JP2011219810A - Method for manufacturing aluminum material with carbon thin film - Google Patents

Method for manufacturing aluminum material with carbon thin film Download PDF

Info

Publication number
JP2011219810A
JP2011219810A JP2010089507A JP2010089507A JP2011219810A JP 2011219810 A JP2011219810 A JP 2011219810A JP 2010089507 A JP2010089507 A JP 2010089507A JP 2010089507 A JP2010089507 A JP 2010089507A JP 2011219810 A JP2011219810 A JP 2011219810A
Authority
JP
Japan
Prior art keywords
thin film
carbon thin
aluminum
chemical conversion
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010089507A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Mizo
達寛 溝
Kiyoshi Tada
清志 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2010089507A priority Critical patent/JP2011219810A/en
Publication of JP2011219810A publication Critical patent/JP2011219810A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an aluminum material with a carbon thin film, which can laminate a carbon thin film with high adhesion to an aluminum base material by a simple method.SOLUTION: The method for manufacturing an aluminum material (10) with a carbon thin film includes: a ground layer formation step which performs chemical conversion treatment to the aluminum base material (1) by using a treatment liquid containing one or more metals of iron, nickel and cobalt to form a ground layer (2) composed of a chemical conversion coating containing the metals on the surface of the aluminum base material (1); and a carbon thin film formation step which heats the aluminum base material (1) on which the ground layer (2) is formed by the ground layer formation step to a temperature of a range from 450°C to less than a melting point of the aluminum base material (1) in an atmosphere in which hydrocarbon gas exists to form a carbon thin film (3) on the ground layer (2).

Description

本発明はアルミニウム基材の表面に炭素薄膜を高い密着性で積層した炭素薄膜付アルミニウム材の製造方法に関する。   The present invention relates to a method for producing an aluminum material with a carbon thin film in which a carbon thin film is laminated on the surface of an aluminum substrate with high adhesion.

金属製基材の表面を炭素薄膜で被覆する技術は、電極における電極基材と活物質との密着性向上、摺動材における潤滑性能向上の手段として用いられている。さらに、基材と炭素薄膜との密着性を高めるために下地層を形成することも提案されている(特許文献1〜4参照)。   The technique of coating the surface of a metal substrate with a carbon thin film is used as a means for improving the adhesion between an electrode substrate and an active material in an electrode and improving the lubrication performance of a sliding material. Furthermore, it has also been proposed to form a base layer in order to improve the adhesion between the substrate and the carbon thin film (see Patent Documents 1 to 4).

特許文献1は、アルミニウム箔をカーボン層で被覆し、カーボン層上に活物質を形成する電極の製造方法を開示している。特許文献2は、基材の表面に形成した細孔からプラズマCVD法によりカーボンナノチューブを林立させる摺動部材の製造方法を開示している。特許文献3は、鎖式不飽和炭化水素ガス中で基材を加熱することにより炭素薄膜を形成する技術を開示している。また、特許文献4は、アルミニウム箔と炭素含有層との間にアルミニウムと炭素とを含む層を介在させることを提案している。   Patent Document 1 discloses an electrode manufacturing method in which an aluminum foil is covered with a carbon layer and an active material is formed on the carbon layer. Patent Document 2 discloses a manufacturing method of a sliding member in which carbon nanotubes are planted by a plasma CVD method from pores formed on the surface of a base material. Patent Document 3 discloses a technique for forming a carbon thin film by heating a base material in a chain unsaturated hydrocarbon gas. Patent Document 4 proposes that a layer containing aluminum and carbon be interposed between the aluminum foil and the carbon-containing layer.

特開2000−164466号公報(特許請求の範囲請求項1)JP 2000-164466 A (Claim 1) 特許第4374593号公報(特許請求の範囲請求項1、5、[0023])Japanese Patent No. 4374593 (Claims 1, 5, [0023]) 特許第4049946号公報(特許請求の範囲、[0016])Japanese Patent No. 4049946 (Claims, [0016]) 特許再公表WO2004/087984号公報(特許請求の範囲請求項1、11)Patent Republished WO2004 / 089784 (Claims 1 and 11)

特許文献2に記載された基材は鉄、ニッケル、コバルトのうちの1種であり、これらの基材上にカーボンナノチューブを林立させることができるとされている。しかしながら、アルミニウムと炭素とはなじみにくく、鉄または鉄合金のように浸炭ができないために、アルミニウム基材の表面から炭素薄膜を形成することは困難である。しかも、特許文献2ではプラズマCVD法によってカーボンナノチューブを気相成長させているが、プラズマCVD法を実施するための装置は大がかりであり処理に時間と手間がかかるための処理コストが高いという問題がある。   The base material described in Patent Document 2 is one of iron, nickel, and cobalt, and carbon nanotubes can be made to stand on these base materials. However, it is difficult to form a carbon thin film from the surface of an aluminum base material because aluminum and carbon are not easily compatible and cannot be carburized like iron or iron alloys. Moreover, although carbon nanotubes are vapor-phase grown by plasma CVD method in Patent Document 2, there is a problem that the apparatus for carrying out the plasma CVD method is large and processing cost is high because it takes time and labor for processing. is there.

また、特許文献3は、熱CVD法による炭素薄膜の形成であるから、プラズマCVD法のような大がかりな装置を必要としないが、[0016]に記載されているように鋼材への炭素薄膜形成であって、アルミニウム基材への炭素薄膜形成への問題点を解決するものではない。   In addition, since Patent Document 3 is a method for forming a carbon thin film by a thermal CVD method, a large-scale apparatus such as a plasma CVD method is not required. However, as described in [0016], a carbon thin film is formed on a steel material. However, it does not solve the problem of forming a carbon thin film on an aluminum substrate.

また、特許文献4に記載されている介在層は、アルミニウム箔に炭素含有物質を塗布して3時間をかけて乾燥させ、その後12時間加熱して形成されたものであり、時間を要する処理である。   In addition, the intervening layer described in Patent Document 4 is formed by applying a carbon-containing substance to an aluminum foil, drying it for 3 hours, and then heating it for 12 hours. is there.

本発明は、上述した技術背景に鑑み、アルミニウム基材に対し簡単な方法で密着性の高い炭素薄膜を積層できる炭素薄膜付アルミニウム材の製造方法を提供するものである。   This invention provides the manufacturing method of the aluminum material with a carbon thin film which can laminate | stack a carbon thin film with high adhesiveness with an easy method with respect to the aluminum base material in view of the technical background mentioned above.

即ち、本発明は下記[1]〜[6]に記載の構成を有する。   That is, this invention has the structure as described in following [1]-[6].

[1]アルミニウム基材を、鉄、ニッケルおよびコバルトのうちのいずれか1種以上の金属を含む処理液を用いて化成処理を行い、該アルミニウム基材の表面に前記金属を含む化成皮膜からなる下地層を形成する下地層形成工程と、
前記工程により下地層を形成したアルミニウム基材を炭化水素ガスが存在する雰囲気中で450℃〜アルミニウム基材の融点未満に加熱し、下地層上に炭素薄膜を形成する炭素薄膜形成工程、とを含むことを特徴とする炭素薄膜付アルミニウム材の製造方法。
[1] An aluminum base material is subjected to chemical conversion treatment using a treatment liquid containing at least one metal selected from iron, nickel and cobalt, and the aluminum base material is formed of a chemical conversion film containing the metal. An underlayer forming step for forming an underlayer;
A carbon thin film forming step of heating the aluminum base material on which the base layer has been formed by the above step to 450 ° C. to less than the melting point of the aluminum base material in an atmosphere in which hydrocarbon gas exists, and forming a carbon thin film on the base layer; The manufacturing method of the aluminum material with a carbon thin film characterized by including.

[2]前記処理液および化成皮膜に含まれる金属が鉄である前項1に記載の炭素薄膜付アルミニウム材の製造方法。   [2] The method for producing an aluminum material with a carbon thin film according to [1], wherein the metal contained in the treatment liquid and the chemical conversion film is iron.

[3]前記炭素薄膜形成工程における加熱雰囲気は不活性ガスによって希釈された炭化水素ガスである前項1または2に記載の炭素薄膜付アルミニウム材の製造方法。   [3] The method for producing an aluminum material with a carbon thin film according to item 1 or 2, wherein the heating atmosphere in the carbon thin film forming step is a hydrocarbon gas diluted with an inert gas.

[4]前記炭素薄膜形成工程における炭化水素ガスがアセチレンである前項1〜3に記載の炭素薄膜付アルミニウム材の製造方法。   [4] The method for producing an aluminum material with a carbon thin film according to items 1 to 3, wherein the hydrocarbon gas in the carbon thin film forming step is acetylene.

[5]前記炭素薄膜形成工程における炭化水素ガスがアセチレンであり、不活性ガスによって希釈された加熱雰囲気中のアセチレン濃度は0.01〜1vol%である前項3に記載の炭素薄膜付アルミニウム材の製造方法。   [5] The aluminum material with carbon thin film according to item 3 above, wherein the hydrocarbon gas in the carbon thin film forming step is acetylene, and the acetylene concentration in the heated atmosphere diluted with an inert gas is 0.01 to 1 vol%. Production method.

[6]アルミニウム基材の表面に、鉄、ニッケルおよびコバルトのうちのいずれか1種以上の金属を含む化成皮膜を介して炭素薄膜が積層されてなることを特徴とする電極用基材。   [6] A substrate for an electrode, wherein a carbon thin film is laminated on the surface of an aluminum substrate via a chemical conversion film containing at least one metal selected from iron, nickel, and cobalt.

上記[1]に記載の発明によれば、下地層形成工程において、化成処理によりアルミニウム基材の表面に鉄、ニッケル、コバルトのうちのいずれか1種以上の金属を含む化成皮膜を形成し、炭素薄膜形成工程において、前記化成皮膜を下地層として炭素薄膜を形成する。化成皮膜はアルミニウム基材との密着性が良く、鉄、ニッケル、コバルトはいずれも炭素との親和性が良いので、これらの金属を含む化成皮膜を下地層として炭素薄膜を形成することにより、アルミニウム基材に対して密着性の良い炭素薄膜を形成できる。また、下地層の形成は化成処理によるものであるから、短時間で下地層を形成することができ、処理装置も簡単である。また、炭素薄膜の形成は、炭化水素ガス存在下でアルミニウム基材を加熱する熱CVD法によるものであるから、プラズマCVD法のような大がかりな装置を必要とせず、簡単な装置で炭素薄膜を形成することができる。   According to the invention described in [1] above, in the underlayer forming step, a chemical conversion film containing any one or more of iron, nickel, and cobalt is formed on the surface of the aluminum base material by chemical conversion treatment. In the carbon thin film forming step, a carbon thin film is formed using the chemical conversion film as a base layer. The chemical conversion film has good adhesion to the aluminum substrate, and iron, nickel, and cobalt all have good affinity with carbon. Therefore, by forming a carbon thin film with a chemical conversion film containing these metals as an underlayer, aluminum is formed. A carbon thin film with good adhesion to the substrate can be formed. Further, since the formation of the underlayer is by chemical conversion treatment, the underlayer can be formed in a short time, and the processing apparatus is simple. In addition, since the carbon thin film is formed by a thermal CVD method in which an aluminum substrate is heated in the presence of a hydrocarbon gas, a large-scale device such as a plasma CVD method is not required, and the carbon thin film is formed with a simple device. Can be formed.

上記[2]に記載の発明によれば、炭素薄膜の密着性が特に高いものとなる。   According to the invention described in [2] above, the adhesion of the carbon thin film is particularly high.

上記[3]に記載の発明によれば、炭素薄膜形成工程において爆発の危険を回避できる。   According to the invention described in [3] above, the risk of explosion can be avoided in the carbon thin film forming step.

上記[4]に記載の発明によれば、炭素薄膜の形成が特に良好である。   According to the invention described in [4] above, the formation of the carbon thin film is particularly favorable.

上記[5]に記載の発明によれば、炭素薄膜の形成が特に良好であり、炭素薄膜の厚さの制御が容易になる。   According to the invention described in [5] above, the formation of the carbon thin film is particularly favorable, and the thickness of the carbon thin film can be easily controlled.

上記[6]に記載の発明はアルミニウム基材に対して密着性の良い炭素薄膜が形成された電極用基材であるから、この電極用基材の炭素薄膜上に活物質を積層することにより、アルミニウム基材と活物質との高い密着性を得ることができる。   The invention described in [6] above is an electrode substrate in which a carbon thin film having good adhesion to an aluminum substrate is formed. By laminating an active material on the carbon thin film of the electrode substrate, High adhesion between the aluminum substrate and the active material can be obtained.

本発明により製造される炭素薄膜付アルミニウム材の断面図である。It is sectional drawing of the aluminum material with a carbon thin film manufactured by this invention.

本発明の炭素薄膜付アルミニウム材の製造方法は、化成処理によりアルミニウム基材の表面に炭素との親和性の良い下地層を形成する下地層形成工程と、前記工程により下地層を形成したアルミニウム基材を炭化水素ガス存在下で加熱して下地層上に炭素薄膜を形成する炭素薄膜形成工程とを有する。図1は本発明によって製造された炭素薄膜付アルミニウム材(10)の断面図であり、(1)はアルミニウム基材、(2)は化成皮膜からなる下地層、(3)は炭素薄膜である。   The method for producing an aluminum material with a carbon thin film according to the present invention includes a base layer forming step of forming a base layer having good affinity for carbon on the surface of an aluminum substrate by chemical conversion treatment, and an aluminum base on which the base layer is formed by the above step. A carbon thin film forming step in which the material is heated in the presence of a hydrocarbon gas to form a carbon thin film on the underlying layer. FIG. 1 is a cross-sectional view of an aluminum material with carbon thin film (10) manufactured according to the present invention, (1) is an aluminum base material, (2) is a base layer made of a chemical conversion film, and (3) is a carbon thin film. .

本発明の方法を適用するアルミニウム基材の組成は何ら限定されず、純アルミニウムおよびアルミニウム合金の両方に適用できる。また、アルミニウム基材の厚さや形状も限定されず、用途に応じて箔のように薄いものから厚みのあるものまで任意の材料に適用できる。   The composition of the aluminum substrate to which the method of the present invention is applied is not limited at all, and can be applied to both pure aluminum and aluminum alloys. Moreover, the thickness and shape of the aluminum base material are not limited, and can be applied to any material from a thin one like a foil to a thick one depending on the application.

〔下地層形成工程〕
アルミニウム基材に対し、鉄、ニッケル、コバルトのうちの1種以上の金属を含む処理液を用いて化成処理を行い、アルミニウム基材の表面にこれらの金属を含む化成皮膜を形成し、この化成皮膜を下地層とする。
[Underlayer forming process]
A chemical conversion treatment is performed on the aluminum base material using a treatment liquid containing one or more metals of iron, nickel, and cobalt, and a chemical conversion film containing these metals is formed on the surface of the aluminum base material. The film is used as a base layer.

化成処理とは、酸性またはアルカリ性水溶液中において、アルミニウム基材の表面の水和物を化学的に脱水結合し、金属を中心とした錯体を形成する皮膜を生成する処理である。その方法としては、処理液中にアルミニウム基材を浸漬する方法、あるいはアルミニウム基材に処理液を塗布する方法を挙げることができる。   The chemical conversion treatment is a treatment for forming a film that forms a complex centered on metal by chemically dehydrating the hydrate on the surface of the aluminum base in an acidic or alkaline aqueous solution. Examples of the method include a method of immersing an aluminum substrate in the treatment liquid, and a method of applying the treatment liquid to the aluminum substrate.

化成皮膜はアルミニウム基材との密着性が良く、鉄、ニッケル、コバルトはいずれも炭素との親和性が良いので、これらの金属を含む化成皮膜を下地層として炭素薄膜を形成することにより、アルミニウム基材に対して密着性の良い炭素薄膜を形成できる。鉄、ニッケル、コバルトの中でも鉄が最も親和性が高く、鉄を含む処理液を用いて鉄を含む化成皮膜を形成することが好ましい。鉄、ニッケル、コバルトを含む限り化成皮膜の組成は限定されないが、次の炭素薄膜工程において450℃〜アルミニウム基材の融点未満に加熱するので、次工程の加熱温度で分解しない皮膜であることが必要である。好ましくは、加熱温度の上限であるアルミニウム基材の融点未満で分解しない皮膜を形成する。   The chemical conversion film has good adhesion to the aluminum substrate, and iron, nickel, and cobalt all have good affinity with carbon. Therefore, by forming a carbon thin film with a chemical conversion film containing these metals as an underlayer, aluminum is formed. A carbon thin film with good adhesion to the substrate can be formed. Among iron, nickel and cobalt, iron has the highest affinity, and it is preferable to form a chemical conversion film containing iron using a treatment liquid containing iron. The composition of the chemical conversion film is not limited as long as it contains iron, nickel, and cobalt, but it is a film that does not decompose at the heating temperature of the next step because it is heated to 450 ° C. to below the melting point of the aluminum substrate in the next carbon thin film step. is necessary. Preferably, a film that does not decompose is formed below the melting point of the aluminum base that is the upper limit of the heating temperature.

化成処理の処理液は、前記金属を含む化合物の他、その化合物に応じて酸等を加えて適宜調整する。鉄を含む化合物としては硝酸第二鉄、塩化第一鉄、弗化鉄等、ニッケルを含む化合物としては硝酸ニッケル等、コバルトを含む化合物として硝酸コバルト等を例示できる。また、本発明は化成皮膜の厚さを制限するものではないが、アルミニウム基材と炭素薄膜との密着性を十分に高めうるという観点より、0.001〜50μmの範囲が好ましく、特に0.005〜5μmの範囲が好ましい。処理液の濃度、温度、処理時間は化成皮膜の厚さが上記範囲となるように適宜調節する。   The chemical conversion treatment liquid is appropriately adjusted by adding an acid or the like in addition to the metal-containing compound. Examples of the compound containing iron include ferric nitrate, ferrous chloride, and iron fluoride. Examples of the compound containing nickel include nickel nitrate. Examples of the compound containing cobalt include cobalt nitrate. Moreover, although this invention does not restrict | limit the thickness of a chemical conversion film, the range of 0.001-50 micrometers is preferable from a viewpoint that the adhesiveness of an aluminum base material and a carbon thin film can fully be improved, and especially 0.8. A range of 005 to 5 μm is preferable. The concentration, temperature, and treatment time of the treatment liquid are adjusted as appropriate so that the thickness of the chemical conversion film falls within the above range.

なお、化成処理の前処理としてアルミニウム基材を洗浄し、アルミニウム基材の表面の汚れや酸化膜等を除去しておくことが好ましい。   In addition, it is preferable to wash | clean an aluminum base material as pre-processing of a chemical conversion treatment, and to remove the surface stain | pollution | contamination, an oxide film, etc. of the aluminum base material.

また、化成処理であるから短時間で下地層を形成することができ、処理装置も簡単である。   Moreover, since it is a chemical conversion treatment, the underlayer can be formed in a short time, and the processing apparatus is simple.

〔炭素薄膜形成工程〕
上記の工程で表面に下地層を形成したアルミニウム基材を、炭化水素ガスの存在下で加熱し、熱分解によって生成した炭素を下地層上に付着させて炭素薄膜を形成する。
[Carbon thin film formation process]
The aluminum base material on which the base layer is formed on the surface in the above process is heated in the presence of a hydrocarbon gas, and carbon generated by thermal decomposition is adhered onto the base layer to form a carbon thin film.

上述した炭素薄膜の形成は熱CVD法を称される方法であり、炉内に炭化水素ガスを導入して加熱するものであるから、プラズマCVD法のような大がかりな装置を必要とせず、簡単な装置で炭素薄膜を形成することができる。   The formation of the carbon thin film described above is a method called a thermal CVD method, which introduces a hydrocarbon gas into the furnace and heats it. A carbon thin film can be formed with a simple apparatus.

炭化水素ガスは加熱によって下地層上に薄膜を形成できるものであれば限定されないが、アルミニウム基材の融点未満でガスの分解と炭素薄膜形成が良好に行われるという点でアセチレン(C)を推奨できる。また、炭化水素ガスは加熱による爆発を回避するために、ヘリウム、窒素、アルゴン、クリプトン、キセノンから選ばれる不活性ガスで希釈し、希釈された炭化水素ガス雰囲気中で加熱することが好ましい。また、アセチレンを使用した場合、炭素薄膜の厚さの制御が容易であるという点で、雰囲気中のアセチレンガス濃度は1vol%以下が好ましく、0.01〜1vol%を推奨できる。特に好ましい炭化水素ガス濃度は0.05〜0.5vol%である。なお、アセチレンの爆発限界は空気中で2.5〜100vol%であるから、不活性ガスで希釈された上記濃度範囲は爆発の危険性を確実に回避できる濃度である。 The hydrocarbon gas is not limited as long as it can form a thin film on the underlayer by heating, but acetylene (C 2 H 2) is used in that gas decomposition and carbon thin film formation are performed well below the melting point of the aluminum substrate. ) Can be recommended. In order to avoid explosion due to heating, the hydrocarbon gas is preferably diluted with an inert gas selected from helium, nitrogen, argon, krypton, and xenon, and heated in a diluted hydrocarbon gas atmosphere. In addition, when acetylene is used, the acetylene gas concentration in the atmosphere is preferably 1 vol% or less, and 0.01 to 1 vol% can be recommended in terms of easy control of the thickness of the carbon thin film. A particularly preferred hydrocarbon gas concentration is 0.05 to 0.5 vol%. Since the explosion limit of acetylene is 2.5 to 100 vol% in air, the above concentration range diluted with an inert gas is a concentration that can reliably avoid the risk of explosion.

加熱温度は450℃〜アルミニウム基材の融点未満の範囲とする。450℃未満では炭素薄膜の生成が遅く、アルミニウム基材の融点を超えると液状化するために基材としての用を成さない。また融点未満でも融点近傍では、基材の合金組成、基材の形状、加熱装置によっては基材の歪み、部分溶解などが発生するおそれがある。このため、好ましい加熱温度は450℃〜融点−10℃である。   The heating temperature is in the range of 450 ° C. to less than the melting point of the aluminum substrate. If it is less than 450 degreeC, the production | generation of a carbon thin film will be slow, and since it will liquefy when it exceeds melting | fusing point of an aluminum base material, it will not be used as a base material. Further, even if it is less than the melting point, in the vicinity of the melting point, there is a possibility that distortion of the substrate or partial dissolution may occur depending on the alloy composition of the substrate, the shape of the substrate, and the heating device. For this reason, a preferable heating temperature is 450 degreeC-melting | fusing point -10 degreeC.

形成する炭素薄膜の厚さは限定されず、炭素薄膜付アルミニウム材の用途に応じて適宜選定する。   The thickness of the carbon thin film to be formed is not limited, and is appropriately selected according to the use of the aluminum material with the carbon thin film.

本発明によって製造した炭素薄膜付アルミニウム材は電極用基材や摺動部材として好適に用いられる。例えば、電極用基材として用いる場合は、炭素薄膜上に活物質を積層して電極が製造される。このように構成された電極において、アルミニウム基材(アルミニウム箔)と炭素薄膜とは下地層によって高い密着性を得ており、活物質はもとより炭素薄膜との密着性が高いので、アルミニウム基材と活物質との高い密着性を得ることができる。   The aluminum material with a carbon thin film produced according to the present invention is suitably used as an electrode substrate or a sliding member. For example, when used as an electrode substrate, an electrode is manufactured by laminating an active material on a carbon thin film. In the electrode configured in this manner, the aluminum base material (aluminum foil) and the carbon thin film have high adhesion due to the underlayer, and the adhesion to the carbon thin film as well as the active material is high. High adhesion to the active material can be obtained.

炭素薄膜付アルミニウム材の製造において、アルミニウム基材として厚さ40μmのA1050箔を用いた。このアルミニウム基材に対し、前処理として、5%水酸化ナトリウム水溶液で脱脂洗浄し、水洗後に30%硝酸で中和し、さらに水洗した。そして、前処理後のアルミニウム基材に対し、実施例1〜7および比較例2、3は化成処理による下地層形成と、その後のアセチレン存在下での加熱により炭素薄膜を形成し、比較例は下地層を形成することなく炭素薄膜を形成した。各工程の詳細は以下のとおりである。   In the production of the aluminum material with a carbon thin film, A1050 foil having a thickness of 40 μm was used as the aluminum base material. As a pretreatment, this aluminum substrate was degreased and washed with a 5% aqueous sodium hydroxide solution, washed with water, neutralized with 30% nitric acid, and further washed with water. And with respect to the aluminum base material after the pretreatment, Examples 1 to 7 and Comparative Examples 2 and 3 form a carbon thin film by underlayer formation by chemical conversion treatment and subsequent heating in the presence of acetylene. A carbon thin film was formed without forming an underlayer. Details of each step are as follows.

(実施例1)
化成処理の処理液は、硝酸第二鉄:2g/l、シュウ酸:9g/l、トリエタノールアミン:15g/lの混合水溶液を25%水酸化ナトリウムでpH12に調整し、10分間攪拌後10%硝酸にてpH10に調整したものを使用した。この処理液を95℃に加熱し、アルミニウム基材を5分間浸漬処理して鉄を含む化成皮膜を形成した。化成処理後のアルミニウム基材は110℃で10分間乾燥させた。
Example 1
The chemical conversion treatment solution was adjusted to pH 12 with 25% sodium hydroxide in a mixed aqueous solution of ferric nitrate: 2 g / l, oxalic acid: 9 g / l, triethanolamine: 15 g / l, and stirred for 10 minutes. What was adjusted to pH 10 with% nitric acid was used. This treatment liquid was heated to 95 ° C., and the aluminum substrate was immersed for 5 minutes to form a chemical conversion film containing iron. The aluminum substrate after the chemical conversion treatment was dried at 110 ° C. for 10 minutes.

下地層として化成皮膜を形成したアルミニウム基材を加熱炉内に入れ、所期する加熱温度(本例では600℃)まではアルゴンガスのみを炉内に導入し、600℃に昇温した時点で、アルゴンガス流量:1.0m/hr、アセチレンガス流量:1.2l/hrの割合で導入し、この混合気体中で600℃で15時間加熱して下地層上に炭素薄膜を形成した。加熱雰囲気中のアセチレン濃度は0.12vol%である。その後、2時間でアルミニウム基材を常温まで冷却した。 The aluminum base material on which the chemical conversion film is formed as an underlayer is placed in a heating furnace, and only argon gas is introduced into the furnace up to the desired heating temperature (600 ° C. in this example), and when the temperature is raised to 600 ° C. An argon gas flow rate: 1.0 m 2 / hr, an acetylene gas flow rate: 1.2 l / hr were introduced, and the mixture was heated at 600 ° C. for 15 hours to form a carbon thin film on the underlayer. The acetylene concentration in the heating atmosphere is 0.12 vol%. Thereafter, the aluminum substrate was cooled to room temperature in 2 hours.

(実施例2)
化成処理の処理液の液温を60℃とし、処理液への浸漬時間を10分間としたことを除き、実施例1と同じ方法で鉄を含む化成皮膜を形成した。
(Example 2)
A chemical conversion film containing iron was formed in the same manner as in Example 1 except that the liquid temperature of the chemical conversion treatment liquid was 60 ° C. and the immersion time in the treatment liquid was 10 minutes.

炭素薄膜の形成は、アセチレンガス流量を0.8l/hrとして加熱雰囲気中のアセチレン濃度を0.08vol%に調整し、加熱温度を550℃、加熱時間を24時間としたことを除いて、実施例1と同じ条件で行った。   The carbon thin film was formed except that the acetylene gas flow rate was 0.8 l / hr, the acetylene concentration in the heating atmosphere was adjusted to 0.08 vol%, the heating temperature was 550 ° C., and the heating time was 24 hours. It carried out on the same conditions as Example 1.

(実施例3)
化成処理の処理液の液温45℃としたことを除き、実施例1と同じ方法で鉄を含む化成皮膜を形成した。
(Example 3)
A chemical conversion film containing iron was formed by the same method as in Example 1 except that the liquid temperature of the chemical conversion treatment liquid was 45 ° C.

炭素薄膜の形成は、アセチレンガス流量を2.4l/hrとして加熱雰囲気中のアセチレン濃度を0.24vol%に調整し、加熱温度を550℃、加熱時間を8時間としたことを除いて、実施例1と同じ条件で行った。   The carbon thin film was formed except that the acetylene gas flow rate was 2.4 l / hr, the acetylene concentration in the heating atmosphere was adjusted to 0.24 vol%, the heating temperature was 550 ° C., and the heating time was 8 hours. It carried out on the same conditions as Example 1.

(実施例4)
化成処理の処理液として、硝酸第二鉄:2g/lを硝酸ニッケル:2g/lに代えたことを除き、実施例1と同じ方法でアルミニウム基材を処理してニッケルを含む化成皮膜を形成した。
Example 4
The aluminum substrate is treated in the same manner as in Example 1 except that ferric nitrate: 2 g / l is replaced with nickel nitrate: 2 g / l as a chemical treatment liquid, thereby forming a chemical conversion film containing nickel. did.

炭素薄膜の形成は実施例1と同じ条件で行った。   The carbon thin film was formed under the same conditions as in Example 1.

(実施例5)
化成処理の処理液として、硝酸第二鉄:2g/lを硝酸コバルト:2g/lに代えたことを除き、実施例1と同じ方法でアルミニウム基材を処理してコバルトを含む化成皮膜を形成した。
(Example 5)
As a treatment solution for the chemical conversion treatment, an aluminum base material was treated in the same manner as in Example 1 except that ferric nitrate: 2 g / l was replaced with cobalt nitrate: 2 g / l to form a chemical conversion film containing cobalt. did.

炭素薄膜の形成は実施例2と同じ条件で行った。   The carbon thin film was formed under the same conditions as in Example 2.

(実施例6)
化成処理の処理液は、塩化第一鉄:10g/l、H:3g/lの混合水溶液を塩酸でpH2に調整したものを使用した。この処理液を45℃に加熱し、アルミニウム基材を3分間浸漬処理して鉄を含む化成皮膜を形成した。化成処理後のアルミニウム基材は110℃で10分間乾燥させた。
(Example 6)
As the treatment solution for the chemical conversion treatment, a mixed aqueous solution of ferrous chloride: 10 g / l and H 2 O 2 : 3 g / l was adjusted to pH 2 with hydrochloric acid. This treatment liquid was heated to 45 ° C., and the aluminum base material was dipped for 3 minutes to form a chemical conversion film containing iron. The aluminum substrate after the chemical conversion treatment was dried at 110 ° C. for 10 minutes.

炭素薄膜の形成は実施例1と同じ条件で行った。   The carbon thin film was formed under the same conditions as in Example 1.

(実施例7)
化成処理の処理液は、ケイふっ化ナトリウム:30g/l、ふっ化亜鉛:2g/l、ふっ化鉄:1.5g/lの混合水溶液を、水酸化ナトリウム水溶液でpH4.5に調整したものを使用した。この処理液を60℃に加熱し、アルミニウム基材を30秒間浸漬処理して鉄を含む化成皮膜を形成した。化成処理後のアルミニウム基材は110℃で10分間乾燥させた。
(Example 7)
The treatment solution for the chemical conversion treatment is a mixed aqueous solution of sodium silicofluoride: 30 g / l, zinc fluoride: 2 g / l, iron fluoride: 1.5 g / l, adjusted to pH 4.5 with sodium hydroxide aqueous solution. It was used. This treatment liquid was heated to 60 ° C., and the aluminum base material was immersed for 30 seconds to form a chemical conversion film containing iron. The aluminum substrate after the chemical conversion treatment was dried at 110 ° C. for 10 minutes.

炭素薄膜の形成は、アセチレンガス流量を10l/hrとして加熱雰囲気中のアセチレン濃度を1.00vol%に調整し、加熱時間を8時間としたことを除いて、実施例1と同じ条件で行った。   The carbon thin film was formed under the same conditions as in Example 1 except that the acetylene gas flow rate was 10 l / hr, the acetylene concentration in the heating atmosphere was adjusted to 1.00 vol%, and the heating time was 8 hours. .

(比較例1)
下地層を形成することなく、アルミニウム基材上に直接炭素薄膜を形成した。炭素薄膜の形成は実施例1と同じ条件で行った。
(Comparative Example 1)
A carbon thin film was formed directly on the aluminum substrate without forming an underlayer. The carbon thin film was formed under the same conditions as in Example 1.

(比較例2)
下地処理としてクロメート処理を行った。クロメート処理の処理液は、クロム酸:10g/l、リン酸:4g/l、酸性ふっ化ナトリウム:3g/lの混合水溶液を使用した。この処理液を45℃に加熱し、アルミニウム基材を1分間浸漬処理してクロムを含む化成皮膜を形成した。化成処理後のアルミニウム基材は120℃で10分間乾燥させた。
(Comparative Example 2)
Chromate treatment was performed as a base treatment. A chromate treatment solution used was a mixed aqueous solution of chromic acid: 10 g / l, phosphoric acid: 4 g / l, and acidic sodium fluoride: 3 g / l. This treatment liquid was heated to 45 ° C., and the aluminum base material was immersed for 1 minute to form a chemical conversion film containing chromium. The aluminum substrate after the chemical conversion treatment was dried at 120 ° C. for 10 minutes.

炭素薄膜の形成は実施例1と同じ条件で行った。   The carbon thin film was formed under the same conditions as in Example 1.

(比較例3)
下地処理としてジルコニウム処理を行った。ジルコニウム処理の処理液は、六ふっ化ジルコン酸アンモニウム:0.12g/l、リン酸:0.073g/l、グルコン酸ナトリウム:0.48g/l、ふっ化水素酸:0.06g/lの混合水溶液を使用した。この処理液を45℃に加熱し、アルミニウム基材を5分間浸漬処理してジルコニウムを含む化成皮膜を形成した。化成処理後のアルミニウム基材は120℃で10分間乾燥させた。
(Comparative Example 3)
Zirconium treatment was performed as a base treatment. The treatment solution for zirconium treatment was ammonium hexafluoride zirconate: 0.12 g / l, phosphoric acid: 0.073 g / l, sodium gluconate: 0.48 g / l, hydrofluoric acid: 0.06 g / l A mixed aqueous solution was used. This treatment liquid was heated to 45 ° C., and the aluminum base material was immersed for 5 minutes to form a chemical conversion film containing zirconium. The aluminum substrate after the chemical conversion treatment was dried at 120 ° C. for 10 minutes.

炭素薄膜の形成は実施例1と同じ条件で行った。   The carbon thin film was formed under the same conditions as in Example 1.

各例の炭素薄膜付アルミニウム材について、下地層の厚さ(比較例1を除く)および炭素薄膜の厚さを測定した。   About the aluminum material with a carbon thin film of each example, the thickness of the underlayer (except for Comparative Example 1) and the thickness of the carbon thin film were measured.

さらに、下記の3種類の方法で炭素薄膜の密着性を試験した。   Further, the adhesion of the carbon thin film was tested by the following three methods.

(外観)
炭素薄膜付アルミニウム材を目視観察し、炭素薄膜が均一に形成されているものを○、炭素薄膜の付着状態にムラがあるものを×とした。
(appearance)
An aluminum material with a carbon thin film was visually observed.

(拭取り試験)
炭素薄膜付アルミニウム材の表面をガーゼでこすり、下記の3段階で評価した。
◎:ガーゼに炭素薄膜の付着がなく、炭素薄膜は全てアルミニウム基材に残った。
○:ガーゼに炭素薄膜の付着が認められ、アルミニウム基材上の炭素薄膜にムラが生じた。×:ガーゼへの炭素薄膜の付着量が多く、炭素薄膜が取り去られた部分はアルミニウム基材をはっきりと視認できる。
(Wiping test)
The surface of the aluminum material with a carbon thin film was rubbed with gauze and evaluated in the following three stages.
A: The carbon thin film did not adhere to the gauze, and all the carbon thin film remained on the aluminum substrate.
○: Adhesion of carbon thin film was observed on gauze, and unevenness occurred in the carbon thin film on the aluminum substrate. X: The amount of the carbon thin film attached to the gauze is large, and the portion where the carbon thin film has been removed can clearly see the aluminum substrate.

(テープ剥離試験)
粘着テープを貼り、剥がした時の状態に基づいて下記の3段階で評価した。
◎:炭素薄膜の剥がれはなかった。
○:粘着テープに炭素薄膜の付着が認められ、アルミニウム基材上の炭素薄膜にムラが生じた。
×:粘着テープへの炭素薄膜の付着量が多く、炭素薄膜が取り去られた部分はアルミニウム基材をはっきりと視認できる。
(Tape peeling test)
Based on the state when the adhesive tape was applied and peeled off, the evaluation was made in the following three stages.
A: The carbon thin film was not peeled off.
○: Adhesion of the carbon thin film was observed on the adhesive tape, and the carbon thin film on the aluminum substrate was uneven.
X: The amount of the carbon thin film attached to the adhesive tape is large, and the portion where the carbon thin film is removed can clearly see the aluminum substrate.

表1に、下地層形成工程および炭素薄膜形成工程の概要、下地層および炭素薄膜の厚さ、試験結果を示す。なお、比較例1〜3は上述した拭取り試験およびテープ剥離試験によりアルミニウム基材上に付着させた炭素の多くが除去される状態であり、実施例における炭素薄膜の付着状態とは明らかな差がある。このため、比較例1〜3の炭素薄膜の厚さは記載していない。   Table 1 shows the outline of the base layer forming step and the carbon thin film forming step, the thickness of the base layer and the carbon thin film, and the test results. Note that Comparative Examples 1 to 3 are in a state in which much of the carbon deposited on the aluminum substrate is removed by the wiping test and the tape peeling test described above, which is clearly different from the adhesion state of the carbon thin film in the examples. There is. For this reason, the thickness of the carbon thin film of Comparative Examples 1-3 is not described.

Figure 2011219810
Figure 2011219810

表1の試験結果により、下地層として鉄、ニッケル、コバルトのうちのいずれかの金属を含む化成皮膜を形成することにより、アルミニウム基材に対する炭素薄膜の高い密着性が得られることを確認した。また、下地層に鉄を含有する場合に特に高い密着性が得られることも確認した。   From the test results shown in Table 1, it was confirmed that high adhesion of the carbon thin film to the aluminum substrate was obtained by forming a chemical conversion film containing any one of iron, nickel, and cobalt as an underlayer. It was also confirmed that particularly high adhesion can be obtained when the underlayer contains iron.

本発明の炭素薄膜付アルミニウム材の製造方法は、アルミニウム製電極用基材やアルミニウム製摺動部材の製造に利用できる。   The manufacturing method of the aluminum material with a carbon thin film of this invention can be utilized for manufacture of the base material for aluminum electrodes, or the sliding member made from aluminum.

1…アルミニウム基材
2…下地層
3…炭素薄膜
10…炭素薄膜付アルミニウム材
1… Aluminum substrate
2… Underlayer
3… Carbon thin film
10… Aluminum with carbon thin film

Claims (6)

アルミニウム基材を、鉄、ニッケルおよびコバルトのうちのいずれか1種以上の金属を含む処理液を用いて化成処理を行い、該アルミニウム基材の表面に前記金属を含む化成皮膜からなる下地層を形成する下地層形成工程と、
前記工程により下地層を形成したアルミニウム基材を炭化水素ガスが存在する雰囲気中で450℃〜アルミニウム基材の融点未満に加熱し、下地層上に炭素薄膜を形成する炭素薄膜形成工程、
とを含むことを特徴とする炭素薄膜付アルミニウム材の製造方法。
An aluminum substrate is subjected to chemical conversion treatment using a treatment liquid containing at least one metal selected from iron, nickel, and cobalt, and an underlayer comprising a chemical conversion film containing the metal is formed on the surface of the aluminum substrate. A base layer forming step to be formed;
A carbon thin film forming step in which the aluminum base material on which the base layer has been formed by the above-described step is heated to 450 ° C. to less than the melting point of the aluminum base material in an atmosphere in which hydrocarbon gas exists, and a carbon thin film is formed on the base layer;
The manufacturing method of the aluminum material with a carbon thin film characterized by including these.
前記処理液および化成皮膜に含まれる金属が鉄である請求項1に記載の炭素薄膜付アルミニウム材の製造方法。   The manufacturing method of the aluminum material with a carbon thin film of Claim 1 whose metal contained in the said process liquid and a chemical conversion film is iron. 前記炭素薄膜形成工程における加熱雰囲気は不活性ガスによって希釈された炭化水素ガスである請求項1または2に記載の炭素薄膜付アルミニウム材の製造方法。   The method for producing an aluminum material with a carbon thin film according to claim 1 or 2, wherein the heating atmosphere in the carbon thin film forming step is a hydrocarbon gas diluted with an inert gas. 前記炭素薄膜形成工程における炭化水素ガスがアセチレンである請求項1〜3に記載の炭素薄膜付アルミニウム材の製造方法。   The method for producing an aluminum material with a carbon thin film according to claim 1, wherein the hydrocarbon gas in the carbon thin film forming step is acetylene. 前記炭素薄膜形成工程における炭化水素ガスがアセチレンであり、不活性ガスによって希釈された加熱雰囲気中のアセチレン濃度は0.01〜1vol%である請求項3に記載の炭素薄膜付アルミニウム材の製造方法。   The method for producing an aluminum material with a carbon thin film according to claim 3, wherein the hydrocarbon gas in the carbon thin film forming step is acetylene, and the acetylene concentration in the heating atmosphere diluted with an inert gas is 0.01 to 1 vol%. . アルミニウム基材の表面に、鉄、ニッケルおよびコバルトのうちのいずれか1種以上の金属を含む化成皮膜を介して炭素薄膜が積層されてなることを特徴とする電極用基材。   A base material for an electrode, wherein a carbon thin film is laminated on a surface of an aluminum base material via a chemical conversion film containing at least one metal selected from iron, nickel, and cobalt.
JP2010089507A 2010-04-08 2010-04-08 Method for manufacturing aluminum material with carbon thin film Pending JP2011219810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089507A JP2011219810A (en) 2010-04-08 2010-04-08 Method for manufacturing aluminum material with carbon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089507A JP2011219810A (en) 2010-04-08 2010-04-08 Method for manufacturing aluminum material with carbon thin film

Publications (1)

Publication Number Publication Date
JP2011219810A true JP2011219810A (en) 2011-11-04

Family

ID=45037154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089507A Pending JP2011219810A (en) 2010-04-08 2010-04-08 Method for manufacturing aluminum material with carbon thin film

Country Status (1)

Country Link
JP (1) JP2011219810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107849701A (en) * 2015-07-10 2018-03-27 Posco公司 Substrate through color development treatment and the color development treatment method for it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338221A (en) * 2001-03-14 2002-11-27 Mitsubishi Gas Chem Co Inc Method for producing orienting carbon nanotube membrane
WO2009038172A1 (en) * 2007-09-21 2009-03-26 Taiyo Nippon Sanso Corporation Method for forming catalyst layer for carbon nanostructure growth, liquid for catalyst layer formation, and process for producing carbon nanostructure
JP2009067675A (en) * 2007-09-14 2009-04-02 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Apparatus of manufacturing carbon nanotube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338221A (en) * 2001-03-14 2002-11-27 Mitsubishi Gas Chem Co Inc Method for producing orienting carbon nanotube membrane
JP2009067675A (en) * 2007-09-14 2009-04-02 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Apparatus of manufacturing carbon nanotube
WO2009038172A1 (en) * 2007-09-21 2009-03-26 Taiyo Nippon Sanso Corporation Method for forming catalyst layer for carbon nanostructure growth, liquid for catalyst layer formation, and process for producing carbon nanostructure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013057653; EMMENEGGER C. et al: 'Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism' Carbon Vol.41, 2003, P.539-547 *
JPN6013057655; KAWAMOTO A. et al: 'Syntheses of Carbon Nanotubes on Spin-Coated Iron Catalyst' 第28回フラーレン・ナノチューブ総合シンポジウム 講演要旨集 , 2005, P.187 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107849701A (en) * 2015-07-10 2018-03-27 Posco公司 Substrate through color development treatment and the color development treatment method for it
US20180202050A1 (en) * 2015-07-10 2018-07-19 Posco Color-treated substrate and color treatment method therefor
JP2018524481A (en) * 2015-07-10 2018-08-30 ポスコPosco Color-treated substrate and method for color development therefor

Similar Documents

Publication Publication Date Title
JP4456378B2 (en) Method for producing conductive diamond electrode
US9771661B2 (en) Methods for producing a high temperature oxidation resistant MCrAlX coating on superalloy substrates
US4938850A (en) Method for plating on titanium
JP5251078B2 (en) Steel plate for containers and manufacturing method thereof
Castano et al. Microstructural evolution of cerium-based coatings on AZ31 magnesium alloys
JP2009001851A (en) Steel sheet for vessel, and method for producing the same
CN106507852B (en) A kind of chemical plating nickel-phosphorus alloy method in silicon carbide ceramics substrate
TW201500319A (en) Anti-corrosion film, metal substrate with anti-corrosion layer and manufacturing method thereof
JP2013540205A (en) Electroless metal deposition using highly alkaline plating bath
EP3059335B1 (en) Surface modifiers for ionic liquid aluminum electroplating solutions, processes for electroplating aluminum therefrom, and methods for producing an aluminum coating using the same
JP2011219810A (en) Method for manufacturing aluminum material with carbon thin film
JP5536533B2 (en) Method for producing carbon thin film-attached copper material
CN107460481A (en) A kind of preparation method of Microarc Oxidation-Electroless Plating of Magnesium Alloy nickel composite coat
JP3320965B2 (en) Hard film peeling method and recoated member obtained by the method
CN110129779B (en) Method for chemically dipping iron on surface of aluminum alloy
Wang et al. Electroless nickel-boron plating to improve the corrosion resistance of magnesium (Mg) alloys
US20100072076A1 (en) Surface treatment method for housings
JPH10237672A (en) Diamond-coated steel material and its production
JP6318430B2 (en) Composite hard film member and method for producing the same
CN103232809A (en) Coating process of copper alloy foil explosion-proof material
US20080115810A1 (en) Method of reactivating electrode for electrolysis
JPS6246626B2 (en)
TW202115281A (en) Layered body and production method therefor
TW202010866A (en) Surface treatment process for magnesium alloy
TWI426149B (en) Coated articles and method for making the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141118