JPH01188679A - Surface treatment for metallic base material - Google Patents

Surface treatment for metallic base material

Info

Publication number
JPH01188679A
JPH01188679A JP1081988A JP1081988A JPH01188679A JP H01188679 A JPH01188679 A JP H01188679A JP 1081988 A JP1081988 A JP 1081988A JP 1081988 A JP1081988 A JP 1081988A JP H01188679 A JPH01188679 A JP H01188679A
Authority
JP
Japan
Prior art keywords
base material
metal
composite oxide
compound
metal atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1081988A
Other languages
Japanese (ja)
Inventor
Hisami Ochiai
落合 久美
Hisafumi Kaneko
尚史 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1081988A priority Critical patent/JPH01188679A/en
Publication of JPH01188679A publication Critical patent/JPH01188679A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To obtain a material with superior corrosion resistance by easy operations by bringing an organometallic compound into contact with the surface of a metallic base material and then heating the above so as to form a composite oxide layer of the metal atoms in the above base material and the metal atoms in the above compound. CONSTITUTION:An organometallic compound, such as metal alkoxide, containing metal elements forming composite oxide is brought into contact with the surface of a metallic base material. To be concrete, the above procedure is carried out, e.g., by dissolving or diluting the above compound in or with water or organic solvent and then immersing the above base material in the resulting solution or applying this solution to the above base material. Subsequently, the surface, to which the above compound or its decomposition product is allowed to adhere, or the whole of the base material is heated and burnt, by which a layer of composite oxide consisting of the metal atoms in the base material and the metal atoms in the above compound is formed. Further, it is desirable that the above compound contains alkali metals or alkaline earth metals and also the base material is constituted of Fe, Ni, Co, Cu, or alloys composed principally of them. By this method, a dense and uniform surface film with superior corrosion resistance can be obtained by easy operations.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、金属材料の表面処理方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for surface treatment of metal materials.

(従来の技術) 主として高温腐食性等のぎびしい環境下で用いられる純
金属あるいは合金からなる材料の表面耐食性向上のため
に、複合酸化物層を表面に生成せしめる処理方法が知ら
れている。
(Prior art) In order to improve the surface corrosion resistance of materials made of pure metals or alloys that are mainly used in harsh environments such as high-temperature corrosive environments, a treatment method is known in which a composite oxide layer is formed on the surface. .

金属の表面は通常薄い酸化物層に覆われており、この層
あるいは層の含有成分の一部か保護被膜となっているが
、この層を変性させてより耐食性の高い被膜を設けるこ
とにより、材料の長寿命化が図られる。このために外部
から他成分を添加して複合酸化物を生成せしめるのが、
この方法である。
The surface of metal is usually covered with a thin oxide layer, and this layer or some of the components contained in the layer acts as a protective coating, but by modifying this layer and providing a coating with higher corrosion resistance, The lifespan of the material can be extended. For this purpose, adding other components from the outside to generate a composite oxide is
This is the method.

場合によっては、予め複合酸化物を生成しやすい酸化層
を表面に生じせしめ、その後に複合酸化層とすることも
ある。
In some cases, an oxidized layer that easily forms a composite oxide is formed on the surface in advance, and then a composite oxide layer is formed.

こような表面処理方法は、たとえばほうろうのように全
く別の酸化物層を数十−以上の厚さで塗布する方法と比
べると、外観や重量の大幅な変化がないことや被覆層の
剥離が生じないなどの有利さにより手軽炉用いられる。
This type of surface treatment method does not significantly change the appearance or weight, and is less likely to peel off the coating layer, compared to methods that apply a completely different oxide layer, such as enamel, to a thickness of several tens of tens of cents or more. A simple furnace is used due to its advantages such as no generation of

複合酸化物層を設けるために従来から用いられているの
は強アルカリの塩(MO+−1)である。
A strong alkali salt (MO+-1) has been conventionally used to form a composite oxide layer.

(発明が解決しようとする課題) しかし、この強アルカリ塩を用いる作業は大量のアルカ
リをしかも加熱して用いるために、安全性の点で大きな
問題とる。
(Problems to be Solved by the Invention) However, this work using strong alkali salts poses a major problem in terms of safety because a large amount of alkali is heated and used.

また、高純度のアルカリ塩、特に塩素イオン等の濃度を
低めた塩は得られにくいために、生成層中にも不純物イ
オンが含有されて耐食機能が期待どうりには発揮されな
い。
Further, since it is difficult to obtain a highly pure alkali salt, especially a salt with a reduced concentration of chlorine ions, etc., impurity ions are also contained in the generated layer, and the anticorrosion function is not exhibited as expected.

さらに、反応が極めて急激におこるため、生成被覆の不
均質性が生ずる場合があり、これも耐食性向上を妨げる
要因となっていた。
Furthermore, since the reaction occurs extremely rapidly, the resulting coating may be non-uniform, which has also been a factor hindering improvement in corrosion resistance.

本発明はこれらの点を鑑み、すぐれた耐食性を有する材
料を安全性高く得る方法を提供することを目的としてい
る。
In view of these points, the present invention aims to provide a method for obtaining a material having excellent corrosion resistance with high safety.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、有機金属化合物(必要に応じて溶液化したも
のを用いても良い)を金属基体表面に接触せしめ、加熱
する工程により、下地金属に含有される金属原子と有機
金属化合物を構成する金属原子との複合酸化物を金属表
面に生成させることを特徴とする表面処理方法である。
(Means for Solving the Problems) The present invention provides a process for bringing an organometallic compound (a solution may be used if necessary) into contact with the surface of a metal substrate and heating it to remove the organic metal compound contained in the base metal. This is a surface treatment method characterized by producing a composite oxide of metal atoms and metal atoms constituting an organometallic compound on a metal surface.

以下に本発明について詳しく説明する。The present invention will be explained in detail below.

本発明の適用しうる下地金属材料は、その組成の一部に
複合酸化物を生成しうる金属原子を含有するものであれ
ばいずれでもよく、単独の金属原子から成る純金属でも
、二元系以上の合金でもかまわない。特に良好な被膜が
得られ、本方法が有効な金属としてはFe、N i 、
Co、Cuおよびこれらの合金系か挙げられる。
The base metal material to which the present invention can be applied may be any material as long as it contains a metal atom capable of forming a composite oxide as a part of its composition, and even a pure metal consisting of a single metal atom or a binary metal Any of the above alloys may be used. Particularly good coatings can be obtained and metals for which this method is effective include Fe, Ni,
Examples include Co, Cu, and alloys thereof.

一方、本発明で用いる有機金属化合物は、貴金属のよう
に有機基との反応を起こさない元素を除く金属または半
金属原子を、1分子中に1つ以上含有する有機化合物で
あれば、いがなるものであってもよい。代表的な例とし
ては、金属アルコキシド、金属アセチルアセトナト、ナ
フテン酸金属塩、オクチル酸金属塩、あるいはそれらの
誘導体が挙げられる。この中でも特に、分子中にアルコ
キシル塩を1つ以上含有する有機金属化合物は低温でも
加水分解あるいは熱分解を起こしやすいため、後述の工
程で説明するような均一な付着層を得やすく、好都合で
ある。このとき、アルコキシル基の炭素数が5以下であ
れば、さらに低温の、たとえば常温においても分解しう
る化合物もあり、有効である。これらの有機金属化合物
は単独でも、あるいは数種類を混合して用いてもよい。
On the other hand, the organometallic compound used in the present invention is an organic compound containing one or more metal or metalloid atoms in one molecule, excluding elements that do not react with organic groups such as noble metals. It may be something like that. Typical examples include metal alkoxides, metal acetylacetonates, metal naphthenates, metal octylates, or derivatives thereof. Among these, organometallic compounds containing one or more alkoxyl salts in the molecule tend to undergo hydrolysis or thermal decomposition even at low temperatures, so they are convenient because they facilitate the formation of a uniform adhesion layer as described in the process described below. . At this time, if the number of carbon atoms in the alkoxyl group is 5 or less, some compounds are effective because they can be decomposed even at lower temperatures, for example, room temperature. These organometallic compounds may be used alone or in combination.

また、下地金属との反応性の点で、化合物に含有される
金属原子としては、アルカリ金属およびアルカリ土類金
属を少なくとも一種含有することが望ましい。
Further, from the viewpoint of reactivity with the underlying metal, it is desirable that the metal atoms contained in the compound include at least one of an alkali metal and an alkaline earth metal.

本発明の表面処理方法においては、その前処理として金
属表面のアルカリ脱脂、酸洗等の表面清浄化を行ない、
さらに熱処理、アルカリ処理等を行なって表面酸化ある
いは表面にもともと存在する酸化層の変性、厚膜化、緻
密化を促進させておくことがより望ましい。特にアルカ
リ処理は緻密な被膜を形成し、後述の複合酸化物生成層
を緻密化させるのに有効である。
In the surface treatment method of the present invention, surface cleaning such as alkaline degreasing and pickling of the metal surface is performed as a pretreatment,
Furthermore, it is more desirable to perform heat treatment, alkali treatment, etc. to promote surface oxidation or modification of the oxidized layer originally existing on the surface, thickening, and densification. In particular, alkali treatment is effective in forming a dense film and densifying the composite oxide generation layer described below.

このような金属表面に対して、有機金属化合物=  5
 − を接触せしめる。具体的には、有機金属化合物蒸気を金
属表面に蒸着あるいは吹き付ける方法、有機金属化合物
を水または有機溶剤に溶解または希釈し、金属全体を浸
漬する方法あるいはその表面にスプレーするか塗布する
方法などをとる。溶液を用いる場合には、含有水分の調
整、酸・アルカリの添加により、分解速度の調整を行な
うことかできる。下地金属には予備加熱による表面温度
上昇あるいは溶液の加温なども有効である。
For such metal surfaces, organometallic compounds = 5
− to be brought into contact. Specifically, methods include methods of vapor depositing or spraying organometallic compound vapor onto the metal surface, methods of dissolving or diluting the organometallic compound in water or organic solvent, and immersing the entire metal, or methods of spraying or coating the metal surface. Take. When a solution is used, the decomposition rate can be adjusted by adjusting the water content and adding acid/alkali. For the base metal, raising the surface temperature by preheating or warming the solution is also effective.

この工程により有機金属化合物は、そのまま、あるいは
分解して金属表面に付着する。溶液を用いるときは、放
置、風乾、加熱等の乾燥処理で溶媒を除去してもよい。
Through this step, the organometallic compound is attached to the metal surface either as it is or after being decomposed. When a solution is used, the solvent may be removed by drying treatment such as leaving it to stand, air drying, or heating.

次に有機金属化合物あるいはその分解生成物の付着した
表面または全体を加熱焼成する。前述の乾燥処理を兼ね
た加熱を行なってもよい。
Next, the surface or the entire surface to which the organometallic compound or its decomposition product is attached is heated and calcined. Heating may also be performed as the drying process described above.

この工程で有機金属化合物の完全分解と下地金属あるい
は下地金属表面酸化物との間に複合酸化物を生じせしめ
る。この複合酸化物は下地金属に含有される少なくとも
1種類の金属原子と、有機金属化合物を構成していた少
なくとも1種類の金属原子とから成る。したがって、加
熱温度は有機金属化合物の完全分解と複合酸化物精製に
必要な温度のうち、高い方以上に設定するのが望ましい
In this step, the organometallic compound is completely decomposed and a complex oxide is generated between the base metal or the base metal surface oxide. This composite oxide consists of at least one type of metal atom contained in the base metal and at least one type of metal atom that constituted the organometallic compound. Therefore, it is desirable to set the heating temperature to the higher of the temperatures required for complete decomposition of the organometallic compound and for purification of the complex oxide.

通常の有機金属化合物の完全分解温度は200〜500
’Cであり、複合酸化物生成温度はそれよりも高い場合
が多い。加熱は電気炉等の炉内で行なってもよいし、バ
ーナー等を用いてもよい。また通電加熱も有効であるが
、この場合は、低温でも反応か進む。
The complete decomposition temperature of normal organometallic compounds is 200-500
'C, and the composite oxide formation temperature is often higher than that. Heating may be performed in a furnace such as an electric furnace, or a burner or the like may be used. Electrical heating is also effective, but in this case the reaction proceeds even at low temperatures.

(作 用) 本発明の表面処理方法を用いれば、均一で緻密な表面被
膜が得られる。これは、有機金属化合物の分解反応、そ
れにひき続く複合酸化物生成反応が穏やかに進むためで
ある。場合によっては、下地金属表面の表面緻密凹凸、
結晶方位、粒界等をそのままトレースした層が生成する
(Function) By using the surface treatment method of the present invention, a uniform and dense surface coating can be obtained. This is because the decomposition reaction of the organometallic compound and the subsequent complex oxide production reaction proceed slowly. In some cases, dense irregularities on the underlying metal surface,
A layer is generated that traces the crystal orientation, grain boundaries, etc. as they are.

有機金属化合物はアルカリ塩などと比べて不純物イオン
を除去して高純度化を図ることが容易であり、これを用
いることにより生成した複合酸化物被膜中の不純物イオ
ン濃度も極めて低くすることができ、耐食性向上に大き
く寄与する。
Compared to alkali salts, it is easier to remove impurity ions and achieve higher purity with organometallic compounds, and by using them, the concentration of impurity ions in the composite oxide film produced can be extremely low. , greatly contributes to improving corrosion resistance.

(実施例) 実施例1 リチウムエトキシドをエタノールに飽和するまで溶解し
、この中に2#の5US430  (17Cr −Fe
)をディッピングした。これを600 °Cで2分焼成
した。
(Example) Example 1 Lithium ethoxide was dissolved in ethanol until it was saturated, and 2# of 5US430 (17Cr -Fe
) was dipped. This was baked at 600°C for 2 minutes.

比較例1,2 水酸化ナトリウムの50%水溶液を150℃に熱しなが
ら、S U S 430をディッピングしたものを比較
例1とし、3U3430を比較例2とした。
Comparative Examples 1 and 2 Comparative Example 1 was obtained by dipping SUS 430 in a 50% aqueous solution of sodium hydroxide at 150° C., and Comparative Example 2 was obtained by dipping 3U3430.

実施例1.比較例1,2の耐食性試験として、650’
Cの1i2cO3とに2CO3の共晶溶融塩中に100
時間浸漬した。その結果実施例1の板は重量変化が1X
 10 ”m!j/ rmAであったのに対して比較例
1のそれは2 X 10−2m9/mr?r、比較例2
のそれは2.5X 101 mg/ mA テあツタ。
Example 1. As a corrosion resistance test for Comparative Examples 1 and 2, 650'
100 in the eutectic molten salt of 2CO3 with 1i2cO3 of C
Soaked for an hour. As a result, the weight change of the plate of Example 1 was 1X.
10"m!j/rmA, whereas that of Comparative Example 1 was 2 x 10-2m9/mr?r, Comparative Example 2
That is 2.5X 101 mg/mA.

また、顕微鏡観察すると実施例1の表面は、全面にわた
って緻密なLiFeO2の多結晶面であるのに対して比
較例1の表面ところどころに下地が露出し、不均質であ
った。
Further, when observed under a microscope, the surface of Example 1 was a dense polycrystalline plane of LiFeO2 over the entire surface, whereas the surface of Comparative Example 1 was non-uniform with the base exposed in some places.

実施例2 金属バリウムをメタノールに溶解し、バリウムメトキシ
ドのメタノール溶液を得た。これを厚さ1#の銅板の両
面に塗り、自然乾燥させた。この銅板に900 ’Cで
10分間の熱処理を施したところ、表面が黒色に変化し
た。この表面をX線解析したところ、B a Cu 0
2のピークが観察された。この板を切断し、その切断面
を顕微鏡で観察したところ、表面から約10凱厚にBa
CuO2層が、またその下に薄いCtLI20層が存在
していることがわかった。
Example 2 Metallic barium was dissolved in methanol to obtain a methanol solution of barium methoxide. This was applied to both sides of a 1# thick copper plate and allowed to air dry. When this copper plate was heat treated at 900'C for 10 minutes, the surface turned black. X-ray analysis of this surface revealed that B a Cu 0
Two peaks were observed. When this plate was cut and the cut surface was observed under a microscope, it was found that Ba
It was found that there was a CuO2 layer and a thin CtLI20 layer underneath.

表面抵抗はもとの銅板か5mΩ/sqであったのに対し
て、実施例2では1010mΩ/SQであった。
The surface resistance of the original copper plate was 5 mΩ/SQ, whereas in Example 2 it was 1010 mΩ/SQ.

実施例1と同様のリチウムメトキシドを用いてN:表面
にLiN!03層を得た。実施例のメタノール溶液にイ
ツトリウムアセチルアセトナトをBa:Y=2:1(モ
ル比)で加え、 YBa2 Cu30X層を得た。
Using the same lithium methoxide as in Example 1, N: LiN! on the surface! 03 layer was obtained. Yttrium acetylacetonate was added to the methanol solution of the example at Ba:Y=2:1 (molar ratio) to obtain a YBa2Cu30X layer.

さらにランタンアセチルアセトナトとストロンチウムイ
ソプロポキシドのイソプロピルアルコール液を用いて0
0表面にL ao6s r O,4COO3を得た。
Furthermore, using an isopropyl alcohol solution of lanthanum acetylacetonate and strontium isopropoxide,
Lao6s r O,4COO3 was obtained on the 0 surface.

(発明の効果〕 以上述べたように本発明では耐食性の良好な表面処理が
可能である。また、処理された金属材料は変形はほとん
どみられず、重量増も小さい。
(Effects of the Invention) As described above, the present invention enables surface treatment with good corrosion resistance.Furthermore, the treated metal material shows almost no deformation and the weight increase is small.

本発明の表面処理方法は次の二つの点で作業も非常に容
易である。ひとつは、有機金属化合物の分解が低温でお
こるため、付着に対して高温を必要としないこと、もう
ひとつは、その取扱いが容易で、反応も穏やかなため操
作上の安全性が高いことである。
The surface treatment method of the present invention is very easy to work with in the following two respects. One is that the decomposition of organometallic compounds occurs at low temperatures, so high temperatures are not required for adhesion, and the other is that they are easy to handle and have a mild reaction, making them highly operationally safe. .

また、はとんどの金属あるいは半金属原子の有機金属化
合物が実用に供給できるため、下地金属に応じて所望の
複合酸化物を生成しうる。このことによりたとえば耐摩
耗性の表面や反射防止等の機能の付与もできる。さらに
、たとえばタクトライト防止のためのマスキングの手段
としても適用しうる。
Furthermore, since organometallic compounds of almost any metal or semimetal atom can be practically supplied, a desired composite oxide can be produced depending on the underlying metal. This also makes it possible, for example, to provide a wear-resistant surface and anti-reflection functions. Furthermore, it can be applied as a masking means for preventing tact light, for example.

代理人 弁理士 則 近 憲 佑 同  松山弁才 −11=Agent: Patent Attorney Noriyuki Chika Same as Matsuyama Benzai −11=

Claims (2)

【特許請求の範囲】[Claims] (1)金属基体表面の複合酸化物被膜を形成する金属基
体の表面処理方法において、 複合酸化物を構成する金属元素を含む有機金属化合物を
金属基体表面に接触させた後に加熱することにより、金
属基体中の金属原子と有機金属化合物中の金属原子とか
らなる複合酸化物層を形成することを特徴とする金属基
体の表面処理方法。
(1) In a method for surface treatment of a metal substrate to form a composite oxide film on the surface of the metal substrate, the metal A method for surface treatment of a metal substrate, comprising forming a composite oxide layer consisting of metal atoms in the substrate and metal atoms in an organometallic compound.
(2)有機金属化合物はアルカリ金属又はアルカリ土類
金属を含有し、金属基体はFe、Ni、Co及びCu又
はこれらを主体とした合金からなることを特徴とする請
求項1記載の金属基体の表面処理方法。
(2) The metal substrate according to claim 1, wherein the organometallic compound contains an alkali metal or an alkaline earth metal, and the metal substrate is made of Fe, Ni, Co, and Cu or an alloy mainly composed of these. Surface treatment method.
JP1081988A 1988-01-22 1988-01-22 Surface treatment for metallic base material Pending JPH01188679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1081988A JPH01188679A (en) 1988-01-22 1988-01-22 Surface treatment for metallic base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1081988A JPH01188679A (en) 1988-01-22 1988-01-22 Surface treatment for metallic base material

Publications (1)

Publication Number Publication Date
JPH01188679A true JPH01188679A (en) 1989-07-27

Family

ID=11760963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1081988A Pending JPH01188679A (en) 1988-01-22 1988-01-22 Surface treatment for metallic base material

Country Status (1)

Country Link
JP (1) JPH01188679A (en)

Similar Documents

Publication Publication Date Title
JPS589151B2 (en) Method of forming a corrosion-resistant coating on a metal substrate
WO2006051877A1 (en) Process for forming metal oxide films
JPH02247393A (en) Electrolytic electrode with durability and its production
JPH01188679A (en) Surface treatment for metallic base material
Christian et al. Siliconizing of molybdenum metal in indium-silicon melts
EP0316452B1 (en) Process for preparing thin film of base metal and application of the same
JP3101880B2 (en) Method for producing magnesium oxide film using organomagnesium compound
US3402067A (en) Method for depositing aluminum film
JP2729835B2 (en) Method for forming ceramic film on aluminum substrate surface
JPS6316464B2 (en)
JPS6115154B2 (en)
JPH0555600B2 (en)
RU2186150C2 (en) Steel product zinc plating method
JPH059395B2 (en)
Hood Coating methods for use with the platinum metals
JPS62146276A (en) Formation of thin sulfide film
JPS6134171A (en) Production of catalytic material
JP5536533B2 (en) Method for producing carbon thin film-attached copper material
JP2829304B2 (en) Zr alloy plating method on ceramic
JP2011219810A (en) Method for manufacturing aluminum material with carbon thin film
JP2802433B2 (en) Method of forming ceramic coating by laser irradiation
JPS61166978A (en) Formation of thin sulfide film
JPS5852482A (en) Multiply coloring method for metallic surface
JPH0549754B2 (en)
JPH10280158A (en) Formation of nitride and carbide coating