JPH01184953A - Photoelectric conversion element array for hybrid integration photosensor - Google Patents

Photoelectric conversion element array for hybrid integration photosensor

Info

Publication number
JPH01184953A
JPH01184953A JP63010145A JP1014588A JPH01184953A JP H01184953 A JPH01184953 A JP H01184953A JP 63010145 A JP63010145 A JP 63010145A JP 1014588 A JP1014588 A JP 1014588A JP H01184953 A JPH01184953 A JP H01184953A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
film
sensor element
layer
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63010145A
Other languages
Japanese (ja)
Inventor
Yuji Kajiwara
梶原 勇次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63010145A priority Critical patent/JPH01184953A/en
Publication of JPH01184953A publication Critical patent/JPH01184953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To make it possible to receive effectively image light without making thicker such a photoelectric conversion film as an amorphous Si film than the film needs by a method wherein light-reflection layers formed in isolation from one another are provided on an insulating layer, which is a region right over sensor element parts, in every one sensor element part or more than 2. CONSTITUTION:Reflection films 18 are formed on a polyimide layer 16, which is a region right over sensor element parts 10, in isolation from one another and independently in every sensor element part 10. These films 18 are formed simultaneously with the formation of second conductor layers 17 of a wiring layer. Image light received through the lower surface of a substrate 11 is absorbed by a photoelectric conversion film 13 under the parts 10 and photocarriers are generated in this film 13. Light transmitted without being absorbed in the film 13 is reflected by the isolation reflection films 18 and is again admitted to the parts 10. Thereby, the light once transmitted is also absorbed in the film 13 under the parts 10 and contributes to the generation of carriers. Accordingly, the photoelectric conversion characteristics of each sensor element part is improved by these films 18 and even though the film thickness of the i-a-Si photoelectric conversion film 13, for example, is thin, a sufficiently high photoelectric conversion efficiency is obtained. Moreover, even though there is a little a variability in the film thickness of the film 13, even element characteristics are obtained in each part 10.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は原稿からの反射光を透明基板の裏面側から受光
する大面積の密着読取り用光電変換素子アレイに好適の
混成集積化光センサ用光電変換素子アレイに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a hybrid integrated optical sensor suitable for a large-area close-contact reading photoelectric conversion element array that receives reflected light from a document from the back side of a transparent substrate. The present invention relates to a photoelectric conversion element array.

[従来の技術] 従来、ファクシミリ等の画像読取り部を構成する光電変
換手段としては、半導体集積化回路技術により制作した
MOS又はCOD等の1次元センサが一般的に使用され
ている。しかしながら、これらのセンサは結晶シリコン
(Si)を使用しているので、制作し得る結晶Si基板
の大きさに制約があるため、センサの長尺化が困難であ
る。従って、読み取り可能の原稿幅を拡大させようとす
ると、光電変換素子の密度を高くする必要があり、製造
コストが高くなると共に、性能上も悪影響を及ぼすこと
になる。また、原稿からの画像光は、縮小結像させてセ
ンサ素子部に受光させるので、原稿とセンサとの間に縮
小導光系を配置する必要がある。また、この光路を確保
するためには、装置内に一定容積の空間を設ける必要が
あるため、装置の小型化上不利であると共に、光路性能
を維持するために微妙な調整が必要である。
[Prior Art] Conventionally, a one-dimensional sensor such as MOS or COD manufactured using semiconductor integrated circuit technology has been generally used as a photoelectric conversion means constituting an image reading unit of a facsimile machine or the like. However, since these sensors use crystalline silicon (Si), there are restrictions on the size of the crystalline Si substrate that can be produced, making it difficult to make the sensors longer. Therefore, in order to increase the width of a document that can be read, it is necessary to increase the density of photoelectric conversion elements, which increases manufacturing costs and has a negative effect on performance. Furthermore, since the image light from the document is formed into a reduced image and received by the sensor element section, it is necessary to arrange a reduction light guide system between the document and the sensor. In addition, in order to secure this optical path, it is necessary to provide a certain volume of space within the device, which is disadvantageous in terms of miniaturization of the device, and delicate adjustments are required to maintain the optical path performance.

このことから、近時、アモルファスシリコン(以下、a
−3iという)を使用した光導電型フォトセンサが提案
されている。このフォトセンサは透明ガラス基板の表面
にプラズマCVD法によってa−3iの薄膜半導体層を
形成することにより構成される。このような構成により
、大面積及び長尺のフォトセンサアレイを容易に得るこ
とができる。
For this reason, amorphous silicon (hereinafter referred to as a
-3i) has been proposed. This photosensor is constructed by forming an a-3i thin film semiconductor layer on the surface of a transparent glass substrate by plasma CVD. With such a configuration, a large-area and long photosensor array can be easily obtained.

第3図は光導電型密着センサの概要を示す断面図である
[昭和61年10月23日テレビジョン学会技術研究会
(ED984)報告]。この密着センサは、透明ガラス
基板31上にa−3Lの光電変換膜32を形成し、この
光電変換膜32上に共通電極及び個別電極からなる電極
層33を形成したものである。a−3iの光電変換膜3
2に画像光1が入射すると、この光電変換膜32が導電
性に変化し、電極層33の共通電極及び個別電極間に電
流が流れる。これにより、入射光が電気信号に変換され
る。このような密着センサを使用することにより、読取
り装置の小型化及び低価格化が可能となる。
FIG. 3 is a cross-sectional view showing an outline of a photoconductive contact sensor [Reported by the Television Society of Japan Technical Research Group (ED984), October 23, 1985]. This contact sensor has an a-3L photoelectric conversion film 32 formed on a transparent glass substrate 31, and an electrode layer 33 consisting of a common electrode and individual electrodes formed on this photoelectric conversion film 32. a-3i photoelectric conversion film 3
When the image light 1 is incident on the photoelectric conversion film 32, the photoelectric conversion film 32 becomes conductive, and a current flows between the common electrode and the individual electrodes of the electrode layer 33. This converts the incident light into an electrical signal. By using such a contact sensor, it is possible to make the reading device smaller and lower in price.

[発明が解決しようとする課題] しかしながら、上述した従来の密着型フォトセンサにお
いては、a  Sl光電変換膜32の厚さが数1000
人と比較的薄いため、基板31の下方から入射した画像
光1の一部はセンサ素子部を構成する電極層33の共通
電極及び個別電極間のギャップに整合する領域の光電変
換膜32で吸収されずに透過してしまい、光電変換効率
か低いという問題点を有する。また、受光する画像光1
の光吸収特性を上げるためにはa−8i光電変換膜32
の厚さを増せば良いが、そうすると成膜時間が増加する
という製造上の不利がある。また、a−8i光電変換膜
32・を厚くしても、この膜32における最も光感度が
高い部分は電極層33の近傍の部分であるため、入射光
がa−3i光電変換膜32の上層の電極層33の近傍に
到達する迄に減衰してしまい、光電変換膜32を厚くし
ても、光電変換効率が向上せず、極端な場合には光電変
換効率が低下して逆効果になる虞れがある。
[Problems to be Solved by the Invention] However, in the conventional contact type photosensor described above, the thickness of the aSl photoelectric conversion film 32 is several thousand nanometers.
Since the substrate 31 is relatively thin, a portion of the image light 1 incident from below the substrate 31 is absorbed by the photoelectric conversion film 32 in a region matching the gap between the common electrode and the individual electrodes of the electrode layer 33 constituting the sensor element section. The problem is that the photoelectric conversion efficiency is low because the photoelectric conversion efficiency is low. In addition, the received image light 1
In order to improve the light absorption characteristics of the a-8i photoelectric conversion film 32
Although it is possible to increase the thickness of the film, there is a disadvantage in manufacturing that the film forming time increases. Moreover, even if the a-8i photoelectric conversion film 32 is made thicker, the part of this film 32 with the highest photosensitivity is the part near the electrode layer 33, so that the incident light is transmitted to the upper layer of the a-3i photoelectric conversion film 32. The photoelectric conversion efficiency is not improved even if the photoelectric conversion film 32 is made thicker, and in extreme cases, the photoelectric conversion efficiency decreases and has the opposite effect. There is a risk.

本発明はかかる問題点に鑑みてなされたものであって、
アモルファスシリコン膜等の光電変換膜を必要以上に厚
くすることなく画像光を有効に受光することができると
共に、雑音発生等の不都合を招来することがなく優れた
光電変換特性が得られる混成集積化光センサ用光電変換
素子アレイを提供することを目的とする。
The present invention has been made in view of such problems, and includes:
Hybrid integration that enables effective reception of image light without making the photoelectric conversion film such as an amorphous silicon film unnecessarily thick, and provides excellent photoelectric conversion characteristics without causing inconveniences such as noise generation. An object of the present invention is to provide a photoelectric conversion element array for an optical sensor.

[課題を解決するための手段] 本発明は係る混成集積化光センサ用光電変換素子アレイ
は、絶縁性透明基板と、相互間にギャップをおいて配置
された共通電極及び個別電極を有するセンサ素子部と、
前記透明基板とセンサ素子部との間に配設された光電変
換膜と、前記センナ素子部上に形成された絶縁層と、前
記センサ素子部の直上域の前記絶縁層上に1又は2以上
のセンサ素子部毎に相互に分離して形成された光反射層
と、を有することを特徴とする。
[Means for Solving the Problems] The present invention provides a photoelectric conversion element array for a hybrid integrated optical sensor, which includes a sensor element having an insulating transparent substrate, and a common electrode and individual electrodes arranged with a gap therebetween. Department and
A photoelectric conversion film disposed between the transparent substrate and the sensor element part, an insulating layer formed on the senna element part, and one or more on the insulating layer in the area directly above the sensor element part. A light reflecting layer is formed separately from each other for each sensor element portion.

[作用] 本発明によれば、センサ素子部の直上域の絶縁層上に設
けた光反射層によって、光電変換膜を通過した画像光は
反射され、再び光電変換膜に入射する。従って、画像光
がセンサ素子部に整合する領域の光電変換膜に高効率で
導光され、光電変換効率が向上する。更に、この光反射
層は各素子毎又はブロック毎に電気的に分離されている
ために、対接地導体との間の浮遊容量の増加が極めて少
なく、雑音発生が少ない光電変換素子アレイが得られる
[Function] According to the present invention, the image light that has passed through the photoelectric conversion film is reflected by the light reflection layer provided on the insulating layer directly above the sensor element portion, and enters the photoelectric conversion film again. Therefore, the image light is guided with high efficiency to the photoelectric conversion film in the region aligned with the sensor element portion, and the photoelectric conversion efficiency is improved. Furthermore, since this light-reflecting layer is electrically isolated for each element or block, there is extremely little increase in stray capacitance with the ground conductor, resulting in a photoelectric conversion element array that generates less noise. .

[実施例] 以下、本発明の実施例について添付の図面を参照して詳
細に説明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the accompanying drawings.

第1図(a)、(b)は、夫々本発明の第1の実施例に
係る光電変換素子アレイを示す断面図及び平面図である
FIGS. 1(a) and 1(b) are a cross-sectional view and a plan view, respectively, showing a photoelectric conversion element array according to a first embodiment of the present invention.

透明ガラス基板11上にアモルファスシリコンナイトラ
イド(以下、aSiNxという)膜12がプラズマCV
D法により約1000人の厚さで形成されており、この
aSiNx膜12上には不純物を混入させない真性アモ
ルファスシリコン(以下、1−a−3iという)からな
る光電変換膜13が約5000人の厚さで形成されてい
る。
An amorphous silicon nitride (hereinafter referred to as aSiNx) film 12 is formed on a transparent glass substrate 11 by plasma CVD.
The photoelectric conversion film 13 made of intrinsic amorphous silicon (hereinafter referred to as 1-a-3i) that does not contain impurities is formed on the aSiNx film 12 to a thickness of about 5000 by the D method. It is formed with a thickness.

そして、この光電変換膜13上には、n+アモルファス
シリコン(n”−a−3i)からなる高ド−ブオーミッ
ク層14が約1000人の厚さで形成されている。
On this photoelectric conversion film 13, a high dome ohmic layer 14 made of n+ amorphous silicon (n''-a-3i) is formed to a thickness of about 1000 nm.

オーミック層14上には、クロム(Cr)層を約100
0人の厚さで成膜し、このCr層をエツチングによりパ
ターニングすることによって、個別電極及び共通電極を
有するセンサ素子部1oと、このセンサ素子部10から
の引出しリードとからなる第1導体層15が形成されて
いる。
On the ohmic layer 14, a chromium (Cr) layer with a thickness of about 100
A first conductor layer consisting of a sensor element part 1o having individual electrodes and a common electrode, and lead leads from this sensor element part 10 is formed by forming a film to a thickness of 0.03 mm and patterning this Cr layer by etching. 15 is formed.

更に、これらの第1導体層15の上には光透過性の感光
性ポリイミド層16が塗布され、ポリイミド層16上に
は1000人のCr層と3000人のAu層との積層体
からなる第2導体層17が配線層として形成されている
。なお、ポリイミド層16には、第1導体115と第2
導体層17とを接続するためのホール19が設けられて
おり、第2導体層17は、このホール19内に埋め込ま
れて第1導体層15に電気的に接続されている。
Furthermore, a light-transmissive photosensitive polyimide layer 16 is coated on these first conductor layers 15, and on the polyimide layer 16, a first layer consisting of a laminate of a 1000-layer Cr layer and a 3000-layer Au layer is coated. A two-conductor layer 17 is formed as a wiring layer. Note that the polyimide layer 16 has a first conductor 115 and a second conductor 115.
A hole 19 is provided for connection to the conductor layer 17, and the second conductor layer 17 is embedded in the hole 19 and electrically connected to the first conductor layer 15.

センサ素子部10の直上域のポリイミド層16上には各
センサ素子部10毎に分離独立して反射膜18が形成さ
れている。この反射膜18は配線層の第2導体層17の
形成と同時に形成される。
A reflective film 18 is formed separately and independently for each sensor element part 10 on the polyimide layer 16 directly above the sensor element part 10 . This reflective film 18 is formed simultaneously with the formation of the second conductor layer 17 as a wiring layer.

このように構成される光電変換素子アレイにおいては、
基板11の下面から受光した画像光1はセンサ素子部1
0の光電変換膜13にて吸収され、この光電変換膜13
にフォトキャリアが発生する。
In the photoelectric conversion element array configured in this way,
The image light 1 received from the bottom surface of the substrate 11 is transmitted to the sensor element section 1
0 is absorbed by the photoelectric conversion film 13, and this photoelectric conversion film 13
photocarriers are generated.

一方、この光電変換膜13に吸収されずに透過した光は
分離反射膜18にて反射して再びセンサ素子部10に入
射する。これにより一旦透過してしまった光もセンサ素
子部10の光電変換膜13に吸収されてキャリアの発生
に寄与する。
On the other hand, the light that is transmitted without being absorbed by the photoelectric conversion film 13 is reflected by the separation reflection film 18 and enters the sensor element section 10 again. As a result, the light that has once passed through is also absorbed by the photoelectric conversion film 13 of the sensor element section 10 and contributes to the generation of carriers.

従って、この分離反射膜18により、光電変換特性が向
上し、例えば、1−a−Si光電変換膜13の膜厚が薄
くても、十分に高い光電変換効率が得られ、また、光電
変換膜13の膜厚に多少バラツキがあっても、各センサ
素子部1oについて均一な素子特性が得られる。
Therefore, this separation reflection film 18 improves the photoelectric conversion characteristics, and for example, even if the 1-a-Si photoelectric conversion film 13 is thin, a sufficiently high photoelectric conversion efficiency can be obtained, and the photoelectric conversion film Even if there is some variation in the film thickness of the sensor element 13, uniform element characteristics can be obtained for each sensor element portion 1o.

更に、この反射膜18は他の反射膜から電気的に分離さ
れ、個々に独立しているために、対接地導体との間の静
電容量と、センサ素子部に並列に入る浮遊容量とは極め
て小さい。従って、浮遊容量に蓄積される不要な電荷に
よって雑音が発生することはなく、大きなSN比を得る
ことができる。
Furthermore, since this reflective film 18 is electrically separated from other reflective films and is independent, the capacitance between it and the ground conductor and the stray capacitance that enters the sensor element section in parallel are Extremely small. Therefore, noise is not generated due to unnecessary charges accumulated in the stray capacitance, and a large S/N ratio can be obtained.

第2図は本発明の第2の実施例を示す断面図である。な
お、第2図においては、透明ガラス基板21上に形成さ
れた光電変換膜23、第1導体層25、ポリイミド膜2
6及び分離反射板28のみが図示されている。本実施例
は、これらの基板21、光電変換膜23、第1導体N2
5、ポリイミド膜26及び配線層の第2導体層(図示せ
ず)等の構成は第1の実施例と同様である。
FIG. 2 is a sectional view showing a second embodiment of the invention. In addition, in FIG. 2, a photoelectric conversion film 23, a first conductor layer 25, and a polyimide film 2 formed on a transparent glass substrate 21 are shown.
6 and the separation reflector 28 are shown. In this embodiment, these substrate 21, photoelectric conversion film 23, first conductor N2
5. The structures of the polyimide film 26 and the second conductor layer (not shown) of the wiring layer are the same as in the first embodiment.

但し、分離反射M28は第1導体層25の個別電極と共
通電極とが所定の間隙をおいて対向しているセンサ素子
部のギャップ20、つまり光電変換膜23を透過した画
像光1が通過するギャップ20の直上域にのみ形成され
ている。通常、ギャップ20は約10μmの幅に高精度
でパターン化されているので、この反射膜28の形成に
は同様の高精度が必要になるが、分離反射膜28と第1
導体N25とがポリイミド層26を介して上下に重なる
部分が殆ど無い。このため、このような構成の光電変換
素子アレイは、第1の実施例に示した効果が得られるの
に加え、万一絶縁性のポリイミド層26に欠陥が存在し
ても、第1導体層25の個別電極と共通電極とが分離反
射膜28を介して短絡事故を起こしてしまうことはない
However, in the separation reflection M28, the image light 1 transmitted through the gap 20 of the sensor element part where the individual electrodes of the first conductor layer 25 and the common electrode face each other with a predetermined gap, that is, the photoelectric conversion film 23 passes. It is formed only in the area directly above the gap 20. Normally, the gap 20 is patterned with high precision to a width of about 10 μm, so forming the reflective film 28 requires similar high precision.
There is almost no vertical overlap between the conductor N25 and the polyimide layer 26. Therefore, in addition to obtaining the effects shown in the first embodiment, the photoelectric conversion element array having such a configuration can also be used even if there is a defect in the insulating polyimide layer 26. There is no possibility that a short circuit will occur between the 25 individual electrodes and the common electrode via the separation reflective film 28.

これにより、デバイス基板の歩留りが著しく向上する他
、浮遊容量も減少するので、光反射による光電変換効率
の向上効果を劣化させることなく雑音だけを抑制するこ
とができ、SN比を一層向上させることができる。
This not only significantly improves the yield of device substrates, but also reduces stray capacitance, making it possible to suppress only noise without deteriorating the photoelectric conversion efficiency improvement effect caused by light reflection, further improving the S/N ratio. Can be done.

なお、上記各実施例においては、分離反射膜18.28
を各センサ素子部毎に対応させて夫々独立して設けたが
、これに限ることなく、例えば、ブロック毎に分離させ
るが又は2素子毎若しくは3素子毎にまとめて設けても
よく、いずれも上記実施例と同様の効果を奏する。
In addition, in each of the above embodiments, the separation reflective film 18.28
are provided independently for each sensor element portion, but the present invention is not limited to this; for example, they may be provided separately for each block, or may be provided for every two or three elements; The same effects as in the above embodiment are achieved.

[発明の効果] 以上説明したように本発明によれば、センサ素子部上に
反射膜を設けたから、光電変換効率が向上し、高感度の
光電変換素子アレイが得られる。
[Effects of the Invention] As described above, according to the present invention, since the reflective film is provided on the sensor element portion, the photoelectric conversion efficiency is improved and a highly sensitive photoelectric conversion element array can be obtained.

しかも、この反射膜は1又は2以上のセンサ素子部毎に
分離独立しているから、この反射膜を設けても浮遊容量
が増大することはない。このため、高SN比の光電変換
素子アレイが得られる。
Moreover, since this reflective film is separated and independent for each one or more sensor element sections, stray capacitance does not increase even if this reflective film is provided. Therefore, a photoelectric conversion element array with a high SN ratio can be obtained.

従って、本発明を、例えば、ファクシミリの読取りデバ
イス等に適用すれば、原稿に忠実な画信号による高品質
の情報伝達が可能になるという多大の効果を奏する。
Therefore, if the present invention is applied to, for example, a facsimile reading device, it will have the great effect of making it possible to transmit high-quality information using an image signal that is faithful to the original.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は夫々本発明の第1の実施例に係
る光電変換素子アレイを示す断面図及び平面図、第2図
は本発明の第2の実施例を示す断面図、第3図は従来の
光電変換素子アレイを示す断面図である。 1;画像光、10;センサ素子部、11,21゜31;
基板、12;a−3iNx膜、13.2B。 32;光電変換膜、14;オーミック層、15゜25;
第1導体層、16,26;ポリイミド層、17;第2導
体層、18,28;分離反射膜、33;電極層 第1図 第3図 1:却東九 33;覧詩4
1(a) and (b) are a sectional view and a plan view, respectively, showing a photoelectric conversion element array according to a first embodiment of the present invention, and FIG. 2 is a sectional view showing a second embodiment of the present invention. , FIG. 3 is a sectional view showing a conventional photoelectric conversion element array. 1; Image light, 10; Sensor element section, 11, 21° 31;
Substrate, 12; a-3iNx film, 13.2B. 32; Photoelectric conversion film, 14; Ohmic layer, 15°25;
First conductor layer, 16, 26; Polyimide layer, 17; Second conductor layer, 18, 28; Separation reflective film, 33; Electrode layer

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁性透明基板と、相互間にギャップをおいて配
置された共通電極及び個別電極を有するセンサ素子部と
、前記透明基板とセンサ素子部との間に配設された光電
変換膜と、前記センサ素子部上に形成された絶縁層と、
前記センサ素子部の直上域の前記絶縁層上に1又は2以
上のセンサ素子部毎に相互に分離して形成された光反射
層と、を有することを特徴とする混成集積化光センサ用
光電変換素子アレイ。
(1) An insulating transparent substrate, a sensor element section having a common electrode and individual electrodes arranged with a gap therebetween, and a photoelectric conversion film disposed between the transparent substrate and the sensor element section; , an insulating layer formed on the sensor element section,
A photoelectronic device for a hybrid integrated optical sensor, comprising: a light reflecting layer formed on the insulating layer directly above the sensor element section and separated from each other for each one or more sensor element sections. Conversion element array.
JP63010145A 1988-01-20 1988-01-20 Photoelectric conversion element array for hybrid integration photosensor Pending JPH01184953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63010145A JPH01184953A (en) 1988-01-20 1988-01-20 Photoelectric conversion element array for hybrid integration photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63010145A JPH01184953A (en) 1988-01-20 1988-01-20 Photoelectric conversion element array for hybrid integration photosensor

Publications (1)

Publication Number Publication Date
JPH01184953A true JPH01184953A (en) 1989-07-24

Family

ID=11742117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63010145A Pending JPH01184953A (en) 1988-01-20 1988-01-20 Photoelectric conversion element array for hybrid integration photosensor

Country Status (1)

Country Link
JP (1) JPH01184953A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317554A (en) * 1986-07-10 1988-01-25 Toshiba Corp Photoconductive device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317554A (en) * 1986-07-10 1988-01-25 Toshiba Corp Photoconductive device

Similar Documents

Publication Publication Date Title
US4517733A (en) Process for fabricating thin film image pick-up element
JP2680002B2 (en) Photoelectric conversion device
US5032718A (en) Photo sensor array and reader with hexagonal fiber bundles
US4471371A (en) Thin film image pickup element
JP2002009328A (en) Photosensitive element array and its manufacturing method
US4656109A (en) Layered solid state color photosensitive device
JPH01184953A (en) Photoelectric conversion element array for hybrid integration photosensor
US5014100A (en) Image sensor free from undesirable incident light rays which have not been reflected in the surface bearing the image to be sensed
JPS61188964A (en) Contact type image sensor
JPH0732245B2 (en) Photosensor manufacturing method
JP2594128B2 (en) Image sensor
JPS637473B2 (en)
JP3404025B2 (en) Image sensor
JPS6317554A (en) Photoconductive device
JP3247119B2 (en) Image sensor
KR960006198B1 (en) Contact image sensor
JPH0732244B2 (en) Photo sensor
JP2554159B2 (en) Photoelectric conversion device
KR910005603B1 (en) Photo electric converter
JP2979071B2 (en) Image reading device
JP2907238B2 (en) Image reading device
JP2959854B2 (en) Image reading device
JPH04154167A (en) Semiconductor device
JPH04354373A (en) Photoelectric transfer element
JPH1140791A (en) Solid-state image pickup device and manufacture thereof