JPH01188416A - Production of oxide superconducting powder - Google Patents

Production of oxide superconducting powder

Info

Publication number
JPH01188416A
JPH01188416A JP63009397A JP939788A JPH01188416A JP H01188416 A JPH01188416 A JP H01188416A JP 63009397 A JP63009397 A JP 63009397A JP 939788 A JP939788 A JP 939788A JP H01188416 A JPH01188416 A JP H01188416A
Authority
JP
Japan
Prior art keywords
plasma
powder
oxide
gas
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63009397A
Other languages
Japanese (ja)
Inventor
Ryoji Sedaka
良司 瀬高
Wataru Komatsu
亘 小松
Toshiaki Shibata
柴田 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63009397A priority Critical patent/JPH01188416A/en
Publication of JPH01188416A publication Critical patent/JPH01188416A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the subject dense and fine powder having superior superconducting characteristics by atomizing a soln. mixture consisting of each constituting starting material in a predetermined compositional ratio for an aimed material, in the atmosphere of plasma, oxidizing it in O2-contg. plasma after evaporating and drying the atomized product, and collecting after charging electrically the oxidized product. CONSTITUTION:A particle size distribution of fine and uniform atomized particles obtd. by atomizing with an atomizing device 5 a starting material 4 consisting of a uniform soln. mixture prepd. by mixing each starting material for constituting an aimed material, such as an alkaline earth metal, a rare earth element, and Cu, etc., in a predetermined compositional ratio and dissolving the mixture in a solvent, is adjusted with a particle classifier 3 using carrier gas controlled to a specified flow rate with a flow rate controller 6A, then the product is fed to a DC plasma torch 2, On one hand, plasma gas, sealing gas, and protecting gas are fed to said torch 2. After evaporating the solvent, etc., quickly with the DC plasma 7, the evaporated product is introduced into microwave plasma 9 generated by an oscillator 16 through a microwave oscillator 18 and a waveguide system 17, and oxidized in O2-contg. plasma atmosphere. Obtd. powder of the oxide superconductor is then charged electrically with DMA 12 and collected in an electric collector 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微細な酸化物系超電導粉体の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing fine oxide-based superconducting powder.

〔従来の技術〕[Conventional technology]

アルカリ土金属(A)、希土類元素(R)、銅及び酸素
からなるYBa*Cu5Ot−x、La5rzCusO
t−x等の酸化物系超電導体は、臨界温度(Tc)が高
く、その応用が期待されている。而して前記酸化物系超
電導体は従来、出発原料であるアルカリ土金属(A)(
例えばBa等)の炭酸塩、希土類元素(R)(例えばY
、La等)の酸化物及び銅の酸化物を所望組成になる様
に秤量した後粉砕しながら混合し、この様にして得られ
た混合物を予備焼成する事によって複合酸化物とし、こ
れを粉砕分級後、得られた混合粉体を所望の形状に成形
して焼結処理する事によって製造されていた。
YBa*Cu5Ot-x, La5rzCusO consisting of alkaline earth metal (A), rare earth element (R), copper and oxygen
Oxide-based superconductors such as t-x have a high critical temperature (Tc) and are expected to be used for applications. The above-mentioned oxide-based superconductors have conventionally been made from alkaline earth metal (A) (
carbonates of rare earth elements (R) (e.g. Y
, La, etc.) and copper oxide are weighed so as to have the desired composition and then mixed while pulverizing.The mixture thus obtained is pre-fired to form a composite oxide, which is then pulverized. After classification, the resulting mixed powder is molded into a desired shape and sintered.

而してこの様にして得られる酸化物系超電導成形体の密
度を高(して、超電導特性を向上させる為には、各粉体
同志の接触面積が大きくて、焼結処理時に粉体相互間で
固相拡散が充分に起こる様、出来るだけ微細で且つ粒径
のそろった粉体を用いるのが好ましいものである。
In order to increase the density of the oxide-based superconducting molded body obtained in this way and improve its superconducting properties, the contact area between each powder must be large and the powders must be able to interact with each other during the sintering process. It is preferable to use a powder that is as fine as possible and has a uniform particle size so that solid phase diffusion can occur sufficiently between the particles.

〔発明が解決しようとする課題] 然しなから、従来の機械的な粉砕方法では、この様な微
細な粉体を得る為には、粉砕及び分級を何回も繰り返す
必要があって、工程が非常に複雑になると共に、多(の
時間を必要としていた。又この様にして得られた粉体は
、粒度分布が広くて、粒径がそろってなく、サブミクロ
ンの微粉体を得る事は困難であると共に前記粉砕時に不
純物の混入が避けられず、高純度な粉体を得る事は困難
であった。
[Problem to be solved by the invention] However, in the conventional mechanical pulverization method, in order to obtain such fine powder, it is necessary to repeat pulverization and classification many times, which increases the process time. It was very complicated and required a lot of time. Also, the powder obtained in this way had a wide particle size distribution and the particle sizes were not uniform, making it difficult to obtain submicron fine powder. It is difficult to obtain a highly pure powder, and the mixing of impurities during the pulverization is unavoidable.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は上記の点に鑑み鋭意検討の結果なされたもので
あり、その目的とするところは、高純度で、微細な酸化
物系超電導粉体を製造する方法を提供する事である。
The present invention has been made as a result of intensive studies in view of the above points, and its purpose is to provide a method for producing fine oxide-based superconducting powder with high purity.

本発明者等は、この様な問題点を解決する為、鋭意検討
を行なった結果、前記酸化物系超電導粉体の原料溶液を
プラズマ雰囲気中に噴霧して、溶媒等を蒸発させた後、
同じくプラズマ雰囲気中で原料を分解し、反応させる事
により微細な酸化物系超電導粉体が得られる事を見出し
て、本発明の完成に到ったものである。
In order to solve these problems, the inventors of the present invention have conducted intensive studies and found that after spraying the raw material solution of the oxide-based superconducting powder into a plasma atmosphere and evaporating the solvent, etc.
Similarly, the present invention was completed by discovering that fine oxide-based superconducting powder can be obtained by decomposing and reacting raw materials in a plasma atmosphere.

即ち本発明は、アルカリ土金属、希土類元素、銅及び酸
素からなる酸化物系超電導粉体を製造するにあたり、 
 (A)酸化物系超電導粉体を構成する各々の原料を所
望の組成比となる様に混合して均一な混合溶液を作り、
この混合溶液をプラズマ雰囲気中に噴霧して、溶媒並び
に結晶水を2.速に蒸発させる工程、(B)前記溶媒並
びに結晶水を除去した物質を酸素を含有するプラズマ雰
囲気中で反応せしめて、酸化物系粉体とする工程、(C
)前工程で得られた酸化物系粉体を、荷電して、分級し
、補集する工程を経て製造する事を特徴とする酸化物系
超電導粉体の製造方法である。
That is, the present invention, in producing an oxide-based superconducting powder consisting of an alkaline earth metal, a rare earth element, copper, and oxygen,
(A) Mix each raw material constituting the oxide-based superconducting powder to a desired composition ratio to make a uniform mixed solution,
This mixed solution is sprayed into a plasma atmosphere to remove the solvent and crystal water in 2. (B) reacting the substance from which the solvent and crystal water have been removed in an oxygen-containing plasma atmosphere to form an oxide powder; (C)
) A method for producing oxide-based superconducting powder, which is characterized in that the oxide-based powder obtained in the previous step is produced through the steps of charging, classifying, and collecting.

次に本発明の実施B様を図面を用いて具体的に説明する
。第1図は本発明の実施に使用した装置の一例を示す説
明図であって、前記装置において点線で囲んだ(A)は
、酸化物系超電導粉体の液体原料をプラズマ雰囲気中に
噴霧して、゛溶媒並びに結晶水を急速に蒸発させる工程
、(B)は前記溶媒並びに結晶水を除去した物質を酸素
を含有するプラズマ雰囲気中で反応せしめて、酸化物系
粉体とする工程、(C)は前工程で得られた酸化物系粉
体を、例えば直流電圧等により荷電して、分級し、補集
する工程で構成されており、前記A、B、Cの各工程は
連続化されているものである。
Next, implementation B of the present invention will be specifically explained using the drawings. FIG. 1 is an explanatory diagram showing an example of an apparatus used to carry out the present invention. In the apparatus, (A) surrounded by a dotted line is a system in which a liquid raw material for oxide-based superconducting powder is sprayed into a plasma atmosphere. (B) a step of rapidly evaporating the solvent and water of crystallization; (B) a step of reacting the substance from which the solvent and water of crystallization have been removed in a plasma atmosphere containing oxygen to form an oxide powder; C) consists of a step of charging, classifying, and collecting the oxide powder obtained in the previous step using, for example, a DC voltage, and each step of A, B, and C is continuous. This is what is being done.

以下に前記A、B、Cの各工程について詳細に説明する
Each of the steps A, B, and C will be explained in detail below.

A工程において、1は直流プラズマトーチ電源、2は直
流プラズマトーチ、3は粒子分級器、4は溶液化された
酸化物系超電導体の出発原料、5は前記原料溶液2を霧
化する為の例えば超音波噴霧器等の霧化装置、6A、6
BはMFC(Ma s sFlow  Control
ler)、7は直流プラス7.8は差動排気孔である。
In step A, 1 is a DC plasma torch power supply, 2 is a DC plasma torch, 3 is a particle classifier, 4 is a starting material for the oxide-based superconductor that has been made into a solution, and 5 is a material for atomizing the raw material solution 2. For example, an atomizing device such as an ultrasonic atomizer, 6A, 6
B is MFC (Mas sFlow Control)
ler), 7 is a DC plus 7.8 is a differential exhaust hole.

溶液化された酸化物系超電導体の出発原料2は、霧化装
置5により霧化(エアロゾル化)され、微細でかつ比較
的大きさが均一な霧状粒子(エアロゾル)となった後、
MFC6Aによって流量をコントロールされた搬送用ガ
スにより粒子分級器3に搬送され、ここで重量差により
粒径分布が更に制御された後、直流プラズマトーチ2に
供給される。該直流プラズマドー千2には、MFC6B
によって流量をコントロールされたプラズマガス、シー
リングガス及び保z筺ガスが供給されており、直流プラ
ズマトーチ2からの直流プラズマフにおいて、前記エア
ロゾル中に含まれる溶媒等即ち水分、有機溶剤並びに結
晶水が急速に蒸発し、その多くは差動排気7L8から系
外に排出される。この場合エアロゾルを電離させ、プラ
ズマ化する為には、通常のアルゴンガスの場合よりも、
電離電圧を高くする必要があり、高い負荷電圧(アーク
電圧:120V以上)の電源が必要となる。尚この工程
で直流プラズマフを用いるのは、出発原料4のエアロゾ
ルを分解し、反応させて酸化物系超電導体とするだけの
エネルギーをすぐさま供給するのではなく、先ず前記エ
アロゾル中に含まれる水分、有機溶剤並びに結晶水を短
時間の内に蒸発させて、除去する為である。
The starting material 2 of the oxide-based superconductor that has been made into a solution is atomized (aerosolized) by the atomization device 5 to become fine and relatively uniform atomized particles (aerosol), and then
The particles are transported to the particle classifier 3 by a transport gas whose flow rate is controlled by the MFC 6A, where the particle size distribution is further controlled by the weight difference, and then supplied to the DC plasma torch 2. The DC plasma dome has MFC6B.
Plasma gas, sealing gas, and storage gas are supplied with flow rates controlled by the DC plasma torch 2, and in the DC plasma from the DC plasma torch 2, solvents, etc., that is, water, organic solvent, and crystal water contained in the aerosol are rapidly removed. Most of it is exhausted from the system through the differential exhaust 7L8. In this case, in order to ionize the aerosol and turn it into plasma, it is necessary to
It is necessary to increase the ionization voltage, and a power source with a high load voltage (arc voltage: 120 V or more) is required. Note that the reason why a DC plasma is used in this step is not to immediately supply enough energy to decompose and react the aerosol of the starting material 4 to form an oxide-based superconductor, but to first decompose the water contained in the aerosol, This is to evaporate and remove the organic solvent and crystal water within a short time.

B工程は、A工程で溶媒並びに結晶水を除去した物質を
、酸素を含有するプラズマ雰囲気中に供給して、分解し
、充分に反応せしめた後急冷して、酸化物系超電導粉体
とする工程で、9はマイクロ波プラズマ、lOは急冷ガ
ス供給孔、16は共振器、17は導波管系、18はマイ
クロ波発振器、19は直流高圧電源である。この工程で
のプラズマとしては、プラズマの持つエネルギー密度が
非常に高く、短時間の内に容易に反応させる事が出来る
、高周波プラズマ又はマイクロ波プラズマを用いる事が
望ましく、第1図はマイクロ波プラズマ9を用いた場合
の構成を示しである。即ちマイクロ波プラズマ9の発生
には、共振器16が用いられており、該共振器16には
直流高圧電源19に接続されたマイクロ波発振器18か
ら、導波管系17を介して電力が供給されている。前記
プラズマ雰囲気中で反応して生成した酸化物系超電導粉
体は、反応後直ちに急冷ガス供給孔10より供給される
Heガス等により急冷される。
In the B process, the substance from which the solvent and crystal water have been removed in the A process is supplied to an oxygen-containing plasma atmosphere, decomposed, sufficiently reacted, and then rapidly cooled to form an oxide-based superconducting powder. In the process, 9 is a microwave plasma, 10 is a quench gas supply hole, 16 is a resonator, 17 is a waveguide system, 18 is a microwave oscillator, and 19 is a DC high voltage power source. As the plasma in this process, it is desirable to use high-frequency plasma or microwave plasma, which has a very high energy density and can easily cause a reaction within a short time. This figure shows the configuration when 9 is used. That is, a resonator 16 is used to generate the microwave plasma 9, and power is supplied to the resonator 16 from a microwave oscillator 18 connected to a DC high voltage power source 19 via a waveguide system 17. has been done. The oxide-based superconducting powder produced by the reaction in the plasma atmosphere is quenched by He gas or the like supplied from the quenching gas supply hole 10 immediately after the reaction.

(C)は前工程で得られた酸化物系超電導粉体を、直流
電圧等により荷電して、分級し、補集する工程で、11
は直流高圧電源、12はDMA(Dirfirrent
ial   Mobility  Analyzer)
、13は電気補集器、14は直流高圧電源、15は電極
である。前工程で得られた酸化物系超電導粉体は、直流
高圧電源11が接続されているDMA12によって荷電
され、所望サイズ以下の粒径を有する微粉体に分級され
た後、電気補集器13に供給される。該電気補集器13
において、電F515は、接地された平行平板電極(集
塵極)及び該集塵極の間に張られた針金電極より構成さ
れており、針金電極には直流高圧電−[14により、負
の直流高電圧が印加されている。前記電気補集器13に
導入された酸化物系超電導微粉体は、コロナ放電により
電離した負イオンにより荷電され、電場により集塵極に
補集される。
(C) is a step in which the oxide-based superconducting powder obtained in the previous step is charged with a DC voltage, classified, and collected.
is a DC high voltage power supply, 12 is a DMA (Dirfirst
ial Mobility Analyzer)
, 13 is an electric collector, 14 is a DC high voltage power supply, and 15 is an electrode. The oxide-based superconducting powder obtained in the previous step is charged by the DMA 12 to which the DC high voltage power supply 11 is connected, and is classified into fine powder having a particle size smaller than the desired size. Supplied. The electric collector 13
The electric F515 is composed of a grounded parallel plate electrode (dust collection electrode) and a wire electrode stretched between the dust collection electrodes. DC high voltage is applied. The oxide-based superconducting fine powder introduced into the electric collector 13 is charged by negative ions ionized by corona discharge, and collected by the electric field on the dust collecting electrode.

尚本発明において、酸化物系超電導粉体の原料溶液を霧
化する手段として、何ら特定されるものではないが、例
えば霧化装置として超音波噴霧器を使用する場合、超音
波振動の周波数が0.7 M 82未満であると、粒子
径が大きくなると共に、径のバラツキも太き(なり、又
前記周波数が3MH2を超えると、前記原料溶液が超音
波振動子の振動に追従出来ず、原料溶液の霧化が充分に
行なわれないので、周波数0.7〜3MHzの超音波振
動子からなる噴霧器にて霧化する必要がある。
In the present invention, the means for atomizing the raw material solution of oxide-based superconducting powder is not specified at all, but for example, when an ultrasonic atomizer is used as the atomization device, the frequency of ultrasonic vibration is 0. If it is less than .7 M 82, the particle diameter will become large and the variation in diameter will be large (and if the frequency exceeds 3 MH2, the raw material solution will not be able to follow the vibration of the ultrasonic vibrator, and the raw material solution will be Since the solution is not sufficiently atomized, it is necessary to atomize it using an atomizer comprising an ultrasonic vibrator with a frequency of 0.7 to 3 MHz.

又本発明方法では、プラズマ雰囲気中で反応させて得ら
れた酸化物系超電導粉体を所望の手段により荷電して、
静電気力を利用して分級し、補集するが、その際の電界
強度が不適当であると、粉体が帯電しなくて分級及び補
集が出来なかったり、或いは収率が低下するので、適当
な電界強度により咳粉体に荷電して分級し、補集する必
要がある。
Further, in the method of the present invention, the oxide-based superconducting powder obtained by reacting in a plasma atmosphere is charged by a desired means,
Classification and collection is performed using electrostatic force, but if the electric field strength is inappropriate, the powder will not be charged and classification and collection will not be possible, or the yield will decrease. It is necessary to charge the cough powder using an appropriate electric field strength, classify it, and collect it.

更に前記静電気力を利用して、補集工程の前後における
酸化物系超電導粉体の輸送を効率良く行なう事が出来る
Further, by utilizing the electrostatic force, the oxide-based superconducting powder can be efficiently transported before and after the collection step.

〔作用〕[Effect]

本発明の方法においては、酸化物系超電導粉体の原料溶
液をプラズマ雰囲気中に噴霧して、溶媒等を蒸発させた
後、同じくプラズマ雰囲気中で原料を分解し、反応させ
る事により酸化物系超電導粉体を製造しているので、前
記溶媒等の蒸発並びに原料の分解及び反応が極めて短時
間の内に行われる。従って粉体を構成する単原子同士の
衝突による凝集が起こりにくく、微細な酸化物系超電導
粉体を得る事が出来る。又この様にして得られた微粉体
を荷電して分級し、所望の粒径以下の微粉体を選別して
いるので、粒径のそろった微粉体を効率良く得る事が可
能である。更に従来の様に微細な粉体を得る為に、機械
的な粉砕及び分級を繰り返す必要がないので、前記機械
的な粉砕による不純物の混入が無く、高純度な酸化物系
超電IX微粉体が得られる。
In the method of the present invention, a raw material solution of oxide-based superconducting powder is sprayed into a plasma atmosphere to evaporate the solvent, etc., and then the raw material is decomposed and reacted in the same plasma atmosphere to form an oxide-based superconducting powder. Since superconducting powder is manufactured, the evaporation of the solvent, etc., and the decomposition and reaction of the raw materials are carried out within an extremely short period of time. Therefore, agglomeration due to collisions between single atoms constituting the powder is unlikely to occur, and a fine oxide-based superconducting powder can be obtained. Further, since the fine powder obtained in this manner is charged and classified to select fine powder having a particle size smaller than a desired size, it is possible to efficiently obtain fine powder with uniform particle size. Furthermore, unlike conventional methods, there is no need to repeat mechanical crushing and classification to obtain fine powder, so there is no contamination of impurities due to the mechanical crushing, and high purity oxide-based superelectric IX fine powder can be obtained. is obtained.

C実施例〕 次に本発明を実施例により更に具体的に説明する。第1
図に示した装置を用いて、以下に示す方法により酸化物
系超電導粉体を製造した。出発原料として、Y、Ba及
びCuの酢酸塩即ちY(CH:+C00)x・4 Ht
OlB ’a (CHx COO) t’HzO及びC
u (CH3COO)z・HtOをモル比で、Y:Ba
:Cu=1:2:3となる様に秤量し、脱イオン水に混
合溶解して、溶液濃度がYBaxCusOt−xに換算
して0.03 m o j! / 1となる様に調整し
た混合溶液を用いた。又流体搬送用ガスは酸素ガスを用
い、流量はMFC6Aにより2.5SLMに調整した。
Example C] Next, the present invention will be explained in more detail with reference to Examples. 1st
Oxide-based superconducting powder was manufactured by the method shown below using the apparatus shown in the figure. As starting materials, acetates of Y, Ba and Cu, i.e. Y(CH:+C00)x・4Ht
OlB 'a (CHx COO) t'HzO and C
u (CH3COO)z・HtO in molar ratio, Y:Ba
:Cu=1:2:3, mixed and dissolved in deionized water, and the solution concentration is 0.03 m o j! in terms of YBaxCusOt-x! A mixed solution adjusted to have a ratio of 1/1 was used. Oxygen gas was used as the fluid transport gas, and the flow rate was adjusted to 2.5 SLM using MFC6A.

前記各原料の混合溶液を、周波数1.7 M Hzの超
音波振動子よりなる超音波噴霧器5により微粒子化して
、平均粒径約7μmとし、粒子分級器3により108m
以上の大きい液滴は凝集させて回収し、粒子径10μm
未満の液滴のみを、2g/minの速度で直流プラズマ
トーチ2に供給した。該直流プラズマトーチ2には、プ
ラズマガス(0! : 2 S L M + A r 
:3SLM)、シーリングガス(0□:3SLM+Ar
:5SLM)及び保護ガス(Ar : 5SLM)をそ
れぞれMFC6Bによって流量をコントロールして、供
給した。又直流プラズマトーチ2に接続されている直流
プラズマトーチ電源l(アーク電圧:6o 〜130V
、最大出力=50KW)の出力は15KWに設定した。
The mixed solution of each of the raw materials was atomized by an ultrasonic atomizer 5 comprising an ultrasonic vibrator with a frequency of 1.7 MHz to give an average particle size of about 7 μm, and a particle classifier 3 made it into particles of 108 m.
Droplets larger than 10 μm in diameter are aggregated and collected.
Only less droplets were fed to the DC plasma torch 2 at a rate of 2 g/min. The DC plasma torch 2 contains a plasma gas (0!: 2 S L M + A r
:3SLM), sealing gas (0□:3SLM+Ar
:5SLM) and protective gas (Ar :5SLM) were each supplied with flow rates controlled by MFC6B. In addition, a DC plasma torch power supply l (arc voltage: 6o ~ 130V) connected to the DC plasma torch 2
, maximum output = 50KW), the output was set to 15KW.

この様にして、直流プラズマトーチ2からの直流プラズ
マフにおいて、前記液滴中に含まれる水分並びに結晶水
を急速に蒸発させ、その多くは差動排気孔8から系外に
排出した。
In this way, the DC plasma from the DC plasma torch 2 rapidly evaporated the water and crystal water contained in the droplets, and most of them were discharged from the differential exhaust hole 8 to the outside of the system.

次に前記水分並びに結晶水を除去した物質をマイクロ波
プラズマ9に供給して、分解し、反応させる事により微
細な酸化物系超電導粉体とした。
Next, the substance from which water and crystallization water have been removed is supplied to a microwave plasma 9 to be decomposed and reacted to form fine oxide-based superconducting powder.

前記マイクロ波プラズマ9の発生には、共振器16を用
い、該共振器16には直流高圧電源19(最大出カニ 
50 KW)に接続されたマイクロ波発振器18から、
導波管系17を介して2.45GHzで25KWの電力
を供給した。前記プラズマ雰囲気中で反応させて生成し
た酸化物系超電導粉体を、反応後直ちに急冷ガス供給孔
10よりHeガスを25SLM供給して急冷した。
A resonator 16 is used to generate the microwave plasma 9, and the resonator 16 is connected to a DC high voltage power source 19 (maximum output capacity).
50 KW) from a microwave oscillator 18 connected to
A power of 25 KW at 2.45 GHz was supplied via the waveguide system 17. Immediately after the reaction, the oxide-based superconducting powder produced by the reaction in the plasma atmosphere was quenched by supplying 25 SLM of He gas from the quenching gas supply hole 10.

しかる後、この酸化物系超電導粉体を直流高圧電源11
が接続されているDMA12によって荷電し、粒径0.
5μm以下の微粉体に選別して電気補集器13に供給し
、負イオンにより荷電して、集塵極に補集した。尚この
際補集用電極15間での電流密度は、10nA/cm”
になる様に調整した。
After that, this oxide-based superconducting powder is connected to a DC high voltage power source 11.
is charged by the DMA12 connected to it, and the particle size is 0.
The powder was sorted into fine powder of 5 μm or less, supplied to an electric collector 13, charged with negative ions, and collected on a dust collection electrode. At this time, the current density between the collecting electrodes 15 is 10 nA/cm"
I adjusted it so that

而して得られた酸化物系超電導粉体の形状を走査電顕で
観察したところ、平均粒径:0.3μm、標準偏差: 
0.05μmの非常に微細で均一な粒径の粉体であって
、不純物は殆ど混入していなかった。更にこの粉体をペ
レットに成形後焼結処理して超電導特性を測定したとこ
ろ、臨界温度(TC)として95@KS臨界電流密度(
J、)として475A/cm”の値が得られた。
When the shape of the obtained oxide-based superconducting powder was observed using a scanning electron microscope, the average particle size: 0.3 μm, standard deviation:
The powder had a very fine and uniform particle size of 0.05 μm, and contained almost no impurities. Furthermore, when this powder was molded into pellets and sintered to measure the superconducting properties, the critical temperature (TC) was 95@KS critical current density (
A value of 475 A/cm'' was obtained for J, ).

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、微細で均一な粒径であり、しか
も高純度な酸化物系超電導粉体を、比較的簡単な工程で
製造する事が出来、この粉体を用いれば緻密で超電導特
性に優れた超電導成形体を得る事が出来るものであり、
工業上顕著な効果を奏するものである。
According to the method of the present invention, it is possible to produce a highly pure oxide-based superconducting powder with a fine and uniform particle size through a relatively simple process. It is possible to obtain a superconducting molded body with excellent properties,
This has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施に使用する装置の一例を示す説
明図である。 1−直流プラズマトーチ電源、2−・直流プラズマトー
チ、3−粒子分級器、4−・・溶液化された酸化物系超
電導体の出発原料、5−・前記原料溶液4を霧化する為
の霧化装置、6A、6B・・・MFC(Mass  F
low  Controller)、7−直流プラズマ
、8・・−差動排気孔、9−・マイクロ波プラズマ、1
0−・−急冷ガス供給孔、11・・・直流高圧電源、1
2−DMA(Diffirrential  Mobi
lity  Analyze「)、13−・−電気補集
器、14−直流高圧電源、15−電極、16−・共振器
、17−導波管系、18−マイクロ波発振器、19−直
流高圧電源。 特許出願人 古河電気工業株式会社
FIG. 1 is an explanatory diagram showing an example of an apparatus used to implement the present invention. 1-DC plasma torch power source, 2-.DC plasma torch, 3-particle classifier, 4-.Starting material for the oxide-based superconductor dissolved in solution, 5-.For atomizing the raw material solution 4. Atomization device, 6A, 6B...MFC (Mass F
low Controller), 7-DC plasma, 8...-differential exhaust hole, 9--microwave plasma, 1
0--Quick cooling gas supply hole, 11...DC high voltage power supply, 1
2-DMA (Differential Mobi
ity Analyze"), 13--electrical collector, 14-DC high-voltage power supply, 15-electrode, 16--resonator, 17-waveguide system, 18-microwave oscillator, 19-DC high-voltage power supply. Patent Applicant Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] アルカリ土金属、希土類元素、銅及び酸素からなる酸化
物系超電導粉体を製造するにあたり、(A)酸化物系超
電導粉体を構成する各々の原料を所望の組成比となる様
に混合してなる均一な混合溶液を、プラズマ雰囲気中に
噴霧して、溶媒並びに結晶水を急速に蒸発させる工程、
(B)前記溶媒並びに結晶水を除去した物質を酸素を含
有するプラズマ雰囲気中で反応せしめて、酸化物系粉体
とする工程、(C)前工程で得られた酸化物系粉体を、
荷電して、分級し、補集する工程を経て製造する事を特
徴とする酸化物系超電導粉体の製造方法。
In producing oxide-based superconducting powder consisting of alkaline earth metals, rare earth elements, copper, and oxygen, (A) each raw material constituting the oxide-based superconducting powder is mixed to a desired composition ratio. a step of rapidly evaporating the solvent and crystal water by spraying a uniform mixed solution into a plasma atmosphere;
(B) reacting the substance from which the solvent and crystal water have been removed in an oxygen-containing plasma atmosphere to obtain an oxide-based powder; (C) using the oxide-based powder obtained in the previous step;
A method for producing oxide-based superconducting powder, which is characterized in that it is produced through the steps of charging, classifying, and collecting.
JP63009397A 1988-01-19 1988-01-19 Production of oxide superconducting powder Pending JPH01188416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63009397A JPH01188416A (en) 1988-01-19 1988-01-19 Production of oxide superconducting powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63009397A JPH01188416A (en) 1988-01-19 1988-01-19 Production of oxide superconducting powder

Publications (1)

Publication Number Publication Date
JPH01188416A true JPH01188416A (en) 1989-07-27

Family

ID=11719289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63009397A Pending JPH01188416A (en) 1988-01-19 1988-01-19 Production of oxide superconducting powder

Country Status (1)

Country Link
JP (1) JPH01188416A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504753A (en) * 1996-11-04 2001-04-10 マテリアルズ モディフィケーション,インコーポレイティド Microwave plasma chemical synthesis of ultrafine powder
JP2007238402A (en) * 2006-03-10 2007-09-20 Chugai Ro Co Ltd Powder production apparatus and powder production method
JP2009509897A (en) * 2005-06-08 2009-03-12 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Metal oxide nanoparticles and method for producing the same
JP2009538981A (en) * 2006-06-01 2009-11-12 シーヴィアールディ インコ リミテッド Method for producing metal nanopowder by decomposing metal carbonyl

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504753A (en) * 1996-11-04 2001-04-10 マテリアルズ モディフィケーション,インコーポレイティド Microwave plasma chemical synthesis of ultrafine powder
JP2009509897A (en) * 2005-06-08 2009-03-12 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Metal oxide nanoparticles and method for producing the same
JP2007238402A (en) * 2006-03-10 2007-09-20 Chugai Ro Co Ltd Powder production apparatus and powder production method
JP2009538981A (en) * 2006-06-01 2009-11-12 シーヴィアールディ インコ リミテッド Method for producing metal nanopowder by decomposing metal carbonyl

Similar Documents

Publication Publication Date Title
US7431750B2 (en) Nanostructured metal powder and method of fabricating the same
US5344676A (en) Method and apparatus for producing nanodrops and nanoparticles and thin film deposits therefrom
US7220463B2 (en) Method for obtaining nanoparticles
KR100772467B1 (en) Electrodes including particles of specific sizes
US6398125B1 (en) Process and apparatus for the production of nanometer-sized powders
US7125537B2 (en) Method for manufacturing nanopowders of oxide through DC plasma thermal reaction
US20030108459A1 (en) Nano powder production system
US20040065170A1 (en) Method for producing nano-structured materials
KR20110070400A (en) Preparation method of copper nano powder using transfeered arc or non-transferred arc plasma system
US20030102207A1 (en) Method for producing nano powder
JPH01188416A (en) Production of oxide superconducting powder
JP2004124257A (en) Metal copper particulate, and production method therefor
CN111687425A (en) Core-shell structure nano material and preparation method thereof
RU2371381C2 (en) Method and device for plasmochemical synthesis of nano-objects
Ussenov et al. Dust particle synthesis by the combined plasma source at atmospheric pressure
KR100793163B1 (en) Method for manufacturing nano size powder of iron using RF plasma device
KR20160049093A (en) Preparation method of cubic boron nitride nanopowder by thermal plasma, and the cubic boron nitride nanopowder thereby
JP2002253953A (en) Apparatus and method of manufacturing ultrafine particle
Borra et al. Nano-droplet ejection and nucleation of materials submitted to non-thermal plasma filaments
KR100793162B1 (en) Method for manufacturing nano size powder of aluminum using RF plasma device
JPH0867503A (en) Production of hydrogenated titanium superfine particle
WO2023223697A1 (en) Composite particle production method and composite particle
JPH0193403A (en) Production of ceramic-based superconducting material and apparatus therefor
JP2896727B2 (en) Method for producing metal cadmium powder
JPH01176222A (en) Production of oxide based superconducting powder