was prepared by molding a positive temperature coefficient thermistor material containing barium titanate as a main component into a disk shape having a diameter of 13 mm.

【0016】次に、銅86.95体積%,錫13.00
体積%,燐0.05体積%からなる平均粒径が5μmの
銅錫燐合金を作製した。平均粒径が5μmのB−Si−
Bi−Oガラスフリット,B−Si−Zn−Oガラスフ
リット,B−Bi−Zn−Oガラスフリットをそれぞれ
ガラスフリットA,B,Cとし、これを用意した。エチ
ルセルロースをα−テルピネオールに溶解した有機ビヒ
クルを用意した。
Next, 86.95% by volume of copper and 13.00% of tin.
A copper-tin-phosphorus alloy having an average particle size of 5 μm, which was composed of 0.5% by volume and 0.05% by volume of phosphorus, was produced. B-Si- having an average particle size of 5 μm
Bi-O glass frit, B-Si-Zn-O glass frit, and B-Bi-Zn-O glass frit were designated as glass frits A, B, and C, respectively, and were prepared. An organic vehicle in which ethyl cellulose was dissolved in α-terpineol was prepared.

【0017】次に、銅錫燐合金からなる導電性粉末と前
記ガラスフリットA,B,Cをそれぞれ表1に示す添加
量で混合して電極材料を得、この電極材料70重量%と
前記有機ビヒクル30重量%を混合し3本ロールで混練
し分散して、実施例1〜14の導電性ペーストを得た。
次に、実施例1〜14の導電性ペーストを、セラミック
素子の両主面に膜厚が10μm〜30μmとなるように
スクリーン印刷法を用いて塗布し、酸素濃度350pp
mの雰囲気で600℃で10分間焼成して、実施例1〜
14の外部電極を得た。
Next, an electrode material was obtained by mixing a conductive powder made of a copper-tin-phosphorus alloy and the above glass frit A, B, and C in the amounts shown in Table 1, respectively, to obtain an electrode material. 30% by weight of the vehicle was mixed, kneaded with three rolls and dispersed to obtain conductive pastes of Examples 1 to 14.
Next, the conductive pastes of Examples 1 to 14 were applied to both main surfaces of the ceramic element by a screen printing method so as to have a film thickness of 10 μm to 30 μm, and the oxygen concentration was 350 pp.
m for 10 minutes in an atmosphere of m.
Fourteen external electrodes were obtained.

【0018】次に、本発明の実施例に対する比較例とし
て、前記セラミック素子2の両主面にインジウム-ガリ
ウム合金を塗布し焼付けして、比較例1の外部電極を得
た。
Next, as a comparative example to the embodiment of the present invention, an indium-gallium alloy was applied to both main surfaces of the ceramic element 2 and baked to obtain an external electrode of Comparative Example 1.

【0019】次に、銀粉末83.33重量%、亜鉛粉末
16.67重量%を混合した導電性粉末と、前記ガラス
フリットA,B,Cをそれぞれ表1に示す添加割合で混
合して電極材料を得、この電極材料70重量%と前記有
機ビヒクル30重量%を混合し、3本ロールで混練し分
散して、比較例2〜5の導電性ペーストを得た。同様
に、亜鉛粉末77体積%とガラスフリットA23体積%
を混合して電極材料を得、この電極材料70重量%と前
記有機ビヒクル30重量%を混合し、3本ロールで混練
し分散して、比較例6の導電性ペーストを得た。次に、
比較例2〜6の導電性ペーストを、セラミック素子の両
主面に膜厚が10μm〜30μmとなるようにスクリー
ン印刷法を用いて塗布し、大気中で500℃で10分間
焼成して、比較例2〜6の外部電極を得た。
Next, a conductive powder in which 83.33% by weight of silver powder and 16.67% by weight of zinc powder were mixed, and the above glass frit A, B, and C were mixed in the addition ratios shown in Table 1 to form an electrode. A material was obtained, and 70% by weight of this electrode material and 30% by weight of the organic vehicle were mixed, kneaded and dispersed with a three-roll mill to obtain conductive pastes of Comparative Examples 2 to 5. Similarly, 77% by volume of zinc powder and 23% by volume of glass frit A
Was mixed to obtain an electrode material. 70% by weight of the electrode material and 30% by weight of the organic vehicle were mixed, kneaded and dispersed with a three-roll mill, and a conductive paste of Comparative Example 6 was obtained. next,
The conductive pastes of Comparative Examples 2 to 6 were applied to both main surfaces of the ceramic element using a screen printing method so that the film thickness became 10 μm to 30 μm, and baked at 500 ° C. for 10 minutes in the air. The external electrodes of Examples 2 to 6 were obtained.

【0020】こうして得られた実施例1〜14及び比較
例2〜6について、導電性粉末の種類、ガラスフリット
の種類及び導電性粉末に対するガラスフリットの添加割
合、初期抵抗値R25、半田濡れ性、湿中負荷寿命試験に
基づくR変化率およびマイグレーション現象個数、塩酸
雰囲気試験に基づくマイグレーション現象個数を表1に
まとめた。なお、比較例1については、初期抵抗値R25
のみ測定し、これを表1に示した。
With respect to the thus obtained Examples 1 to 14 and Comparative Examples 2 to 6, the kind of the conductive powder, the kind of the glass frit, the addition ratio of the glass frit to the conductive powder, the initial resistance value R 25 , the solder wettability Table 1 summarizes the rate of change of R and the number of migration phenomena based on the humidity / medium load life test, and the number of migration phenomena based on the hydrochloric acid atmosphere test. Note that, for Comparative Example 1, the initial resistance value R 25
Only, and are shown in Table 1.

【0021】初期抵抗値R25は、25℃における外部電
極3,3間の抵抗値R25をデジタルボルトメータで測定
した。
The initial resistance value R 25 was obtained by measuring the resistance value R 25 between the external electrodes 3 and 3 at 25 ° C. using a digital voltmeter.

【0022】半田濡れ性はSn/Pb半田を用いて浸漬
法により評価した。半田濡れ性の評価条件は、温度を2
30±5℃、時間を4±1秒とし、実施例1〜14及び
比較例2〜6の外部電極それぞれ10個ずつについて、
外部電極が半田で90%以上カバーされていれば良好と
し、それ未満のものは不良とした。
The solder wettability was evaluated by an immersion method using Sn / Pb solder. The evaluation condition for solder wettability was that the temperature was 2
30 ± 5 ° C., the time was set to 4 ± 1 second, and for each of the 10 external electrodes of Examples 1 to 14 and Comparative Examples 2 to 6,
If the external electrode was covered by 90% or more of the solder, it was judged as good, and if less than that, it was judged as defective.

【0023】湿中負荷寿命試験は、図4に示す回路を用
いて、周囲の温度40±2℃、湿度90〜95%中にお
いて、AC180V、R1=10Ω、30minON−
90minOFFのサイクルを1000hr繰り返し
て、1000hr後の初期の抵抗値に対するR25の変化
率%と、セラミック素子2側面においてマイグレーショ
ン現象の発生した不良個数を調べた。
The humidity / medium load life test is performed by using a circuit shown in FIG. 4 at an ambient temperature of 40 ± 2 ° C. and a humidity of 90 to 95%, 180 V AC, R 1 = 10Ω, 30 min ON-
The cycle of 90 min OFF was repeated for 1000 hr, and the rate of change of R 25 with respect to the initial resistance value after 1000 hr and the number of defective parts on the side surface of the ceramic element 2 where the migration phenomenon occurred were examined.

【0024】塩酸雰囲気試験は、20Lのデシケータ内
に0.3%の塩酸水溶液を0.1L入れ、周囲の温度2
5℃の中でAC220V、R1=20Ωを500hr印
加して、セラミック素子2側面においてマイグレーショ
ン現象の発生した不良個数を調べた。
In a hydrochloric acid atmosphere test, 0.1 L of a 0.3% hydrochloric acid aqueous solution was placed in a 20 L desiccator, and an ambient temperature of 2 L was used.
A voltage of 220 V AC and R 1 = 20 Ω was applied for 500 hours at 5 ° C., and the number of defects in which migration phenomenon occurred on the side surface of the ceramic element 2 was examined.

【0025】[0025]

【表1】 [Table 1]

【0026】なお、評価欄にに×印を付した試料は、本
発明の範囲外であることを示す。表1から明らかなよう
に、導電性粉末が銅錫燐合金からなり、前記導電性粉末
に対するガラスフリットの添加量が3体積%以上40体
積%未満である実施例3〜6,9,10,12および1
3の初期抵抗値R25は、インジウム−ガリウム合金から
なる比較例1の初期抵抗値R25(4.52Ω)と略同
じであることから、これら外部電極3,3はセラミック
素子2とオーミック接触したと言える。また同試料は、
湿中負荷寿命試験および塩酸雰囲気試験においても、マ
イグレーション現象は発生しなかった。
Samples marked with a cross in the evaluation column are out of the scope of the present invention. As is clear from Table 1, Examples 3 to 6, 9, 10, and 10 in which the conductive powder is made of a copper-tin-phosphorus alloy, and the amount of glass frit added to the conductive powder is 3% by volume or more and less than 40% by volume. 12 and 1
Since the initial resistance value R 25 of Comparative Example 3 was substantially the same as the initial resistance value R 25 (4.52Ω) of Comparative Example 1 made of an indium-gallium alloy, these external electrodes 3 and 3 were in ohmic contact with the ceramic element 2. It can be said. The same sample
No migration phenomenon occurred in the wet load life test and the hydrochloric acid atmosphere test.

【0027】他方、導電性粉末が銅錫燐合金からなり、
前記導電性粉末に対するガラスフリットの添加量が3重
量%より少ない実施例1,2において、実施例1は外部
電極を形成できず、実施例2の初期抵抗値R25は6.8
4Ωであり、インジウムガリウム合金からなる比較例1
の初期抵抗値R25(4.52Ω)に比べて大きく、オー
ミック接触しているとは言い難い。したがって、何れも
本発明の所望する範囲外となった。
On the other hand, the conductive powder is made of a copper-tin-phosphorus alloy,
In Examples 1 and 2 in which the amount of glass frit added to the conductive powder was less than 3% by weight, Example 1 was unable to form an external electrode, and Example 2 had an initial resistance R 25 of 6.8.
Comparative example 1 which is 4Ω and is made of an indium gallium alloy
Is larger than the initial resistance value R 25 (4.52Ω) of the above, and it is hard to say that ohmic contact is made. Therefore, all of them were out of the range desired by the present invention.

【0028】また、導電性粉末が銅錫燐合金からなり、
前記導電性粉末に対するガラスフリットの添加量が40
重量%より多い実施例7,8,11,14において、実
施例8,11,14は、初期抵抗値R25がそれぞれ7.
62Ω,8.41Ω,8.22Ωで、インジウム−ガリ
ウム合金からなる比較例1の初期抵抗値R25に比べて大
きく、オーミック接触しているとは言い難い。また、実
施例7,8,11,14は何れも半田濡れ性が悪く、何
れも本発明の所望する範囲外となった。
Further, the conductive powder is made of a copper-tin-phosphorus alloy,
The amount of glass frit added to the conductive powder is 40
In Examples 7, 8, 11, and 14 in which the content is more than 7% by weight, Examples 8, 11, and 14 each have an initial resistance value R 25 of 7.
It is 62 Ω, 8.41 Ω, and 8.22 Ω, which is larger than the initial resistance value R 25 of Comparative Example 1 made of an indium-gallium alloy, and it is hard to say that ohmic contact is made. Further, Examples 7, 8, 11, and 14 all had poor solder wettability, and all were outside the desired range of the present invention.

【0029】[0029]

【発明の効果】以上のように本発明によれば、導電性粉
末と、ガラスフリットと、を主成分とする導電性ペース
トであって、前記導電性粉末は銅錫燐合金からなり、前
記ガラスフリットはホウケイ酸ビスマス系ガラス、ホウ
ケイ酸亜鉛系ガラス、ホウ酸塩系ガラスから選ばれる1
種からなり、前記ガラスフリットの添加量は、前記導電
性粉末100体積%に対して3体積%以上40体積%未
満とすることで、セラミック素子とオーミック接触し、
マイグレーション現象が発生しない外部電極を形成でき
る導電性ペーストを提供することができる。
As described above, according to the present invention, there is provided a conductive paste containing conductive powder and glass frit as main components, wherein the conductive powder is made of a copper-tin-phosphorus alloy, The frit is selected from bismuth borosilicate glass, zinc borosilicate glass, and borate glass.
Seeds, the amount of addition of the glass frit is 3% by volume or more and less than 40% by volume with respect to 100% by volume of the conductive powder, thereby making ohmic contact with the ceramic element;
It is possible to provide a conductive paste that can form an external electrode that does not cause a migration phenomenon.

【0030】また、本発明に係る導電性ペーストを用い
て外部電極を形成することで、セラミック素子とオーミ
ック接触し、マイグレーション現象が起きない外部電極
を備えた半導体セラミック電子部品を提供することがで
きる。
Further, by forming an external electrode using the conductive paste according to the present invention, it is possible to provide a semiconductor ceramic electronic component having an external electrode which is in ohmic contact with a ceramic element and does not cause a migration phenomenon. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る一つの実施形態の半導体セラミッ
ク電子部品の断面図である。
FIG. 1 is a cross-sectional view of a semiconductor ceramic electronic component according to one embodiment of the present invention.

【図2】本発明に係る一つの実施形態の半導体セラミッ
ク電子部品の外部電極を焼成する際の、酸素濃度のPT
C特性に及ぼす影響を説明するグラフである。
FIG. 2 shows the oxygen concentration PT when firing the external electrodes of the semiconductor ceramic electronic component according to one embodiment of the present invention.
9 is a graph illustrating an effect on a C characteristic.

【図3】本発明に係る一つの実施形態の導電性ペースト
で形成した外部電極の比抵抗値とその焼成温度及び焼成
温度雰囲気との関係を説明するグラフである。
FIG. 3 is a graph illustrating a relationship between a specific resistance value of an external electrode formed of a conductive paste according to an embodiment of the present invention, a firing temperature thereof, and a firing temperature atmosphere.

【図4】湿中負荷寿命試験に使用した回路図である。FIG. 4 is a circuit diagram used for a wet load life test.

【符号の説明】[Explanation of symbols]

1 半導体セラミック電子部品 2 セラミック素子 3 外部電極 DESCRIPTION OF SYMBOLS 1 Semiconductor ceramic electronic component 2 Ceramic element 3 External electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性粉末と、ガラスフリットと、を主
成分とする導電性ペーストであって、 前記導電性粉末は銅錫燐合金からなり、 前記ガラスフリットはホウケイ酸ビスマス系ガラス、ホ
ウケイ酸亜鉛系ガラス、ホウ酸塩系ガラスから選ばれる
1種からなり、 前記ガラスフリットの添加量は、前記導電性粉末100
体積%に対して3体積%以上40体積%未満であること
を特徴とする導電性ペースト。
1. A conductive paste comprising a conductive powder and a glass frit as main components, wherein the conductive powder is made of a copper-tin-phosphorus alloy, and the glass frit is bismuth borosilicate glass, borosilicate The glass frit is made of one kind selected from zinc-based glass and borate-based glass.
A conductive paste characterized by being at least 3% by volume and less than 40% by volume with respect to% by volume.
【請求項2】 セラミック素体と、外部電極と、からな
る半導体セラミック電子部品であって、前記外部電極
は、請求項1に記載の導電性ペーストを前記セラミック
素体の両端部に塗布し乾燥させ焼付けて形成されている
ことを特徴とする半導体セラミック電子部品。
2. A semiconductor ceramic electronic component comprising a ceramic body and an external electrode, wherein the external electrode is formed by applying the conductive paste according to claim 1 to both ends of the ceramic body and drying the paste. A semiconductor ceramic electronic component characterized by being formed by baking.
JP29123199A 1999-10-13 1999-10-13 Conductive paste and semiconductor ceramic electronic component using the same Expired - Lifetime JP4244466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29123199A JP4244466B2 (en) 1999-10-13 1999-10-13 Conductive paste and semiconductor ceramic electronic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29123199A JP4244466B2 (en) 1999-10-13 1999-10-13 Conductive paste and semiconductor ceramic electronic component using the same

Publications (2)

Publication Number Publication Date
JP2001110232A true JP2001110232A (en) 2001-04-20
JP4244466B2 JP4244466B2 (en) 2009-03-25

Family

ID=17766182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29123199A Expired - Lifetime JP4244466B2 (en) 1999-10-13 1999-10-13 Conductive paste and semiconductor ceramic electronic component using the same

Country Status (1)

Country Link
JP (1) JP4244466B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314755A (en) * 2004-04-28 2005-11-10 Mitsui Mining & Smelting Co Ltd Flake copper powder, production method therefor and conductive paste
JP2010138494A (en) * 2010-02-10 2010-06-24 Mitsui Mining & Smelting Co Ltd Method for producing flake copper powder
US20110277831A1 (en) * 2010-01-25 2011-11-17 Hitachi Chemical Co., Ltd. Paste composition for electrode and photovoltaic cell
WO2012140787A1 (en) * 2011-04-14 2012-10-18 日立化成工業株式会社 Electrode paste composition, solar-cell element, and solar cell
WO2012140786A1 (en) * 2011-04-14 2012-10-18 日立化成工業株式会社 Electrode paste composition, solar-cell element, and solar cell
JP2012226837A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, solar cell element, and solar cell
JP2012227185A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, solar cell element, and solar cell
WO2013012071A1 (en) * 2011-07-21 2013-01-24 日立化成工業株式会社 Electrically conductive material
WO2013015172A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Element and solar cell
WO2013015285A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Element and solar cell
EP2696353A1 (en) * 2011-04-07 2014-02-12 Hitachi Chemical Company, Ltd. Paste composition for electrodes, and solar cell
CN103930950A (en) * 2011-11-14 2014-07-16 日立化成株式会社 Paste composition for electrode, and solar cell element and solar cell
JP2015092579A (en) * 2014-11-26 2015-05-14 日立化成株式会社 Element, solar cell, and paste composition for electrode
JP2015130355A (en) * 2015-02-16 2015-07-16 日立化成株式会社 Paste composition for electrode, and solar cell element
JP2015144126A (en) * 2015-02-16 2015-08-06 日立化成株式会社 Paste composition for electrode, and solar cell element
US9224517B2 (en) 2011-04-07 2015-12-29 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
WO2017033343A1 (en) * 2015-08-27 2017-03-02 日立化成株式会社 Composition for electrode formation, electrode, solar battery element, solar battery, and method for producing solar battery element

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314755A (en) * 2004-04-28 2005-11-10 Mitsui Mining & Smelting Co Ltd Flake copper powder, production method therefor and conductive paste
US20110277831A1 (en) * 2010-01-25 2011-11-17 Hitachi Chemical Co., Ltd. Paste composition for electrode and photovoltaic cell
US9390829B2 (en) * 2010-01-25 2016-07-12 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
JP2010138494A (en) * 2010-02-10 2010-06-24 Mitsui Mining & Smelting Co Ltd Method for producing flake copper powder
EP2696353A4 (en) * 2011-04-07 2015-01-14 Hitachi Chemical Co Ltd Paste composition for electrodes, and solar cell
EP2696353A1 (en) * 2011-04-07 2014-02-12 Hitachi Chemical Company, Ltd. Paste composition for electrodes, and solar cell
US9224517B2 (en) 2011-04-07 2015-12-29 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
JP2012227183A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell element
KR101521040B1 (en) 2011-04-14 2015-05-15 히타치가세이가부시끼가이샤 Electrode paste composition, solar-cell element, and solar cell
JP2012226837A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, solar cell element, and solar cell
CN103477395B (en) * 2011-04-14 2016-08-17 日立化成株式会社 Electrode paste composition, solar cell device and solaode
JP2012227184A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell element
CN103477395A (en) * 2011-04-14 2013-12-25 日立化成株式会社 Electrode paste composition, solar-cell element, and solar cell
CN103503079A (en) * 2011-04-14 2014-01-08 日立化成株式会社 Electrode paste composition, solar-cell element, and solar cell
JP2012227185A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, solar cell element, and solar cell
WO2012140786A1 (en) * 2011-04-14 2012-10-18 日立化成工業株式会社 Electrode paste composition, solar-cell element, and solar cell
EP2698827A1 (en) * 2011-04-14 2014-02-19 Hitachi Chemical Company, Ltd. Electrode paste composition, solar-cell element, and solar cell
CN105139917A (en) * 2011-04-14 2015-12-09 日立化成株式会社 Paste composition for electrode, and solar cell element
EP2698827A4 (en) * 2011-04-14 2014-12-03 Hitachi Chemical Co Ltd Electrode paste composition, solar-cell element, and solar cell
WO2012140787A1 (en) * 2011-04-14 2012-10-18 日立化成工業株式会社 Electrode paste composition, solar-cell element, and solar cell
TWI502609B (en) * 2011-04-14 2015-10-01 Hitachi Chemical Co Ltd Photovoltaic cell element, and photovoltaic cell
WO2013012071A1 (en) * 2011-07-21 2013-01-24 日立化成工業株式会社 Electrically conductive material
CN103563011A (en) * 2011-07-21 2014-02-05 日立化成株式会社 Electrically conductive material
JPWO2013012071A1 (en) * 2011-07-21 2015-02-23 日立化成株式会社 Conductive material
JPWO2013015172A1 (en) * 2011-07-25 2015-02-23 日立化成株式会社 Device and solar cell
WO2013015172A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Element and solar cell
WO2013015285A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Element and solar cell
US9240502B2 (en) 2011-07-25 2016-01-19 Hitachi Chemical Company, Ltd. Element and photovoltaic cell
JPWO2013015285A1 (en) * 2011-07-25 2015-02-23 日立化成株式会社 Element and solar cell
CN103930950A (en) * 2011-11-14 2014-07-16 日立化成株式会社 Paste composition for electrode, and solar cell element and solar cell
JP2016001612A (en) * 2011-11-14 2016-01-07 日立化成株式会社 Paste composition for electrode, solar cell element and solar cell
EP2782102A4 (en) * 2011-11-14 2015-07-15 Hitachi Chemical Co Ltd Paste composition for electrode, and solar cell element and solar cell
JPWO2013073478A1 (en) * 2011-11-14 2015-04-02 日立化成株式会社 Electrode paste composition, solar cell element and solar cell
JP2015092579A (en) * 2014-11-26 2015-05-14 日立化成株式会社 Element, solar cell, and paste composition for electrode
JP2015144126A (en) * 2015-02-16 2015-08-06 日立化成株式会社 Paste composition for electrode, and solar cell element
JP2015130355A (en) * 2015-02-16 2015-07-16 日立化成株式会社 Paste composition for electrode, and solar cell element
WO2017033343A1 (en) * 2015-08-27 2017-03-02 日立化成株式会社 Composition for electrode formation, electrode, solar battery element, solar battery, and method for producing solar battery element

Also Published As

Publication number Publication date
JP4244466B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4244466B2 (en) Conductive paste and semiconductor ceramic electronic component using the same
US4854936A (en) Semiconductive ceramic composition and semiconductive ceramic capacitor
JP4623921B2 (en) Resistive composition and resistor
JPH0773731A (en) Thick film conductive paste composition
US6197221B1 (en) Electrically conductive paste and electronic element
JP2004119692A (en) Resistor composition and resistor
JP3419321B2 (en) Ceramic electronic component and method of manufacturing the same
JP2973558B2 (en) Conductive paste for chip-type electronic components
JP3257036B2 (en) Conductive paste for chip-type electronic components
US5358666A (en) Ohmic electrode materials for semiconductor ceramics and semiconductor ceramics elements made thereof
JPS6127003A (en) Conductive paste composition
JP3291831B2 (en) Conductive paste for chip-type electronic components
JPH0562804A (en) Ohmic electrode material and semiconductor ceramic element
JP2996016B2 (en) External electrodes for chip-type electronic components
JP2550630B2 (en) Copper paste for conductive film formation
JP2777206B2 (en) Manufacturing method of thick film resistor
JP2000260654A (en) Ultra-small chip type electronic component
JP2503974B2 (en) Conductive paste
JPS6221256B2 (en)
JPS6340326B2 (en)
JP3760359B2 (en) Conductive composition for semiconductor ceramic capacitor and semiconductor ceramic capacitor
JP3016560B2 (en) Method for manufacturing voltage non-linear resistor
JP2004119561A (en) Resistive paste and resistor
JPS61225711A (en) Conducting paste
JP2649081B2 (en) Thick film copper paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4244466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

EXPY Cancellation because of completion of term