JPH01177376A - Annealing separating agent for grain-oriented magnetic steel sheet for obtaining uniform glass coating film and excellent magnetic characteristic - Google Patents

Annealing separating agent for grain-oriented magnetic steel sheet for obtaining uniform glass coating film and excellent magnetic characteristic

Info

Publication number
JPH01177376A
JPH01177376A JP117488A JP117488A JPH01177376A JP H01177376 A JPH01177376 A JP H01177376A JP 117488 A JP117488 A JP 117488A JP 117488 A JP117488 A JP 117488A JP H01177376 A JPH01177376 A JP H01177376A
Authority
JP
Japan
Prior art keywords
mgo
magnesium
value
grain
separating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP117488A
Other languages
Japanese (ja)
Other versions
JPH0425349B2 (en
Inventor
Osamu Tanaka
収 田中
Hiroshi Sato
弘 佐藤
Tomiya Ogata
尾潟 止美也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP117488A priority Critical patent/JPH01177376A/en
Publication of JPH01177376A publication Critical patent/JPH01177376A/en
Publication of JPH0425349B2 publication Critical patent/JPH0425349B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating

Abstract

PURPOSE:To obtain the title annealing separating agent capable of uniformizing a glass coating film and improving the magnetic characteristic by regulating a Ca compd. a Ba compd., and a citric acid activity value in the process for producing MgO from Mg(OH)2, etc. CONSTITUTION:The magnesium oxide as the annealing separating agent for a grain-oriented magnetic steel sheet is produced from magnesium hydroxide, magnesium carbonate, basic magnesium carbonate, magnesium sulfate, magnesium chloride, and high-purity magnesium oxide. In the production process, the impurities and activity are regulated, the content of the Ca compd. is controlled to 0.04-0.2wt.% as CaO, the content of the B compd. is controlled to 0.04-0.2wt.% as B, [Ca% value] X [B% value] = 0.025-0.30 is satisfied, and the citric acid activity is controlled to 60-250sec. By this method, an annealing separating agent having a low hydrating property, an excellent adhesive property to a steel sheet, and excellent reactivity to a substrate coating film is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は方向性電磁鋼板の製造に際し、最終仕上げ焼鈍
において大型コイルの全面に亘って優れた絶縁特性、密
着性、被膜張力及び外観を有するグラス被膜を得ると共
に、鋼板中のインヒビターを適度に、且つ均一に制御す
ることにより著しく磁気特性の優れた方向性電磁鋼板の
得られる方向性電磁鋼板用焼鈍分離剤に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for producing grain-oriented electrical steel sheets that has excellent insulation properties, adhesion, coating tension, and appearance over the entire surface of a large coil during final annealing. The present invention relates to an annealing separator for grain-oriented electrical steel sheets that not only provides a glass coating but also controls the inhibitors in the steel sheets appropriately and uniformly to obtain grain-oriented electrical steel sheets with extremely excellent magnetic properties.

〔従来技術〕[Prior art]

通常、方向性電磁鋼板はSi;4%以下を含有する素材
を、熱延し、焼鈍と1回または中間焼鈍を挾む2回以上
の冷延により最終板厚とされる。次いでNZ +)(2
またはH2等の湿潤雰囲気中でPH20/pH2をコン
トロールして脱炭焼鈍を行い、脱炭とSiO□を主体と
する酸化膜を形成する。その後焼鈍分離剤としてMgO
を主成分とする焼鈍分離剤をスラリー状としてコーティ
ングロールで塗布し、最終仕上げ焼鈍を行い、2次再結
晶、純化反応、グラス被膜形成を行い、更に必要に応じ
て絶縁被膜処理とヒートフラットニングを行って最終製
品とされる。
Normally, a grain-oriented electrical steel sheet is made of a material containing 4% or less of Si and is hot-rolled, then annealed and cold-rolled once or twice or more with an intermediate annealing in between to obtain the final thickness. Then NZ +)(2
Alternatively, decarburization annealing is performed by controlling PH20/pH2 in a humid atmosphere such as H2 to decarburize and form an oxide film mainly composed of SiO□. After that, MgO was used as an annealing separator.
An annealing separator mainly composed of is applied in the form of a slurry using a coating roll, followed by final annealing, followed by secondary recrystallization, purification reaction, glass film formation, and further insulating film treatment and heat flattening as necessary. The final product is made by performing this process.

この方向性電磁鋼板は<001 >軸を持つ(110)
<001 >結晶が高温の2次再結晶で優先的に成長す
る現象を利用している。この2次再結晶過程で低表面エ
ネルギーを持つ(110)面結晶が優先的に成長し、鋼
中にインヒビターとして微細に分散しているAIN 、
 MnSなどによりその成長を抑えられている他の結晶
を侵触するために(110) <001 >結晶が優先
的に成長するものと考えられている。
This grain-oriented electrical steel sheet has a <001> axis (110)
The phenomenon in which <001> crystals preferentially grow during high-temperature secondary recrystallization is utilized. In this secondary recrystallization process, (110) plane crystals with low surface energy grow preferentially, and AIN, which is finely dispersed as an inhibitor in the steel,
It is believed that the (110) <001> crystal grows preferentially because it invades other crystals whose growth is suppressed by MnS or the like.

従って優れた方向性電磁鋼板を製造するには、鋼中のA
IN 、 MnS等のインヒビターの分散状態とこれら
の分解までの制御が重要である。
Therefore, in order to produce excellent grain-oriented electrical steel sheets, it is necessary to
It is important to control the dispersion state of inhibitors such as IN and MnS and their decomposition.

最終焼鈍に於けるインヒビターの変化は脱炭焼鈍で形成
した鋼板表面の酸化膜、焼鈍分離剤、及び最終焼鈍での
熱サイクルや雰囲気条件等により影響を受ける。これら
の中でとりわけ焼鈍分離剤としてのMgOの影響は大き
い。これは最終焼鈍での昇温過程に於ける酸化膜の変化
やグラス被膜の形成速度等に多大な影響をもたらして、
これによりインヒビターの安定性に影響を与えているか
らである。
Changes in the inhibitor during final annealing are influenced by the oxide film formed on the surface of the steel sheet during decarburization annealing, the annealing separator, and the thermal cycle and atmospheric conditions during final annealing. Among these, MgO as an annealing separator has a particularly large influence. This has a great effect on changes in the oxide film during the temperature rise process in final annealing and the rate of formation of the glass film, etc.
This is because this affects the stability of the inhibitor.

焼鈍分離剤のMgOは脱炭焼鈍で形成された5i(h主
体の酸化膜と反応して通常グラス被膜と呼ぶフォルステ
ライト被膜を形成する( 2 MgO+ Si(h−M
gzSi04)。このグラス被膜形成においては、前述
のように、MgOの性状が2次再結晶の場合と同様に大
きな影響力を持っている。
The annealing separator MgO reacts with the 5i(h-based oxide film formed during decarburization annealing to form a forsterite film usually called a glass film) (2 MgO+Si(h-M
gzSi04). As described above, the properties of MgO have a large influence on the formation of this glass film, as in the case of secondary recrystallization.

このように方向性電磁鋼板の商品価値を決定する上で、
最も重要な磁気特性と被膜特性に対するMgOの影響が
大きいことから、MgOの品質改善は電磁鋼板の製造技
術にとって重要な課題となっている。
In this way, in determining the commercial value of grain-oriented electrical steel sheets,
Since MgO has a large influence on the most important magnetic properties and coating properties, improving the quality of MgO has become an important issue for manufacturing technology of electrical steel sheets.

MgOの性状の中でグラス被膜形成及びインヒビターの
安定性に影響する因子としては、MgOの活性度(反応
性)、純度、粒度、付着性等があり、鋼板に塗布される
際には水和の進行度合、粒子の分散状態、塗布量がある
。このため良質の方向性電磁鋼板を得る旧めにこれらの
条件を最適化するための努力がなされている。
Among the properties of MgO, factors that affect glass film formation and inhibitor stability include MgO activity (reactivity), purity, particle size, and adhesion. There are the degree of progress, the state of particle dispersion, and the amount of coating. For this reason, efforts have been made to optimize these conditions in order to obtain grain-oriented electrical steel sheets of good quality.

通常、MgOは水に懸濁させてスラリー状として鋼板に
塗布し乾燥される。この際、MgOの製造条件によって
は、例えば高活性の場合、MgO→Mg (OH) t
となる水和反応が生じコイル内への鋼板間の雰囲気ガス
を高露点にし且つ不均一にする。このため、過酸化によ
る、ベアスポット、スケール、ガスマーク、変色等の重
度の被膜欠陥を引き起こす。ところが、−船釣にはこの
高水和MgOに於ける問題点の解決のために採用される
方法は高温焼成による方法である。この方法としては、
例えば特開昭55−73823号公報に開示されている
方法がある。この様な、焼成温度を上げることで得られ
た低活性MgOでは反応性、付着性が低下する欠点があ
る。
Usually, MgO is suspended in water, applied to a steel plate in the form of a slurry, and dried. At this time, depending on the manufacturing conditions of MgO, for example, in the case of high activity, MgO → Mg (OH) t
A hydration reaction occurs, making the atmospheric gas between the steel plates in the coil have a high dew point and become non-uniform. This causes severe coating defects such as bare spots, scale, gas marks, and discoloration due to overoxidation. However, for boat fishing, the method adopted to solve the problems with highly hydrated MgO is high-temperature firing. This method is
For example, there is a method disclosed in Japanese Patent Laid-Open No. 55-73823. Such low-activity MgO obtained by raising the firing temperature has the drawback of reduced reactivity and adhesion.

このため、脱炭焼鈍で形成した5i02主体の酸化被膜
との反応で生じるグラス被膜の形成が十分ではなく絶縁
性不良、密着性不良や磁気特性不良の問題が生じやすい
ため未だ満足できる結果が得られているとは言えない。
For this reason, the glass film formed by the reaction with the 5i02-based oxide film formed during decarburization annealing is not sufficiently formed, which tends to cause problems such as poor insulation, poor adhesion, and poor magnetic properties, so results are still not satisfactory. I can't say that it has been.

また、MgO中への添加物による磁性改善策としては、
例えば、特公昭46−42298号公報に開示されてい
る手段がある。これは、鋼成分として酸可溶Al;0.
01〜0.09%を含む高磁束回度方向性電磁鋼板の製
造方法において焼鈍分離剤中に硼素或いは硼素化合物を
硼素として、0.01〜1重景%重量するものである。
In addition, as a measure to improve magnetism by adding additives to MgO,
For example, there is a means disclosed in Japanese Patent Publication No. 46-42298. This steel has acid-soluble Al; 0.
In the method for producing a high magnetic flux grain-oriented electrical steel sheet containing 0.01 to 0.09%, boron or a boron compound is contained in the annealing separator in an amount of 0.01 to 1% by weight as boron.

この場合、確かに磁気特性の改善は認められるものの未
だ十分ではなく、グラス被膜の改善と共に更に改善が望
まれている。
In this case, although it is true that the magnetic properties have improved, it is still not sufficient, and further improvements are desired as well as improvements in the glass coating.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明では大型コイルの製造に於けるMgOの水和水分
による鋼板間への持ち込み水分の増加による被膜欠陥や
磁性劣化の問題を解決すべく研究を行い、膨大なラボ試
験と実コイルによる検討を行った。
In the present invention, we conducted research to solve the problems of coating defects and magnetic deterioration due to increased moisture brought between steel plates due to hydrated moisture of MgO in the manufacture of large coils, and conducted extensive laboratory tests and studies using actual coils. went.

この結果、本発明者らはMgOの物性値、不純物量を同
時に制御することにより、従来のMgOに於ける問題点
を解決し、グラス被膜が均一で、磁気特性が著しく優れ
た低水和で高反応性のMgOの開発に成功した。
As a result, the present inventors solved the problems with conventional MgO by simultaneously controlling the physical properties of MgO and the amount of impurities. Successfully developed highly reactive MgO.

即ち、従来のMgOで生じる過酸化による被膜欠陥と磁
性不良の問題は、高活性の時の過剰な持ち込み水分の影
響によるものである。一方、被膜形成不足の問題は、M
gO原料の単純な高温焼成化で住しる鋼板への付着力の
低下と低活性化による被膜形成反応の劣化によるグラス
被膜と磁性への悪影響である。
That is, the problems of film defects and magnetic defects caused by overoxidation caused by conventional MgO are due to the influence of excessive moisture brought in when the activity is high. On the other hand, the problem of insufficient film formation is that M
Simple high-temperature firing of the gO raw material has an adverse effect on the glass coating and magnetism due to a decrease in adhesion to the steel plate and deterioration of the coating formation reaction due to low activation.

特に付着力が弱いと、コイルに塗布乾燥後巻き取られた
コイルが工程間でスキッド台や床面に接地した場合にコ
イルの圧力により塗布面から剥離した状態になり反応性
を弱くする。この部分は、最終焼鈍後のグラス被膜を観
察すると、コイル外周部から内周部にかけてピッチ状に
MgOの剥離マーク (通常スキッドマークと呼ぶ)と
なり、被膜が薄く商品価値を悪くする。この影響はコイ
ルが大きくなるほど顕著である。
In particular, if the adhesion is weak, when the coil that is wound up after coating and drying touches the skid stand or floor surface between processes, the pressure of the coil will cause it to peel off from the coated surface, weakening the reactivity. When observing the glass coating after final annealing in this area, MgO peeling marks (usually called skid marks) appear in a pitched manner from the outer periphery of the coil to the inner periphery of the coil, making the coating thin and reducing its commercial value. This effect becomes more pronounced as the coil becomes larger.

また、更に付着力が弱い時のもう1つの問題は、コイル
巻取時に、巻取前のロールの接触面で剥離が生じたり、
巻取時の巻き締まりによるコイルスリップにより剥がれ
る問題が生じる。
Another problem when the adhesion is even weaker is that during coil winding, peeling occurs on the contact surface of the roll before winding.
The problem of peeling occurs due to coil slip caused by tight winding during winding.

このような問題からも低水和で密着性が優れ反応性の良
い焼鈍分離剤の開発が望まれているわけである。
In view of these problems, there is a desire to develop an annealing separator with low hydration, excellent adhesion, and good reactivity.

〔課題を解決するための手段〕[Means to solve the problem]

この2つの問題の解決策として水酸化マグネシュウム、
炭酸マグネシュウム、塩基性炭酸マグネシュウム、硫酸
マグネシュウム、塩化マグネシュウム、高純度酸化マグ
ネシュウムを原料とし、酸化マグネシュウムを製造する
に際し、不純物としてのCaO,B量の特定値(〔Ca
O%〕×〔B%〕= 0.025〜0.30)とCAA
値(クエン酸活性度値)(60〜250秒)、粒度(I
oIra以下:60%以上)を満足するように調整する
ことにより、低水和性でありながら、鋼板との付着性力
が優れ、下地被膜との反応性に優れることを見出だした
。これによりグラス被膜がコイル全長に渡って優れると
共に磁気特性が著しく改善できることを発見した。
As a solution to these two problems, magnesium hydroxide,
When manufacturing magnesium oxide using magnesium carbonate, basic magnesium carbonate, magnesium sulfate, magnesium chloride, and high-purity magnesium oxide as raw materials, specific values for the amounts of CaO and B as impurities ([Ca
O%] × [B%] = 0.025 to 0.30) and CAA
value (citric acid activity value) (60-250 seconds), particle size (I
It has been found that by adjusting the coating to satisfy the (Ira or less: 60% or more), it has low hydration but has excellent adhesion to the steel plate and excellent reactivity with the base film. It has been discovered that this allows the glass coating to be superior over the entire length of the coil and to significantly improve the magnetic properties.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明者らはMgOの製造条件(不純物、活性度、粒度
等)とグラス被膜及び磁気特性への影響について検討し
た。
The present inventors studied the manufacturing conditions of MgO (impurities, activity, particle size, etc.) and the influence on the glass coating and magnetic properties.

この実験においては重量%でC; 0.0075、Si
;3.25、Mn;0.070 、S ;0.025 
、Cu;0.010、S n;0.012残部実質的に
Feからなる電磁鋼スラブを公知の方法で熱延−熱延板
焼鈍−冷延により最終板厚0.225Mとした。この鋼
板をN z + Hzの湿潤雰囲気中で脱炭焼鈍し、第
1表に示す物性を持ったものを試作してスラリー状とし
てコーティングロールで鋼板に15g/mの割合で塗布
、乾燥を行った。次いで乾燥後コイルに巻取り1200
’CX2011rの最終仕上げ焼鈍を行った。このとき
の塗布乾燥後のMgOの鋼板への付着状態と最終焼鈍後
のグラス被膜特性及び磁気特性を第2表に示す。
In this experiment, C; 0.0075, Si
;3.25, Mn;0.070, S;0.025
, Cu; 0.010, Sn; 0.012, and the balance substantially comprised of Fe. An electromagnetic steel slab was hot-rolled, hot-rolled sheet annealed, and cold-rolled to a final thickness of 0.225M using a known method. This steel plate was decarburized and annealed in a humid atmosphere of N z + Hz, and a sample with the physical properties shown in Table 1 was made into a slurry, which was applied to the steel plate at a rate of 15 g/m using a coating roll and dried. Ta. Then, after drying, it is wound into a coil for 1200 min.
'Final finish annealing of CX2011r was performed. Table 2 shows the state of adhesion of MgO to the steel plate after coating and drying, and the glass coating properties and magnetic properties after final annealing.

第1表 この実験の結果、比較例のようにCAA値が60秒以下
のMgOはCaO,B量に関係なく被膜にガスマーク、
スケール等の欠陥が発生した。また、MgOの活性度の
みを低下させてcao、Blの調整を行わなかったもの
は鋼板への付着性が著しく悪く、グラス被膜がうすく、
密着性も不良であった。
Table 1 As a result of this experiment, MgO with a CAA value of 60 seconds or less, as in the comparative example, causes gas marks on the coating regardless of the amount of CaO and B.
Defects such as scale occurred. In addition, those in which only the activity of MgO was lowered without adjusting cao and Bl had extremely poor adhesion to the steel plate, and the glass coating was thin.
Adhesion was also poor.

これに対しCAAが100秒以上でCaO,Bilを調
整したものはいずれもMgOの鋼板への付着力が優れ、
グラス被膜が均一で磁気特性も非常に良い結果が得られ
た。
On the other hand, all the CAAs in which CaO and Bil were adjusted for 100 seconds or more had excellent adhesion of MgO to the steel plate.
The glass coating was uniform and the magnetic properties were very good.

この様に本発明では、従来のMgOで両立出来なかった
低水和性、高反応性、高密着性を、MgOの製造段階に
おいて、Ca化合物、B化合物、CAA値を調整するこ
とにより、−挙に実現せしめたものである。
As described above, in the present invention, low hydration, high reactivity, and high adhesion, which could not be achieved with conventional MgO, can be achieved by adjusting the Ca compound, B compound, and CAA value in the MgO production stage. This was achieved in one go.

これにより、従来のMgO及び添加物の使用で困難であ
った大型コイルでのグラス被膜の全長、全幅における均
一化と磁気特性の飛躍的な改善をもたらすものである。
This results in uniformity of the glass coating over the entire length and width of a large coil, which was difficult with the conventional use of MgO and additives, and a dramatic improvement in magnetic properties.

本発明でCa化合物とB化合物及びCAA値の調整によ
りグラス被膜の均一化と磁気特性が改善できる理由をの
べる。
The reason why the present invention can make the glass coating uniform and improve the magnetic properties by adjusting the Ca compound, B compound, and CAA value will be explained.

まず、第一に本発明のような、低水和MgOにする場合
の問題であった鋼板への付着性を改善できるのはCa化
合物の効果によるものである。
First of all, it is due to the effect of the Ca compound that the adhesion to steel sheets, which was a problem when using low hydrated MgO as in the present invention, can be improved.

通常、MgOの鋼板への付着性はMgOスラリー調整時
期にMgOの一部力<Mg(Oft)zに変化すること
による、Mg (OH) tの付着性によるものと、M
gO製造時期やスラリー調整時期の粉砕等により生じる
メカノケミカルエネルギーによるものと考えられる。
Usually, the adhesion of MgO to the steel plate is due to the adhesion of Mg (OH) t due to the partial force of MgO < Mg(Oft)z during MgO slurry adjustment.
This is thought to be due to mechanochemical energy generated during pulverization during the gO production period and slurry adjustment period.

MgOをスラリーとして塗布焼き付けする場合には前者
による効果が一般的には大きい。しかし、Mg (Ol
l) zだけの効果に頼ろうとすると、必然的に水和水
分が増し、鋼板間を酸化性にするため好ましくない。
When applying and baking MgO as a slurry, the former effect is generally large. However, Mg (Ol
l) If we try to rely on the effect of z alone, hydration will inevitably increase, making the space between the steel plates oxidizing, which is undesirable.

Ca化合物が付着性に大きな効果を生じるのは、Ca化
合物の一部がB化合物との共存により一部Ca (OH
) zやB化合物との反応物に変化し、付着力を向上さ
せる。この付着作用がCa (OH) zや反応物の場
合Mg (OH) tの付着力に比較し、飛躍的に太き
いためと考えられる。事実、Ca化合物、B化合物を配
合して製造したMgOと、配合しないで製造したMgO
を、同一の水和水分に調整し、鋼板に塗布、乾燥した場
合、著しい付着性の差が認められた。
The reason why Ca compounds have a large effect on adhesion is that part of the Ca compound coexists with the B compound.
) Changes into a reaction product with z and B compound and improves adhesion. This is considered to be because this adhesion effect is significantly greater than the adhesion force of Ca (OH) z or Mg (OH) t in the case of the reactant. In fact, MgO produced by blending Ca compound and B compound and MgO produced without blending
When these were adjusted to the same hydration content, applied to a steel plate, and dried, a significant difference in adhesion was observed.

この付着性の向上効果により、グラス被膜の形成反応が
高められているのは勿論のことである。
It goes without saying that this adhesion-improving effect enhances the glass coating formation reaction.

第二に、グラス被膜の形成反応に優れるもう一つの理由
として、Ca化合物、B化合物による触媒的な作用であ
る。これらの化合物により、従来のMgOのようにグラ
ス被膜形成に必然的であった水分の存在を必要とせず、
非常にドライな状態で2Mg0 +SiOr1g、5i
Oaの反応を可能とするものである。この結果、最終焼
鈍の昇温過程のドライ化が可能となり、グラス形成反応
の向上と相俟ってインヒビターの安定化により磁気特性
の向上がはかれるものである。
Second, another reason for the excellent glass coating formation reaction is the catalytic action of the Ca compound and B compound. These compounds do not require the presence of moisture, which is necessary for forming a glass film, unlike conventional MgO.
2Mg0 +SiOr1g, 5i in very dry conditions
It enables the reaction of Oa. As a result, it becomes possible to dry the final annealing process, which improves the glass-forming reaction and stabilizes the inhibitor, thereby improving the magnetic properties.

次に、本発明における限定理由について述べる。Next, the reasons for limitations in the present invention will be described.

B化合物、Ca化合物としてのB量、CaO量は、原料
調整段階の例えば水酸化マグネシュウムのスラリーへの
添加か、焼成後のいずれでも良いが、パウダー中におけ
る均一性の問題から前者の方が望ましい。CAA値は焼
成温度をコントロールする方法で良いが当然粒子径の影
響もある。本発明では粒子径10−以下が60%以上の
もとでコントロールすることが望ましい。
The amount of B and CaO as B compound and Ca compound may be added to the slurry of magnesium hydroxide during the raw material preparation stage, or after firing, but the former is preferable from the viewpoint of uniformity in the powder. . The CAA value can be determined by controlling the firing temperature, but of course it is also affected by the particle size. In the present invention, it is desirable to control the particle size so that 60% or more is 10- or less.

各物性値の限定理由は次のような理由による。The reasons for limiting each physical property value are as follows.

CaOは0.5〜2.5%であることが重要である。It is important that CaO is 0.5-2.5%.

0.5%以下ではMgOの鋼板への密着力の向上が弱く
、B量アップによる助けを借りても十分にグラス被膜が
生成せず磁気特性も改善できない。逆に、2.5%を越
すと鋼板との反応性向上効果が強すぎて、MgOが鋼板
に焼き付きを生じたり、ピンホール状の被膜溶融部が生
じるため好ましくない。
If it is less than 0.5%, the improvement in the adhesion of MgO to the steel plate is weak, and even with the help of increasing the amount of B, a sufficient glass film is not formed and the magnetic properties cannot be improved. On the other hand, if it exceeds 2.5%, the effect of improving the reactivity with the steel plate is too strong, causing MgO to seize on the steel plate or forming a pinhole-like melted part of the coating, which is not preferable.

B量は0.04〜0.20%の範囲内である。0.04
%以下では、MgO−5int−CaO系での被膜形成
の補助作用が弱く、本願の様に水分を鋼板間に持ち込ま
ない方式では被膜形成が不十分となる。0.20%を越
えると逆にこの作用が強すぎてピンホール状の被膜溶融
部が多く発生するようになる。
The amount of B is within the range of 0.04 to 0.20%. 0.04
% or less, the assisting effect of film formation in the MgO-5int-CaO system is weak, and film formation becomes insufficient in the method of the present invention in which moisture is not brought between the steel plates. If it exceeds 0.20%, this effect will be too strong and many pinhole-like melted areas will occur.

CAA値は通常の0.4 Nクエン酸溶液により30℃
で測定した値である。この値はスラリーにした時の水和
量との相関が強(、数値の大きいすなわち不活性なほど
水和が進行しにくいことは言うまでもない。本発明では
60〜350秒が良い。60秒以下では従来のMgOで
の結果と同様に大型コイルにおいては被膜のむらが発生
し易く、特にガスマーク、スケール等が発生しやすい。
The CAA value was measured at 30°C using a normal 0.4 N citric acid solution.
This is the value measured at This value has a strong correlation with the amount of hydration when it is made into a slurry (it goes without saying that the larger the value, that is, the more inactive, the harder the hydration will progress. In the present invention, 60 to 350 seconds is good. 60 seconds or less Similar to the results with conventional MgO, large coils tend to have uneven coatings, and gas marks, scales, etc. are particularly likely to occur.

また、磁気特性も優れたものが得られない。350秒以
上の場合には、反応性が極端に低下するため、CaO,
Biiを調整しても被膜形成反応が十分でない。
Furthermore, it is not possible to obtain excellent magnetic properties. If the time is longer than 350 seconds, the reactivity will be extremely reduced, so CaO,
Even if Bii is adjusted, the film forming reaction is not sufficient.

また、この様な低水和MgOは高温焼成が必要で、焼結
反応により強い粉砕が必要となり、本発明の様に微粒子
を必要とする場合には、工業的な製造が困難となる。
In addition, such low hydrated MgO requires high-temperature firing and requires strong pulverization due to the sintering reaction, making industrial production difficult when fine particles are required as in the present invention.

MgOの粒子径は前述のような各物性値に影響をもたら
すため、本発明では、望ましい範囲としては10w以下
が60%以上である。
Since the particle size of MgO has an influence on each physical property value as described above, in the present invention, the desirable range is 60% or less of 10w or less.

第1図は、本発明のB化合物中のB(%)とCa化合物
中のCaO(%)M域を示す図である。
FIG. 1 is a diagram showing the B (%) in the B compound and the CaO (%) M region in the Ca compound of the present invention.

A領域が磁性、被膜特性とも優れる本発明の領域である
Region A is the region of the present invention that is excellent in both magnetism and film properties.

本発明ではこのA領域の成分を有し、CAA値は60〜
250sec、である。B領域では焼鈍分離剤の焼き付
きやピンホール状の被膜欠陥が生じ、C領域ではグラス
被膜が薄<、磁性の改善効果がないため本発明外である
The present invention has components in this A region, and has a CAA value of 60 to
It is 250 seconds. In region B, seizure of the annealing separator and pinhole-like coating defects occur, and in region C, the glass coating is thin and there is no effect of improving magnetism, which is outside the scope of the present invention.

いずれにしても、前述のような各物性値の範囲内であり
、またC CaO%値〕×〔B%値〕=0.025〜0
.3 ノ範囲内、好ましくは0.03〜0.25(7)
範囲内が良好な被膜特性と磁気特性の得られる条件であ
る。
In any case, it is within the range of each physical property value as described above, and CCaO% value] x [B% value] = 0.025 to 0
.. Within the range of 3, preferably 0.03 to 0.25 (7)
Conditions for obtaining good film properties and magnetic properties are within this range.

なお、B化合物としては、硼酸亜鉛、硼酸アルミニュー
ラム、硼酸カルシュラム、硼酸コバルト、硼酸銅、硼酸
ナトリュウム、硼酸バリュウム、硼酸マグネシュウム、
硼酸マンガン、硼酸リチュウム、硼素単体等が用いられ
る。
In addition, B compounds include zinc borate, aluminum borate, calcium borate, cobalt borate, copper borate, sodium borate, barium borate, magnesium borate,
Manganese borate, lithium borate, simple boron, etc. are used.

Ca化合物としては、酸化カルシュラム、炭酸力ルシュ
ウム、硫酸力ルシュウム、水酸化カルシュラム、リン酸
カルシュウム、等が用いられる。
As the Ca compound, calcium oxide, lucium carbonate, lucium sulfate, calcium hydroxide, calcium phosphate, etc. are used.

この様に調整した焼鈍分離剤の使用により従来の高活性
MgOや低温焼成のMgOの使用で見られた被膜欠陥及
び磁性不良が、従来、最も難しい条件であった大型コイ
ルの場合でも全く発生しなくなった。
By using the annealing separator prepared in this way, the film defects and magnetic defects that were observed when using conventional high-activity MgO or low-temperature fired MgO do not occur at all, even in the case of large coils, which were conventionally the most difficult conditions. lost.

これは、従来のMgOによる被膜形成は、水懸濁液とし
てスラリーを鋼板に塗布する際の水和水分の一部を不可
欠の要素として利用していたのに対し、本発明の方式で
は鋼板間の雰囲気を均一にするために低水和性にし、C
aOとBiを特定することにより、水分による助けをほ
とんど必要としないで被膜形成をおこなわせる事を基本
にしているからである。
This is because conventional film formation using MgO uses part of the hydration water as an essential element when applying slurry as a water suspension to steel plates, whereas the method of the present invention To make the atmosphere uniform, C
This is because, by specifying aO and Bi, film formation can be performed with almost no help from moisture.

この焼鈍分離剤の適用に当たっては適用する電磁鋼板の
成分、板厚、等によっては被膜形、成及びインヒビター
安定化の目的でTi化合物、S化合物等を添加して使用
される。
When this annealing separator is applied, depending on the composition, thickness, etc. of the electrical steel sheet to be applied, Ti compounds, S compounds, etc. are added for the purpose of film formation, film formation, and inhibitor stabilization.

しかし、本発明の高反応性MgOに於いては、これらの
添加の必要性が小さく、添加するとしても、わずかの添
加量で充分である。
However, in the highly reactive MgO of the present invention, there is little need for these additions, and even if they are added, a small amount is sufficient.

次に、実施例に基ずいて述べる。Next, a description will be given based on an example.

〔実施例〕〔Example〕

重量%でC;0.050 、Si;3.15、Mn;0
.063、S io、024 、i i O,007残
部不可避の不純物とFeよりなる方向性電磁鋼板素材を
公知の方法で熱延と焼鈍を挾む2回冷延により最終板厚
0.225mmとした。この後、Hz+Nzの湿潤雰囲
気中で脱炭焼鈍し、第3表に示す物性値のMgOをスラ
リー状にして、鋼板に15 g/mの割合で塗布し、乾
燥後、20Tコイルとして巻き取った。この後、120
0℃X 20Hrの最終仕上げ焼鈍を行った。この試験
におけるMgOの塗布乾燥後の付着状態と最終焼鈍後の
グラス被膜特性、磁気特性を第4表に示す。
C; 0.050, Si; 3.15, Mn; 0 in weight%
.. 063, S io, 024, i i O,007 A grain-oriented electrical steel sheet material consisting of unavoidable impurities and Fe was made into a final plate thickness of 0.225 mm by a known method by hot rolling and cold rolling twice with annealing. . After this, it was decarburized and annealed in a humid atmosphere of Hz + Nz, and MgO having the physical properties shown in Table 3 was made into a slurry and applied to a steel plate at a rate of 15 g/m. After drying, it was wound up as a 20T coil. . After this, 120
Final annealing was performed at 0°C for 20 hours. Table 4 shows the adhesion state of MgO after coating and drying in this test, the glass coating properties and magnetic properties after final annealing.

以下余白 この実験の結果、比較材では塗布乾燥後の焼鈍分離剤の
付着力が非常に弱く、コイル巻取後に接地した部分にお
けるMgOの脱落部が、最終焼鈍後の被膜ムラとなって
大量に確認された。これに対し、本発明材では全くこの
ような部分が認められず、付着性の良さが確認できた。
Margin below As a result of this experiment, the adhesion of the annealing separator after coating and drying was found to be very weak in the comparison material, and a large amount of MgO fell off at the part that was grounded after coil winding, resulting in uneven coating after final annealing. confirmed. In contrast, in the material of the present invention, no such portion was observed at all, confirming good adhesion.

グラス被膜は比較剤では不均一で、うずく、変色等の欠
陥が多かった。これに対し、本発明剤では均一で、厚く
、密着性も良好であった。
The glass coating of the comparison agent was non-uniform and had many defects such as tingling and discoloration. In contrast, the agent of the present invention was uniform, thick, and had good adhesion.

磁気特性も本発明剤では著しい改善効果が見られた。Significant improvement in magnetic properties was also observed with the agent of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明はMgOの物性値、不純物
量を同時に制御することにより、低水和性でありながら
鋼板の密着性に優れ、かつ下地被膜との反応性に優れて
おり、これによりグラス被膜が均一で磁気特性が著しく
改善された焼鈍分離剤を提供しうるので、その工業的効
果は甚大である。
As detailed above, the present invention simultaneously controls the physical properties of MgO and the amount of impurities to achieve low hydration, excellent adhesion to steel sheets, and excellent reactivity with the base film. This makes it possible to provide an annealing separator with a uniform glass coating and significantly improved magnetic properties, so its industrial effects are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、水酸化マグネシュウム、炭酸マグネシュウム、塩基
性炭酸マグネシュウム、硫酸マグネシュウム、塩化マグ
ネシュウム、高純度酸化マグネシュウムを原料として酸
化マグネシュウムを製造するにあたり、製造過程で不純
物及び活性度を調整して、Ca化合物を重量%でCaO
として0.5〜2.5%、B化合物をBとして0.04
〜0.2%、且つ〔CaO%値〕×〔B%値〕=0.0
25〜0.30であり、更にクエン酸活性度値が60〜
250秒であることを特徴とする鋼板への付着力が優れ
、均一なグラス被膜と優れた磁気特性を得るための方向
性電磁鋼板用焼鈍分離剤。
[Claims] 1. When producing magnesium oxide using magnesium hydroxide, magnesium carbonate, basic magnesium carbonate, magnesium sulfate, magnesium chloride, and high-purity magnesium oxide as raw materials, impurities and activity are adjusted during the production process. Then, the Ca compound was converted to CaO in weight%.
0.5 to 2.5% as B compound, 0.04 as B compound
~0.2%, and [CaO% value] x [B% value] = 0.0
25-0.30, and the citric acid activity value is 60-0.30.
An annealing separator for grain-oriented electrical steel sheets, which has excellent adhesion to steel sheets in 250 seconds, and is capable of obtaining a uniform glass coating and excellent magnetic properties.
JP117488A 1988-01-08 1988-01-08 Annealing separating agent for grain-oriented magnetic steel sheet for obtaining uniform glass coating film and excellent magnetic characteristic Granted JPH01177376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP117488A JPH01177376A (en) 1988-01-08 1988-01-08 Annealing separating agent for grain-oriented magnetic steel sheet for obtaining uniform glass coating film and excellent magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP117488A JPH01177376A (en) 1988-01-08 1988-01-08 Annealing separating agent for grain-oriented magnetic steel sheet for obtaining uniform glass coating film and excellent magnetic characteristic

Publications (2)

Publication Number Publication Date
JPH01177376A true JPH01177376A (en) 1989-07-13
JPH0425349B2 JPH0425349B2 (en) 1992-04-30

Family

ID=11494073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP117488A Granted JPH01177376A (en) 1988-01-08 1988-01-08 Annealing separating agent for grain-oriented magnetic steel sheet for obtaining uniform glass coating film and excellent magnetic characteristic

Country Status (1)

Country Link
JP (1) JPH01177376A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375219A (en) * 1989-08-11 1991-03-29 Asahi Glass Co Ltd Magnesium oxide composition
JPH06101059A (en) * 1992-09-18 1994-04-12 Nippon Steel Corp Separation agent for annealing for grain-oriented silicon steel sheet for obtaining uniform high tensile strength glass film and excellent magnetic property
JP2004176144A (en) * 2002-11-28 2004-06-24 Tateho Chem Ind Co Ltd Magnesium oxide for separation agent for annealing
WO2024048721A1 (en) * 2022-08-31 2024-03-07 日本製鉄株式会社 Mixed powder, mgo particles, method for producing grain-oriented electrical steel sheet, method for producing mgo particles, and method for producing mixed powder
WO2024048751A1 (en) * 2022-08-31 2024-03-07 日本製鉄株式会社 Mixed powder, mgo particles, method for producing grain-oriented electrical steel sheet, method for producing mgo particles, and method for producing mixed powder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6472767B2 (en) 2016-03-30 2019-02-20 タテホ化学工業株式会社 Magnesium oxide and grain-oriented electrical steel sheet for annealing separator
EP3438291B1 (en) 2016-03-30 2020-06-24 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separator, and grain-oriented electromagnetic steel sheet
JP6494555B2 (en) 2016-03-30 2019-04-03 タテホ化学工業株式会社 Magnesium oxide and grain-oriented electrical steel sheet for annealing separator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375219A (en) * 1989-08-11 1991-03-29 Asahi Glass Co Ltd Magnesium oxide composition
JPH06101059A (en) * 1992-09-18 1994-04-12 Nippon Steel Corp Separation agent for annealing for grain-oriented silicon steel sheet for obtaining uniform high tensile strength glass film and excellent magnetic property
JP2004176144A (en) * 2002-11-28 2004-06-24 Tateho Chem Ind Co Ltd Magnesium oxide for separation agent for annealing
WO2024048721A1 (en) * 2022-08-31 2024-03-07 日本製鉄株式会社 Mixed powder, mgo particles, method for producing grain-oriented electrical steel sheet, method for producing mgo particles, and method for producing mixed powder
WO2024048751A1 (en) * 2022-08-31 2024-03-07 日本製鉄株式会社 Mixed powder, mgo particles, method for producing grain-oriented electrical steel sheet, method for producing mgo particles, and method for producing mixed powder

Also Published As

Publication number Publication date
JPH0425349B2 (en) 1992-04-30

Similar Documents

Publication Publication Date Title
US5685920A (en) Annealing separator having excellent reactivity for grain-oriented electrical steel sheet and method of use the same
KR20140092467A (en) Oriented electrical steel sheet and method for manufacturing the same
JP3650525B2 (en) Annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with excellent magnetic properties with glass coating
JPS62156226A (en) Production of grain oriented electrical steel sheet having uniform glass film and excellent magnetic characteristic
JPH01177376A (en) Annealing separating agent for grain-oriented magnetic steel sheet for obtaining uniform glass coating film and excellent magnetic characteristic
JPH11158558A (en) Magnesium oxide for annealing-separating agent and production thereof
EP0416420B1 (en) Magnesium oxide coating for electrical steels and the method of coating
WO1996015291A1 (en) Process for producing directional electrical sheet excellent in glass coating and magnetic properties
JP2650817B2 (en) Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties
JP2690841B2 (en) Annealing Separator for grain oriented electrical steel sheet for obtaining uniform high-strength glass coating and excellent magnetic properties
JP3091096B2 (en) Annealing separator and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic properties
JP2599069B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties
JP3356933B2 (en) Annealing separator with excellent film-forming ability and method for producing grain-oriented electrical steel sheet using the same
JP3336555B2 (en) Method for producing grain-oriented electrical steel sheet without glass coating with excellent surface properties
JPS62156227A (en) Annealing and separation agent for grain-oriented magnetic steel sheet having superior film characteristic and magnetic characteristic
JPH08165525A (en) Production of grain-oriented silicon steel sheet excellent in good glass coating and extremely good in magnetic characteristic
JP3336547B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP2749783B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent glass coating performance and magnetic properties
KR100245032B1 (en) Process for producing directional sheet excellent in glass coating and magnetic properties
JP2648205B2 (en) Method for producing grain-oriented electrical steel sheet with uniform glass coating and excellent magnetic properties
JP2000273550A (en) Glass coating film and production of grain oriented silicon steel sheet excellent in magnetic property
JP3707249B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating uniformity
JP2781524B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JPH09256068A (en) Production of grain-oriented silicon steel sheet for obtaining excellent glass coating
JPH0941153A (en) Separation agent at annealing, excellent in reactivity, and production of grain oriented silicon steel sheet using the same