JPH01195269A - Metal-coated plastic film - Google Patents

Metal-coated plastic film

Info

Publication number
JPH01195269A
JPH01195269A JP1725388A JP1725388A JPH01195269A JP H01195269 A JPH01195269 A JP H01195269A JP 1725388 A JP1725388 A JP 1725388A JP 1725388 A JP1725388 A JP 1725388A JP H01195269 A JPH01195269 A JP H01195269A
Authority
JP
Japan
Prior art keywords
film
thin film
film layer
metal thin
thin metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1725388A
Other languages
Japanese (ja)
Inventor
Masaya Komatsu
雅也 小松
Kinya Kumazawa
金也 熊沢
Nobumitsu Yamanaka
信光 山中
Osamu Seki
関 収
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1725388A priority Critical patent/JPH01195269A/en
Publication of JPH01195269A publication Critical patent/JPH01195269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a metallic film excellent in adhesive strength and oxidation resistance with high productivity by forming a thin metallic-film layer of the desired film thickness provided between the thin metallic-film layers formed by a sputtering method on the surface of a plastic film by a vacuum vapor deposition method. CONSTITUTION:A primary thin metallic-film layer 1 of Cu, etc., is directly formed on a plastic film 5 at least to 5Angstrom : film thickness, by a sputtering method. Subsequently, a thin metallic-film layer 2 of the desired film thickness is efficiently formed on the above primary thin metallic-film layer 1 by a vacuum vapor deposition method. Successively, a secondary thin metallic-film layer 3 of Cu, etc., of at least 50Angstrom film thickness is formed on the outermost surface of the above thin metallic-film layer 2 by a sputtering method. By this method, a metallic coating composed of a thin metallic-film 4 in which the adhesive strength of the thin metallic-film layer 2 to the plastic film 5 is improved by means of the above primary thin metallic-film layer 1 and also resistance to moisture and heat is improved by means of the above secondary thin metallic- film layer 3 can be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、フレキシブルプリント基板(FPC)、フ
ィルムコンデンサー、磁気テープなどの電気機器部品か
ら、透明導電膜、選択吸収膜、さらには、装飾品等に用
いらる金属薄膜層とプラスチック層の密着力及び耐湿熱
性を向上させた金属被覆プラスチックフィルムに関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to electrical equipment parts such as flexible printed circuit boards (FPC), film capacitors, and magnetic tapes, transparent conductive films, selective absorption films, and even decorative items. The present invention relates to a metal-coated plastic film that has improved adhesion between a metal thin film layer and a plastic layer and moisture and heat resistance, and is used in applications such as the following.

[従来の技術] 近年プラスチックフィルムのメタライジングが盛゛んに
行われており、金属被覆プラスチックフィルムはフレキ
シブルプリント基板(FPC)、フィルムコンデンサー
、磁気テープなどの電気機器部品から、透明導電膜、選
択吸収膜、さらには、装飾品等としても使用されるなど
、ますますその用途が拡大している。
[Prior art] Metallizing of plastic films has been actively carried out in recent years, and metal-coated plastic films are used for various purposes such as transparent conductive films, selective materials, etc. Its uses are expanding more and more, including use as absorbent membranes and even decorative items.

以上に挙げたような多くの分野で用いられている金属被
膜プラスチックフィルムを得る方法の一つとしては、圧
延銅箔や電解銅箔を接着剤を用いてプラスチックフィル
ムに貼り合わせて金属薄膜を形成するという方法が従来
から行われている。
One way to obtain metal-coated plastic films, which are used in many of the fields listed above, is to bond rolled copper foil or electrolytic copper foil to a plastic film using an adhesive to form a thin metal film. This method has traditionally been used.

例えばフレキシブルプリント基板においては、可撓性の
点から圧延銅箔を接着剤層を介して熱圧着されることが
多い。しかし、この方法では銅箔厚をある程度厚くする
ことが必要で、近年の電子部品の「軽薄短小化」の要求
に必ずしも答えきれておらず、用途によっては接着剤層
部分の耐熱性や電気特性が問題となることもある。また
、銅箔の圧延方向によって屈曲性が異なるため設計時に
留意を必要とする。
For example, in flexible printed circuit boards, rolled copper foil is often bonded by thermocompression via an adhesive layer for flexibility. However, this method requires increasing the thickness of the copper foil to a certain extent, and cannot necessarily meet the recent demands for "lighter, thinner, shorter, and smaller" electronic components. can sometimes be a problem. In addition, since the flexibility varies depending on the rolling direction of the copper foil, care must be taken at the time of design.

これに対して、数μm以下の薄い金属薄膜が要求される
場合に注目されている方法としては、プラスチックフィ
ルム上に直接、真空蒸着法やスパッタリング法により、
金属薄膜を形成する方法がある。
On the other hand, when a thin metal film of several μm or less is required, methods that are attracting attention include direct vacuum deposition or sputtering on the plastic film.
There is a method of forming a metal thin film.

[発明が解決しようとする課題] 上記のような従来の金属被膜プラスチックフィルムにお
いて、金属薄膜が真空蒸着法により直接プラスチックフ
ィルム上に形成されている場合、金属薄膜とプラスチッ
クフィルムの密着性が不充分で、実用に耐え得ないこと
が多い。さらに真空蒸着法で形成された金属薄膜は、一
般に緻密性に劣るため、結晶粒界からの酸素や水分の拡
散により酸化劣化しやすいという欠点も有している。
[Problem to be solved by the invention] In the conventional metal-coated plastic film as described above, when the metal thin film is directly formed on the plastic film by vacuum deposition, the adhesion between the metal thin film and the plastic film is insufficient. However, it is often impractical for practical use. Furthermore, metal thin films formed by vacuum evaporation generally have poor density, and therefore have the disadvantage of being susceptible to oxidative deterioration due to the diffusion of oxygen and moisture from grain boundaries.

一方、スパッタリング法により形成された金属薄膜は、
基板との密着性に優れ、また、緻密であるなどの点で優
れている。しかしながら、薄膜の成長速度が遅いため生
産性の点で劣りている。
On the other hand, metal thin films formed by sputtering method are
It has excellent adhesion to the substrate and is also dense. However, the growth rate of the thin film is slow, resulting in poor productivity.

木発明は、以上のような現状に鑑み、本発明者らが鋭意
研究の未達成したものであり、金属薄膜とプラスチック
フィルムとの密着性が優れ、金属薄膜の酸化劣化が起こ
りにくく、かつ生産性も高い金属被膜プラスチックフィ
ルムを提供することを目的としている。
In view of the above-mentioned current situation, the inventors of the present invention have made the invention of wood, which has not yet been achieved through intensive research.It has excellent adhesion between the metal thin film and plastic film, is less prone to oxidative deterioration of the metal thin film, and is easy to manufacture. The objective is to provide a metal-coated plastic film with high properties.

[課題を解決するための手段] この発明においては、プラスチックフィルム上にスパッ
タリング法によって直接少なくとも膜厚50人の第19
金属薄膜層を形成し、しかるのち、該第1の金属薄膜層
上に所望の膜厚の真空蒸着法による金属薄膜層を形成し
、この上にスパッタリング法により少なくとも膜厚50
人の第2の金属薄膜を形成することによって、上記の課
題を解決したものである。
[Means for Solving the Problems] In the present invention, the 19th film is directly deposited onto a plastic film with a film thickness of at least 50% by sputtering.
A metal thin film layer is formed, and then a metal thin film layer of a desired thickness is formed by vacuum evaporation on the first metal thin film layer, and a film thickness of at least 50 mm is formed on this by sputtering.
The above problem was solved by forming a second metal thin film.

[作用] この発明にかかる金属被膜プラスチックフィルムにおい
ては、プラスチックフィルム上にスパッタリング法によ
って直接に形成された少なくとも膜厚50人の第1の金
属薄膜層によって金属薄膜とプラスチックフィルムは良
好な密着性が確保されており、さらにこの金属薄膜層は
緻密性に優れているため、フィルム側からの酸素あるい
は水分の拡散による酸化劣化を防ぐことになる。
[Function] In the metal-coated plastic film according to the present invention, the first metal thin film layer with a thickness of at least 50 layers is formed directly on the plastic film by sputtering, so that the metal thin film and the plastic film have good adhesion. Furthermore, since this metal thin film layer has excellent density, it prevents oxidative deterioration due to diffusion of oxygen or moisture from the film side.

次にこの第1の金属薄膜層の上には真空蒸着法によって
所望の厚さの金属薄膜層が形成されている。この金属薄
膜は前述したように緻密性にはあまり優れていないが、
前記スパッタリングによる第1の金属薄膜層と後述する
スパッタリングによる第2の金属薄膜層との間に形成さ
れた中間層であるので、この欠点はほとんど問題になら
なす、反面、金属薄膜の成長速度が比較的速いという利
点が生かされ、製品の生産性を向上させることができる
Next, a metal thin film layer having a desired thickness is formed on this first metal thin film layer by vacuum evaporation. As mentioned above, this metal thin film is not very dense, but
Since this is an intermediate layer formed between the first metal thin film layer formed by sputtering and the second metal thin film layer formed by sputtering, which will be described later, this drawback is hardly a problem, but on the other hand, the growth rate of the metal thin film is Taking advantage of its relatively high speed, product productivity can be improved.

さらに最表面には結晶構造が緻密なスパッタリングによ
る第2の金属薄膜層が前記第1の金属薄膜層と同様に少
なくとも50人の膜厚に形成されており、この層は金属
薄膜の酸化劣化等を防ぐ役割りをになっている。
Further, on the outermost surface, a second metal thin film layer with a dense crystal structure is formed by sputtering to a thickness of at least 50 mm, similar to the first metal thin film layer, and this layer is free from oxidative deterioration of the metal thin film. The role is to prevent this.

ここで、本発明においてスパッタリング法による第1お
よび第2の金属薄膜層の膜厚を少なくとも50人とした
のは、50人よりも薄い場合は、スパッタリングによる
膜がまだ島状構造をとっており、比較的隙間が多いため
充分な耐湿熱性等が得られないためである。
Here, in the present invention, the thickness of the first and second metal thin film layers formed by the sputtering method is set to at least 50 layers, because if the thickness is less than 50 layers, the film formed by sputtering still has an island-like structure. This is because sufficient heat and humidity resistance cannot be obtained due to the relatively large number of gaps.

なお、上限は5000人より厚すると生産性が悪くなり
量産に適さなくなる。
Note that if the upper limit is more than 5,000 people, productivity will deteriorate and it will not be suitable for mass production.

[実施例] 実施例:1 第2図に概略図を示した実験装置を用いて木発明にかか
る金属被覆プラスチックフィルムを試作した。
[Examples] Example: 1 A metal-coated plastic film according to the invention was produced as a trial using the experimental apparatus schematically shown in FIG.

まず、所定のガスτ囲気になるように構成された真空槽
106内にポリイミドフィルム(厚さ25μm、長さ5
0m、東しく株)製、商品名カプトン)105を送りだ
し、送りだしロール107からキャンロール109に周
接して巻取りロール108に至るようにセットし、真空
槽106内が10−’Torr台になるまで排気した。
First, a polyimide film (thickness 25 μm, length 5
0 m, manufactured by Toshiki Co., Ltd. (trade name: Kapton) 105, and set it so that it runs from the feed roll 107, circumferentially touching the can roll 109, and reaches the take-up roll 108, so that the inside of the vacuum chamber 106 becomes on the 10-' Torr level. Exhausted until.

その後スパッタ室110および110゛にArガスを導
入し、Cu薄膜を膜成長速度83人/secとなるよう
にスパッタ形成するとともに、蒸着室111において膜
成長速度830人/secで電子ビーム(EB)蒸着を
行った。その際、フィルムは、送りだしロール107か
ら、巻き取りロール108へ線速1、Om/minで走
行させ、所望の膜厚が得られるように防着板13の間隔
を調節した。
Thereafter, Ar gas is introduced into the sputtering chambers 110 and 110, and a Cu thin film is formed by sputtering at a film growth rate of 83 people/sec, and an electron beam (EB) is used in the deposition chamber 111 at a film growth rate of 830 people/sec. Vapor deposition was performed. At that time, the film was run from the delivery roll 107 to the take-up roll 108 at a linear speed of 1 Om/min, and the interval between the adhesion prevention plates 13 was adjusted so as to obtain the desired film thickness.

このようにして、第1図の如き構造の金属被膜プラスチ
ックフィルムを製造し、第1の金属薄膜層1.蒸着法に
よる金属薄膜層2.第2の金属薄膜層3の膜厚がそれぞ
れ0.1 μm 、0.8μm、0.1μmとなるよう
にした。
In this way, a metal-coated plastic film having the structure as shown in FIG. 1 is manufactured, and the first metal thin film layer 1. Metal thin film layer by vapor deposition method2. The thicknesses of the second metal thin film layer 3 were set to 0.1 μm, 0.8 μm, and 0.1 μm, respectively.

実施例:2 実施例1におけるポリイミドフィルムの代わりにポリエ
チレンテレフタレート(PET)フィルム(厚さ50μ
m、東しく株)製、商品名ルミラー)をセットした以外
は実施例1と全く同じ条件で1μm厚のCu薄膜を形成
して、金属被膜プラスチックフィルムを得た。
Example: 2 Polyethylene terephthalate (PET) film (thickness 50 μm) was used instead of the polyimide film in Example 1.
A 1 μm thick Cu thin film was formed under the same conditions as in Example 1, except that a 1 μm-thick Cu thin film was set, except that a 1 μm-thick Cu thin film was used, except that a metal-coated plastic film was set.

実施例;3 実施例1におけるスパッタターゲツト材114.114
°をCuの代わりにCrとした以外は実施例1と全く同
じ条件で、1μmのCr/c u / c r R膜を
形成した。
Example; 3 Sputter target material 114, 114 in Example 1
A 1 μm Cr/cu/cr R film was formed under the same conditions as in Example 1 except that Cr was used instead of Cu.

比較例=1 実施例1において、走行線速0.1m/minでのスパ
ッタリング法のみにより1μm厚のc u RIliを
形成した。
Comparative Example = 1 In Example 1, a 1 μm thick cu RIli was formed only by sputtering at a running linear speed of 0.1 m/min.

比較例:2 実施例1において、走行線速1.0m/ll1inでの
蒸着法のみにより1μmのcufillMを形成した。
Comparative Example: 2 In Example 1, a 1 μm cufill M was formed only by the vapor deposition method at a running linear velocity of 1.0 m/11 inch.

比較例:3 実施例2において、走行線速0.In+/mjnでのス
パッタリング法のみにより1μmのCu薄膜を形成した
Comparative example: 3 In Example 2, the running line speed was 0. A 1 μm thick Cu thin film was formed only by sputtering using In+/mjn.

比較例:4 実施例2において、走行線速1.0m/minでの蒸着
法のみにより1μmのCu薄膜を形成した。
Comparative Example: 4 In Example 2, a 1 μm thick Cu thin film was formed only by vapor deposition at a running linear velocity of 1.0 m/min.

以上の、実施例、比較例において得られた各々の金属被
覆プラスチックフィルムにおける金属薄膜とプラスチッ
クフィルムの密着力を測定し、また目視による金属薄膜
の表面観測を薄膜形成実験直後と温熱サイクル試験後に
行った。第1表にこれらの試験の結果と、上記の実施例
および比較例において50m長のプラスチックフィルム
上に連続的に薄膜作成するのに要した時間を示す。
The adhesion between the metal thin film and the plastic film in each of the metal-coated plastic films obtained in the Examples and Comparative Examples above was measured, and the surface of the metal thin film was visually observed immediately after the thin film formation experiment and after the thermal cycle test. Ta. Table 1 shows the results of these tests and the time required to continuously form a thin film on a 50 m long plastic film in the above examples and comparative examples.

なお、密着力の測定は、第3図に示すように1cm X
 10cmに切り取ったサンプルの金属薄膜204面を
エポキシ系接着剤216を用いてアルミ補強板215に
貼り合わせたのち、プラスチックフィルム205を18
0度方向に線速50mm/minで引き剥す際の力を測
定し、温熱サイクルは、JISC5012の9.4に従
い、10サイクル行った。
The adhesion force was measured using a 1cm x
After pasting the metal thin film 204 surface of the sample cut into 10 cm pieces onto the aluminum reinforcing plate 215 using an epoxy adhesive 216, the plastic film 205 was glued onto the aluminum reinforcing plate 215.
The force when peeling off in the 0 degree direction at a linear speed of 50 mm/min was measured, and 10 thermal cycles were performed in accordance with JISC5012 9.4.

第1表においてプラスチックフィルムの素材が同じ場合
について本発明実施例と比較例を比較すると(実施例1
と比較例1および2、実施例2と比較例3および4)、
蒸着法のみによりCu liを形成した比較例(2およ
び4)に対して実施例は約5倍程度のビール強度を有し
ており、温熱サイクル試験後においても密着性がほとん
ど低下していない。
Table 1 shows a comparison of the inventive examples and comparative examples when the plastic film is made of the same material (Example 1).
and Comparative Examples 1 and 2, Example 2 and Comparative Examples 3 and 4),
Compared to Comparative Examples (2 and 4) in which Cu li was formed only by the vapor deposition method, the beer strength of the Examples was about 5 times higher, and the adhesion hardly decreased even after the thermal cycle test.

また、スパッタリング法のみにより膜を形成した比較例
(1および3)は、ビール強度は実施例と同等程度であ
るものの、薄膜形成に要した時間は実施例の10倍にも
なっており、現実の量産には適用しがたい。
In addition, in Comparative Examples (1 and 3) in which films were formed only by sputtering, although the beer strength was about the same as in the Examples, the time required to form the thin films was 10 times longer than in the Examples. It is difficult to apply it to mass production.

さらに、金属薄膜の酸化劣化の問題についても、蒸着法
のみによりCu l]@を形成した比較例(2および4
)が温熱サイクル試験後に大部分が酸化劣化してしまっ
たのに対し、実施例では酸化劣化が認められない。
Furthermore, regarding the problem of oxidative deterioration of metal thin films, comparative examples (2 and 4) in which Cu l]@ were formed only by vapor deposition
) was mostly oxidized and deteriorated after the thermal cycle test, whereas no oxidative deterioration was observed in the examples.

なお、実施例のなかでも最も高いビール強度を 。In addition, the beer strength is the highest among the examples.

示したのは、スパッタ用ターゲツト材をCuの代わりに
Crとした実施例3であるが、本発明における金属薄膜
を形成する金属は特に限定されるものではなく、用途に
応じて適宜選択されるものである。また、第1の金属薄
膜層、蒸着法による金属薄膜層および第2の金属薄膜層
は、同種の金属または合金から成っていても良いし、場
合によっては実施例の如く異種の金属または合金から成
っていてもよい。さらに、必要に応して、プラスチック
フィルムに例えばプラズマ処理などの前処理□ を施せ
ば、より密着性を上げることもできる。
What is shown is Example 3 in which the target material for sputtering was Cr instead of Cu, but the metal forming the metal thin film in the present invention is not particularly limited and may be appropriately selected depending on the application. It is something. Further, the first metal thin film layer, the metal thin film layer formed by vapor deposition, and the second metal thin film layer may be made of the same kind of metal or alloy, or in some cases, they may be made of different kinds of metals or alloys as in the embodiment. It may consist of Furthermore, if necessary, the plastic film can be subjected to pretreatment such as plasma treatment to further improve its adhesion.

また、本発明において用いられるプラスチックフィルム
も特に限定されるものではなく、実施例で用いたポリイ
ミド、ポリエチレンテレフタレート(PET)の他にも
、例えばポリカーボネート、ポリプロピレン、ポリエー
テルサルフォン、ポリフェニレンサルファイド、ポリア
ミド、ポリエーテルイミド、ポリアミドイミド、ポリエ
チレンナフタレート、液晶ポリマーなどが用いられる。
Furthermore, the plastic film used in the present invention is not particularly limited, and in addition to the polyimide and polyethylene terephthalate (PET) used in the examples, for example, polycarbonate, polypropylene, polyether sulfone, polyphenylene sulfide, polyamide, Polyetherimide, polyamideimide, polyethylene naphthalate, liquid crystal polymer, etc. are used.

また、本発明における金属薄膜の厚さは実施例および比
較例では1μm  (1000人)としたが、前述した
ようにスパッタリングによる金属薄膜層の厚さは少なく
とも50人あれば良く、膜の特性と生産性の両方を考慮
するとスパッタリングによる金属薄膜層は100〜10
00人あることがより好ましい。
In addition, the thickness of the metal thin film in the present invention was 1 μm (1000 people) in the examples and comparative examples, but as mentioned above, the thickness of the metal thin film layer formed by sputtering should be at least 50 people, and the thickness depends on the characteristics of the film. Considering both productivity, the metal thin film layer by sputtering is 100 to 10
It is more preferable that there be 00 people.

以上から明らかなように、本発明にかかる金属被覆プラ
スチックフィルムは密着性及び耐湿熱性に優れ、かつ効
率よく生産することができ、産業上きわめて有益である
As is clear from the above, the metal-coated plastic film according to the present invention has excellent adhesion and heat-and-moisture resistance, can be produced efficiently, and is extremely useful industrially.

第1表 *A・・・薄膜形成に要した時間(min)B・180
度ビール強度(g/cm) C・・・外観   O二酸化劣化無し △:部分的に酸化劣化 ×:大部分が酸化劣化 *いずれもN=5の平均を示す。
Table 1 *A: Time required to form a thin film (min) B・180
Degree Beer Strength (g/cm) C... Appearance No deterioration due to O2 oxidation △: Partially oxidative deterioration ×: Mostly oxidative deterioration *All indicate the average of N=5.

[発明の効果] この発明においては、プラスチックフィルム上に形成さ
れる第1のスパッタリングによる金属薄膜層と、最表面
に形成される第2のスパッタリングによる金属薄膜層と
、これら第1および第2のスパッタリングによる金属薄
膜層の間に形成され備えたことにより、金属被膜プラス
チックフィルムの密着性および耐湿熱性を高め、同時に
生産性も向上させることができるという極めて優れた効
果を有している。
[Effects of the Invention] In this invention, a first sputtered metal thin film layer formed on a plastic film, a second sputtered metal thin film layer formed on the outermost surface, and these first and second metal thin film layers are formed on a plastic film. By being formed between the metal thin film layers by sputtering, it has an extremely excellent effect of increasing the adhesion and heat-and-moisture resistance of the metal-coated plastic film, and improving productivity at the same time.

かかる金属被覆プラスチックフィルムは高密度化、高精
度化が進む電気機器部品等において、信頼性を高め、か
つコスト低減を図る上で非常に有益である。
Such metal-coated plastic films are extremely useful in increasing reliability and reducing costs in electrical equipment parts, etc., which are becoming increasingly dense and precise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる金属薄膜付プラスチックフィル
ムの構成模式図、第2図は実施例に用いた装置の概略図
、第3図はビール試験の説明図である。 1:第1の金属薄膜層、2:蒸着法による金属薄膜層、
3:第2の金属薄膜層、4,204:金属薄膜、5,1
05,205ニブラスチツクフイルム、106:真空槽
、107:送りだしロール、108二巻取りロール、1
o9:キャンロール、110,110° ニスバッタ室
、111:蒸ル、110,110’  ニスバッタ室、
111:蒸着室、112:仕切り板、113:防着板、
114.114° ニスバッタターゲット、115:蒸
着源、215ニアルミ補強板、216:接着材。
FIG. 1 is a schematic diagram of the structure of a plastic film with a metal thin film according to the present invention, FIG. 2 is a schematic diagram of an apparatus used in an example, and FIG. 3 is an explanatory diagram of a beer test. 1: first metal thin film layer, 2: metal thin film layer by vapor deposition method,
3: Second metal thin film layer, 4,204: Metal thin film, 5,1
05,205 Niblast film, 106: Vacuum chamber, 107: Delivery roll, 108 Two take-up rolls, 1
o9: Can roll, 110, 110° Varnish grasshopper room, 111: Steam, 110, 110' Varnish grasshopper room,
111: Vapor deposition chamber, 112: Partition plate, 113: Deposition prevention plate,
114.114° Varnish batter target, 115: Vapor deposition source, 215 Ni-aluminum reinforcing plate, 216: Adhesive material.

Claims (1)

【特許請求の範囲】[Claims] 片面もしくは両面に金属薄膜を形成した金属被覆プラス
チックフィルムにおいて、プラスチックフィルム上にス
パッタリング法によって直接形成された少なくとも膜厚
50Åの第1の金属薄膜層と、最表面にスパッタリング
法によって形成された少なくとも膜厚50Åの第2の金
属薄膜層と、前記第1および第2の金属薄膜層の間の真
空蒸着法による所望の膜厚の金属薄膜層とからなる金属
薄膜を備えたことを特徴とする金属被覆プラスチックフ
ィルム。
In a metal-coated plastic film with a metal thin film formed on one or both sides, a first metal thin film layer with a thickness of at least 50 Å formed directly on the plastic film by a sputtering method, and at least a film formed on the outermost surface by a sputtering method. A metal comprising a metal thin film consisting of a second metal thin film layer with a thickness of 50 Å and a metal thin film layer with a desired thickness formed by vacuum evaporation between the first and second metal thin film layers. Coated plastic film.
JP1725388A 1988-01-29 1988-01-29 Metal-coated plastic film Pending JPH01195269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1725388A JPH01195269A (en) 1988-01-29 1988-01-29 Metal-coated plastic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1725388A JPH01195269A (en) 1988-01-29 1988-01-29 Metal-coated plastic film

Publications (1)

Publication Number Publication Date
JPH01195269A true JPH01195269A (en) 1989-08-07

Family

ID=11938791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1725388A Pending JPH01195269A (en) 1988-01-29 1988-01-29 Metal-coated plastic film

Country Status (1)

Country Link
JP (1) JPH01195269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179936B2 (en) 2007-06-14 2012-05-15 Trumpf Laser Marking Systems Ag Gas-cooled laser device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225868A (en) * 1975-08-20 1977-02-26 Sekisui Chemical Co Ltd Method of producing thermoplastic resin bend
JPS61128593A (en) * 1984-11-27 1986-06-16 株式会社 麗光 Evaporation film for printed circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225868A (en) * 1975-08-20 1977-02-26 Sekisui Chemical Co Ltd Method of producing thermoplastic resin bend
JPS61128593A (en) * 1984-11-27 1986-06-16 株式会社 麗光 Evaporation film for printed circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179936B2 (en) 2007-06-14 2012-05-15 Trumpf Laser Marking Systems Ag Gas-cooled laser device

Similar Documents

Publication Publication Date Title
JP3173511B2 (en) Adhesive-free flexible laminate and method for producing adhesive-free flexible laminate
US4917963A (en) Graded composition primer layer
JP5746866B2 (en) Copper-clad laminate and manufacturing method thereof
WO1996038029A1 (en) Flexible printed wiring board
JP6477150B2 (en) Sputtering film forming method, metallized resin film manufacturing method using the same, and sputtering film forming apparatus
JP2010042564A (en) Method for producing flexible substrate and flexible substrate
JPH0983134A (en) Flexible printed circuit board
JPH05259596A (en) Board for flexible printed wiring
JPH04212842A (en) Deposited film
JPH01195269A (en) Metal-coated plastic film
JP2020193385A (en) Vacuum film deposition apparatus and vacuum film deposition method
JP2621950B2 (en) Flexible metal and plastic laminates
CN112930421A (en) Apparatus and method for manufacturing resin film with metal film
JP2003251773A (en) Metal laminated film
JP2018135542A (en) Method for treating surface of resin film and method for manufacturing copper-clad laminated substrate including the same
JP3123371B2 (en) Barrier laminate
JPH03155933A (en) Laminate
JP3447122B2 (en) Flexible circuit board having metal oxide layer
JP2003001756A (en) Copper thin film laminate
JP7285430B2 (en) Vacuum deposition apparatus and vacuum deposition method
JP2002200700A (en) Metal deposition laminate
JP2002224740A (en) Metal foil and its production method
JPS6113310Y2 (en)
JPH05283848A (en) Flexible printed wiring board
JPH01147055A (en) Manufacture of metal-coated plastic film