JP2599069B2 - Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties - Google Patents

Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties

Info

Publication number
JP2599069B2
JP2599069B2 JP4103220A JP10322092A JP2599069B2 JP 2599069 B2 JP2599069 B2 JP 2599069B2 JP 4103220 A JP4103220 A JP 4103220A JP 10322092 A JP10322092 A JP 10322092A JP 2599069 B2 JP2599069 B2 JP 2599069B2
Authority
JP
Japan
Prior art keywords
annealing
sio
steel sheet
flux density
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4103220A
Other languages
Japanese (ja)
Other versions
JPH05295441A (en
Inventor
収 田中
延幸 高橋
勤 原谷
希瑞 石橋
久和 北河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4103220A priority Critical patent/JP2599069B2/en
Publication of JPH05295441A publication Critical patent/JPH05295441A/en
Application granted granted Critical
Publication of JP2599069B2 publication Critical patent/JP2599069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は方向性電磁鋼板製造工程
におけるグラス被膜の形成方法に関わり、グラス被膜が
優れ、磁気特性の優れた高磁束密度方向性電磁鋼板の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a glass coating in a process for manufacturing a grain-oriented electrical steel sheet, and more particularly to a method for producing a high magnetic flux density grain-oriented electrical steel sheet having an excellent glass coating and excellent magnetic properties.

【0002】[0002]

【従来の技術】方向性電磁鋼板は一般に軟磁性材料とし
て主としてトランスその他の電気機器の鉄心材料として
使用されるもので、磁気特性として励磁特性と鉄損特性
の良好なものが要求される。良好な磁気特性を得るため
には磁化容易軸である<001>軸を圧延方向に高度に
揃えることが重要である。また、板厚、結晶粒度、固有
抵抗、被膜等も磁気特性に大きい影響を与えるため重要
である。結晶の方向性については、AlN、MnSをイ
ンヒビターとする高圧下最終冷延を特徴とする方法によ
り大幅に向上し、現在では磁束密度がほぼ理論値に近い
ものまで製造されるようになって来た。
2. Description of the Related Art Grain-oriented electrical steel sheets are generally used as soft magnetic materials mainly as core materials for transformers and other electric equipment, and are required to have good magnetic characteristics in terms of excitation characteristics and iron loss characteristics. In order to obtain good magnetic properties, it is important that the <001> axis, which is the axis of easy magnetization, is highly aligned in the rolling direction. Further, the thickness, crystal grain size, specific resistance, coating, etc. are also important because they have a great influence on the magnetic properties. The directionality of the crystal has been greatly improved by a method characterized by final cold rolling under high pressure using AlN and MnS as inhibitors. At present, the magnetic flux density has been manufactured to a value close to the theoretical value. Was.

【0003】さらに近年では板厚の薄手化や高Si鋼化
への技術が進歩し、鉄損特性もかなりのレベルまで改善
されて来ている。方向性電磁鋼板の需要家における使用
時において、磁気特性と共に重要なのは被膜特性であ
る。これは、被膜特性が方向性電磁鋼板を利用したトラ
ンス鉄心において絶縁性のみならず、ビルディングファ
クターや騒音に影響する磁歪、歪敏感度等に対して大き
い影響を与えるからである。この方向性電磁鋼板の被膜
特性は、このように製品特性に対する多大な影響を与え
ると共に、その被膜形成過程においては鋼板中のインヒ
ビターの制御の面から重要な役割をもっているため、高
磁束密度、低鉄損の方向性電磁鋼板を得るためにも製造
過程での形成速度、量、質を厳密にコントロールして形
成することが重要である。
[0003] In recent years, techniques for reducing the thickness of the sheet and increasing the Si steel have advanced, and the iron loss characteristics have been improved to a considerable level. When a grain-oriented electrical steel sheet is used in a consumer, the film property is important together with the magnetic property. This is because the coating characteristics have a great effect not only on the insulation properties but also on the magnetostriction, strain sensitivity and the like which affect the building factor and noise in the transformer core using the grain-oriented electrical steel sheet. The coating properties of the grain-oriented electrical steel sheet have a great effect on the product properties as described above, and play an important role in controlling the inhibitors in the steel sheet during the coating formation process. In order to obtain a grain-oriented electrical steel sheet with iron loss, it is important to form the steel sheet by strictly controlling the forming speed, quantity and quality in the manufacturing process.

【0004】通常、方向性電磁鋼板は最終仕上焼鈍過程
で形成するグラス被膜(一次被膜:フォルステライト+
スピネル)とヒートフラットニング時に形成される絶縁
被膜(二次被膜)の2層被膜によって表面処理がなされ
ている。グラス被膜は焼鈍分離剤のMgOと脱炭焼鈍時
に形成したSiO2 主体の酸化膜との反応により形成す
るフォルステライト被膜を主成分とし、本発明のように
Al鋼成分に利用する場合にはAl2 3 や他の焼鈍分
離剤添加物等によりもたらされる酸化物成分やこれらに
よるスピネル構造の化合物によって構成されている。こ
のグラス被膜はその張力効果によって絶縁性、鉄損、磁
歪等を改善する一方、形成状態によっては磁束密度、占
積率、密着性、加工性、製品外観を低下させたり、張力
による鉄損改善効果にも差異を生じる。また、このグラ
ス被膜は本発明のようにインヒビターとしてAlN、M
nS等を利用する場合には、その形成時期、形成速度、
形成量等が鋼板界面において雰囲気ガスからのNの侵入
をコントロールしたり、逆に鋼中からのインヒビターの
分解挙動に多大な影響を及ぼす。このため、適正量のグ
ラス被膜を適正時期に形成させることは被膜特性と磁気
特性を両立した製品を得る上で重要で、このための新技
術開発のニーズは高まっている。
[0004] Usually, a grain-oriented electrical steel sheet is a glass coating (primary coating: forsterite +) formed in the final finish annealing process.
Surface treatment is performed by a two-layer coating of a spinel and an insulating coating (secondary coating) formed at the time of heat flattening. The glass film is mainly composed of a forsterite film formed by a reaction between MgO as an annealing separator and an oxide film mainly composed of SiO 2 formed at the time of decarburizing annealing, and when used as an Al steel component as in the present invention, It is composed of oxide components brought about by 2 O 3 and other additives for the annealing separator and the like and compounds having a spinel structure. This glass coating improves the insulation, iron loss, magnetostriction, etc. by the effect of tension, but depending on the state of formation, reduces the magnetic flux density, space factor, adhesion, workability, product appearance, and improves iron loss by tension. There is also a difference in effectiveness. Also, this glass coating is made of AlN, M as an inhibitor as in the present invention.
When nS or the like is used, its formation timing, formation speed,
The amount of formation or the like controls the intrusion of N from the atmosphere gas at the steel plate interface, and conversely has a great effect on the decomposition behavior of the inhibitor from the steel. Therefore, it is important to form an appropriate amount of a glass coating at an appropriate time in order to obtain a product having both coating characteristics and magnetic characteristics, and there is an increasing need for the development of new technologies.

【0005】脱炭焼鈍酸化膜の形成条件によってグラス
被膜や磁気特性を改善する技術としては数々の提案がな
されている。特開昭59−185725号公報には本発
明と同様な素材の高磁束密度方向性電磁鋼板の脱炭焼鈍
工程において、脱炭焼鈍後における鋼板の酸素量を、−
2500X+1163≦Y≦−2500+1413(但
しX:鋼板の板厚(mm)、Y:鋼板の酸素量(pp
m))式で与えられる範囲に制御するものである。前記
公報記載の発明は磁気特性の優れる高磁束密度方向性電
磁鋼板の製造方法として、脱炭焼鈍で形成する酸化被膜
の〔O〕量を特定域にコントロールすることで、高磁束
密度且つ低鉄損の特性が得られるというもので、〔O〕
量と板厚の関係で磁気特性への影響が述べられている。
また、特開昭60−103173号公報には低鉄損を得
るための製造方法として、最終冷延された冷延板に脱炭
焼鈍を施すに際し、冷延鋼板が0.25mm以下の板厚
を有し、該鋼板の表面に脱炭焼鈍で形成される酸化層の
酸素目付量Os(g/m2 )を上記板厚に応じ、次式4
t+1.6≧Os≧−8t+8.1(tは板厚(m
m))の範囲に制御する一方向性珪素鋼板の製造方法が
提案されている。しかし、これらの酸化被膜によるグラ
ス被膜、磁性等の制御技術は酸化膜の酸素量に注目して
いるもので、質、反応性等に関する研究には至っていな
い。このため、高磁束密度の方向性電磁鋼板の製造にお
いてグラス被膜や磁気特性を向上する上で未だ安定した
技術を提供するに至っていない。
Various techniques have been proposed for improving the glass film and magnetic properties depending on the conditions for forming the decarburized annealed oxide film. JP-A-59-185725 discloses that in the decarburizing annealing step of a high magnetic flux density oriented electrical steel sheet of the same material as the present invention, the oxygen content of the steel sheet after decarburizing annealing is-
2500X + 1163 ≦ Y ≦ −2500 + 1413 (where X: thickness of steel sheet (mm), Y: oxygen amount of steel sheet (pp
m)) is controlled within the range given by the equation. The invention described in the above publication is a method of manufacturing a high magnetic flux density grain-oriented electrical steel sheet having excellent magnetic properties, by controlling the [O] amount of an oxide film formed by decarburization annealing to a specific range, thereby obtaining a high magnetic flux density and low iron. [O]
The influence on the magnetic properties is described by the relationship between the amount and the thickness.
Japanese Patent Application Laid-Open No. 60-103173 discloses a production method for obtaining a low iron loss, in which a cold-rolled steel sheet having a thickness of 0.25 mm or less is subjected to decarburizing annealing on the finally cold-rolled cold-rolled sheet. The oxygen basis weight Os (g / m 2 ) of the oxide layer formed on the surface of the steel sheet by decarburizing annealing is determined by the following equation 4 according to the thickness.
t + 1.6 ≧ Os ≧ −8t + 8.1 (t is the plate thickness (m
m)) A method for producing a grain-oriented silicon steel sheet that is controlled to fall within the range of m)) has been proposed. However, these techniques for controlling a glass film, magnetism, and the like using an oxide film focus on the amount of oxygen in the oxide film, and have not been studied on quality, reactivity, and the like. For this reason, in the production of grain-oriented electrical steel sheets having a high magnetic flux density, a stable technique for improving the glass coating and magnetic properties has not yet been provided.

【0006】[0006]

【発明が解決しようとする課題】グラス被膜の形成技術
においては、その形成反応のコントロールは脱炭酸化膜
の条件、焼鈍分離剤のMgOの性状(粒度、純度、活性
度、水和度等)、添加剤、最終仕上焼鈍条件等が重要で
ある。本発明においては、これらの中で特に重要な脱炭
酸化膜の性状の改善と焼鈍分離剤により新規な製造方法
を提供することを目的とする。
In the technique of forming a glass film, the formation reaction is controlled by the conditions of the decarboxylation film, the properties of MgO as an annealing separator (particle size, purity, activity, hydration degree, etc.). , Additives, final annealing conditions and the like are important. An object of the present invention is to improve the properties of the decarboxylation film, which are particularly important among them, and to provide a novel production method using an annealing separator.

【0007】[0007]

【課題を解決するための手段】本発明における高磁束密
度方向性電磁鋼板の製造方法は、鋼成分として重量で
C:0.03〜0.12%、Si:2.5〜4.5%、
Mn:0.03〜0.20%、S:0.01〜0.06
%、酸可溶Al:0.01〜0.05%、N:0.00
30〜0.0120%、Sn:0.03〜0.5%、C
u:0.02〜0.3%を含み、残部Feおよび不可避
不純物からなる珪素鋼スラブを公知の方法で熱延し、焼
鈍し、急冷処理の後、酸洗し、1回または中間焼鈍を挟
む2回以上の冷延により最終板厚とし、次いで脱炭焼鈍
し、仕上焼鈍することを基本工程とする。このような成
分と工程における本発明のグラス被膜特性が優れ、磁気
特性の優れる方向性電磁鋼板の製造方法としては脱炭焼
鈍〜焼鈍分離剤の塗布工程に特徴がある。
According to the method of the present invention for producing a high magnetic flux density grain-oriented electrical steel sheet, C: 0.03 to 0.12% and Si: 2.5 to 4.5% by weight as steel components. ,
Mn: 0.03 to 0.20%, S: 0.01 to 0.06
%, Acid-soluble Al: 0.01 to 0.05%, N: 0.00
30 to 0.0120%, Sn: 0.03 to 0.5%, C
u: A silicon steel slab containing 0.02 to 0.3%, the balance being Fe and unavoidable impurities is hot-rolled by a known method, annealed, quenched, then pickled, and subjected to one or intermediate annealing. The basic process is to make the final sheet thickness by cold rolling two or more times, followed by decarburizing annealing and finish annealing. A method for producing a grain-oriented electrical steel sheet having excellent glass coating properties and excellent magnetic properties according to the present invention in such components and processes is characterized by a decarburizing annealing to an application step of an annealing separator.

【0008】最終冷延された素材は連続脱炭焼鈍ライン
において脱炭焼鈍される。この脱炭焼鈍により鋼中のC
の除去と一次再結晶が行われ、同時に鋼板表面にSiO
2 を主成分とする酸化膜の形成が行われる。本発明の成
分においては、この際に脱炭焼鈍雰囲気の酸化度とし
て、熱化学平衡上FeOを生成しないFe2 SiO4
成領域で行うのが良質の酸化膜を得る上で重要である。
本発明の成分系では、このような雰囲気条件では表層部
に〔(Fe、Mn)O〕a〔SiO2 〕bの酸化層を生
成し、内層部にSiO2 主成分のヌードル状の酸化層を
生成するのが特徴である。生成条件としては、表層部の
〔(Fe、Mn)O〕a〔SiO2 〕bが(FeO+M
nO)/酸化膜全SiO 2 として0.15〜0.60と
なり、且つ酸化膜全SiO2 が0.4〜1.6g/m2
となるように脱炭焼鈍される。また、この際のSiO2
量は板厚に応じて2t+0.1≦W≦11/3t+0.
15(0.15≦t≦0.4、t:板厚(mm)、W:
SiO2 量(g/m2 ))式によりコントロールされ
る。本発明では、このように酸化膜を制御するために脱
炭焼鈍条件としては、815〜950℃で、N2 +H2
雰囲気で、PH2O /PH2、均熱時間、加熱速度、ガス量
等をコントロールして焼鈍を行う。
[0008] The final cold rolled material is a continuous decarburization annealing line
Is decarburized and annealed. By this decarburization annealing, C in steel
Removal and primary recrystallization, and at the same time,
TwoAn oxide film mainly composed of is formed. The present invention
In this case, the oxidation degree of the decarburizing annealing atmosphere
And Fe that does not generate FeO due to thermochemical equilibriumTwoSiOFourLiving
It is important to perform the formation in the formation region in order to obtain a high-quality oxide film.
In the component system of the present invention, in such an atmosphere condition, the surface layer
[(Fe, Mn) O] a [SiOTwo] Generate an oxide layer of b
And the inner layer is made of SiOTwoNoodle-like oxide layer of the main component
The feature is to generate. The generation conditions are as follows:
[(Fe, Mn) O] a [SiOTwoB is (FeO + M)
nO) / total SiO film Two0.15 to 0.60
And the oxide film is all SiOTwoIs 0.4 to 1.6 g / mTwo
Is decarburized and annealed. In this case, the SiOTwo
The amount is 2t + 0.1 ≦ W ≦ 11 / 3t + 0.
15 (0.15 ≦ t ≦ 0.4, t: plate thickness (mm), W:
SiOTwoAmount (g / mTwo)) Controlled by the formula
You. In the present invention, in order to control the oxide film in this way, the
Charcoal annealing conditions were as follows: 815-950 ° C., NTwo+ HTwo
Atmosphere, PH2O/ PH2, Soaking time, heating rate, gas volume
Annealing is performed by controlling the conditions.

【0009】この後、焼鈍分離剤として水和水分1.0
〜2.5%のMgO100重量部に対し、Ti、Sb、
Sr、Zr、Cu、Mn、Na、K等の酸化物、硫化
物、硫酸塩、硼酸塩、塩化物等の1種または2種以上を
0.1〜10重量部添加したスラリーを塗布し、乾燥し
てコイルに巻取る。次いで1200℃×20Hrの最終
仕上焼鈍を行い、二次再結晶、純化、グラス被膜の形成
を行う。
Thereafter, a hydrated water of 1.0 was used as an annealing separating agent.
To 2.5 parts by weight of MgO 100 parts by weight, Ti, Sb,
Sr, Zr, Cu, Mn, Na, K oxides such as sulfides, sulfates, borates, chlorides and the like added 0.1 to 10 parts by weight of a slurry, and the like, Dry and wind into a coil. Next, final finish annealing at 1200 ° C. × 20 hours is performed to perform secondary recrystallization, purification, and formation of a glass film.

【0010】このようにして得られた高磁束密度方向性
電磁鋼板は、次いで、連続ラインにおいて800〜90
0℃で絶縁被膜処理とヒートフラットニング処理が行わ
れる。高磁束密度方向性電磁鋼板においては前述の如
く、グラス被膜の形成状態と共に被膜張力が鉄損特性、
磁歪特性の改善に効果的であり、このため、例えば特公
昭53−28375号公報のようなリン酸−コロイダル
シリカ系の張力付与型のコーティング剤を塗布し、焼付
処理される。また、さらに鉄損の改善を目的とする場合
にはヒートフラットニングの前または後にレーザー、歯
形ロール、プレスロール、ケガキ、局部エッチング等に
より深さ5〜30μm、間隔2〜15mmで、圧延方向
に対し45〜90度の方向に、線状または点状の歪みま
たは溝等が付与される。
[0010] The high magnetic flux density grain-oriented electrical steel sheet thus obtained is then subjected to 800 to 90 in a continuous line.
At 0 ° C., an insulating coating treatment and a heat flattening treatment are performed. As described above, in high magnetic flux density grain-oriented electrical steel sheets, the film tension and iron loss characteristics,
It is effective in improving the magnetostriction characteristics. For this purpose, a phosphoric acid-colloidal silica-based tension-imparting coating agent as disclosed in Japanese Patent Publication No. 53-28375 is applied and baked. In addition, in the case of further improving the iron loss, before or after heat flattening, a depth of 5 to 30 μm, a spacing of 2 to 15 mm by a laser, tooth shape roll, press roll, marking, local etching, etc., in the rolling direction. On the other hand, in the direction of 45 to 90 degrees, linear or dot-like distortions or grooves are provided.

【0011】即ち、本発明のように主インヒビターとし
てAlN、MnSを使用する成分系により高磁束密度、
低鉄損を得る工程においては、二次再結晶開始温度は9
50〜1000℃であり、従来の方向性電磁鋼板に比較
して100℃程度二次再結晶温度が高いため、インヒビ
ターの安定化がより高度に要求される。このため、仕上
焼鈍においてグラス被膜の形成開始〜形成終了までの反
応コントロールと形成量、形成状態等を制御することに
より、昇温過程における雰囲気ガスからのNの侵入によ
るAlNに対する影響や、二次再結晶温度近傍における
脱インヒビターによるインヒビターの弱体化を防止しな
ければ良好な磁性を得ることは困難である。さらに本発
明の高磁束密度方向性電磁鋼板においては、最終的に形
成されたグラス被膜の状態(厚み、被膜の密度、内部被
膜層の界面状態等)によっては製品の磁束密度、鉄損ば
かりではなく、鉄損改善のために処理される磁区細分化
処理において、鉄損改善効果に影響を及ぼすため、これ
らの形成コントロール技術の開発はますます重要性が高
まっている。
That is, as in the present invention, the component system using AlN and MnS as the main inhibitors has a high magnetic flux density,
In the step of obtaining low iron loss, the secondary recrystallization onset temperature is 9
The temperature is 50 to 1000 ° C., and the secondary recrystallization temperature is about 100 ° C. higher than that of a conventional grain-oriented electrical steel sheet, so that inhibitor stabilization is more highly required. For this reason, by controlling the reaction from the start to the end of the formation of the glass film and controlling the formation amount and the state of the formation in the finish annealing, the influence on the AlN due to the intrusion of N from the atmosphere gas during the temperature rise process, the secondary It is difficult to obtain good magnetism without preventing the inhibitor from weakening due to the inhibitor near the recrystallization temperature. Furthermore, in the high magnetic flux density grain-oriented electrical steel sheet of the present invention, depending on the state of the finally formed glass coating (thickness, coating density, interface state of the internal coating layer, etc.), the magnetic flux density of the product and the iron loss are not limited. In addition, in the magnetic domain refining treatment performed for improving iron loss, the effect of improving the iron loss is affected, and therefore, the development of these formation control techniques is becoming more and more important.

【0012】本発明者らは、従来技術で解決できなかっ
た問題を膨大な実験と研究を重ねた結果、脱炭焼鈍で形
成する酸化膜の内質による影響を究明し、さらに、焼鈍
分離剤を特定域にコントロールすることにより、優れた
グラス被膜の形成と良好な磁気特性を同時に得る技術の
開発に至ったものである。次に本発明における構成技術
の限定理由を述べる。
The present inventors have conducted extensive experiments and researches on problems that could not be solved by the prior art, and as a result, clarified the effects of the internal quality of the oxide film formed by decarburizing annealing, By controlling the temperature in a specific region, a technique for simultaneously forming an excellent glass coating and good magnetic properties has been developed. Next, the reasons for limiting the configuration technology in the present invention will be described.

【0013】出発材としては、重量でC:0.03〜
0.12%、Si:2.5〜4.5%、Mn:0.03
〜0.20%、S:0.01〜0.06%、酸可溶A
l:0.01〜0.05%、N:0.0030〜0.0
12%、Sn:0.03〜0.50%、Cu:0.02
〜0.30%を含み、残部Feおよび不可避的不純物か
らなる鋼材が用いられる。
As starting materials, C: 0.03-
0.12%, Si: 2.5 to 4.5%, Mn: 0.03
~ 0.20%, S: 0.01 ~ 0.06%, acid soluble A
l: 0.01 to 0.05%, N: 0.0030 to 0.0
12%, Sn: 0.03 to 0.50%, Cu: 0.02
A steel material containing about 0.30%, the balance being Fe and unavoidable impurities is used.

【0014】Cは0.03%未満では、熱延高温巻取り
時の組織が粗大化し、製品において線状細粒が発生する
ので好ましくない。一方、0.12%を越えると脱炭焼
鈍で長時間を要するため、工業的に不利となる。Siは
2.5%未満では磁気特性として特に鉄損が劣化し、ま
た4.5%を越えると冷延が困難になる。
If C is less than 0.03%, the structure at the time of hot rolling at a high temperature is undesirably coarsened and linear fine grains are generated in the product. On the other hand, if it exceeds 0.12%, it takes a long time for decarburization annealing, which is industrially disadvantageous. If the content of Si is less than 2.5%, the iron loss particularly deteriorates as a magnetic property, and if the content exceeds 4.5%, cold rolling becomes difficult.

【0015】Mn、SはMnSを形成し、一次再結晶粒
の正常粒成長を抑えるためのインヒビターとなる。上記
範囲を外れると製品特性が劣化したり、二次再結晶が起
こらなくなるので好ましくない。Mnは好ましくは0.
05〜0.10%である。Sは0.06%を越えると純
化焼鈍時の脱硫が困難になるので好ましくない。一方、
0.01%未満ではインヒビターとしてのMnSが不足
する。
Mn and S form MnS and serve as inhibitors for suppressing the normal growth of primary recrystallized grains. Outside of the above range, the product characteristics are degraded and secondary recrystallization does not occur, which is not preferable. Mn is preferably 0.1.
05 to 0.10%. If S exceeds 0.06%, desulfurization during purification annealing becomes difficult, so that it is not preferable. on the other hand,
If it is less than 0.01%, MnS as an inhibitor becomes insufficient.

【0016】酸可溶Alは高磁束密度を得るための基本
元素で、上記範囲を外れると高磁束密度が得られなくな
る。Nは0.0030%未満ではインヒビターであるA
lNの析出量が不足し、また、0.012%を越えると
製品のブリスターが発生するので好ましくない。Snは
二次再結晶粒の微細化に役立つもので、この量は0.0
3%未満では効果が弱く、0.5%を越えると脱炭焼鈍
での酸化を極端に阻害したり、圧延性、酸洗性等を劣化
するという問題もある。
Acid-soluble Al is a basic element for obtaining a high magnetic flux density, and if it is outside the above range, a high magnetic flux density cannot be obtained. N is an inhibitor if less than 0.0030% A
If the precipitation amount of 1N is insufficient, and if it exceeds 0.012%, blisters of the product are generated, which is not preferable. Sn is useful for refining the secondary recrystallized grains, and this amount is 0.0%.
If it is less than 3%, the effect is weak, and if it exceeds 0.5%, there is a problem that oxidation during decarburization annealing is extremely inhibited and rollability, pickling property, etc. are deteriorated.

【0017】Cuは被膜形成には有効な元素で、特に本
発明のようにSnを添加した場合の酸化抑制の問題を緩
和する効果をもたらす。0.02%未満ではこのような
グラス被膜の改善効果がなく、一方0.30%を越える
とSnと併用しても結晶粒の粗大化が抑えられなくな
り、磁気特性の面から好ましくない。本発明において
は、脱炭焼鈍における酸化膜形成に最も特徴がある。こ
の酸化膜形成のための脱炭焼鈍条件は、表層に生成する
〔(FeO、MnO)〕a〔SiO2 〕b中のFe、M
n分が(FeO+MnO)/酸化膜全SiO2 として
0.15〜0.60となり、且つ酸化膜全SiO2
0.4〜1.6g/m2 となるようにする。また、Si
2 生成量は下記式 2t+0.1≦W≦11/3t+0.15 0.15≦t≦0.4 (t:板厚(mm)、W:SiO2 量(g/m2 )) によってコントロールされる。
Cu is an element effective for forming a film, and particularly has an effect of alleviating the problem of suppressing oxidation when Sn is added as in the present invention. If it is less than 0.02%, there is no such effect of improving the glass coating. On the other hand, if it exceeds 0.30%, coarsening of crystal grains cannot be suppressed even when used in combination with Sn, which is not preferable in terms of magnetic properties. The most characteristic feature of the present invention is the formation of an oxide film during decarburization annealing. The decarburizing annealing conditions for forming the oxide film are as follows: Fe (M) in [(FeO, MnO)] a [SiO 2 ] b generated in the surface layer.
The n component is set to be 0.15 to 0.60 as (FeO + MnO) / total oxide film SiO 2 , and the total oxide film SiO 2 is to be 0.4 to 1.6 g / m 2 . In addition, Si
The amount of O 2 generation is controlled by the following formula: 2t + 0.1 ≦ W ≦ 11 / 3t + 0.15 0.15 ≦ t ≦ 0.4 (t: plate thickness (mm), W: SiO 2 amount (g / m 2 )) Is done.

【0018】本発明における成分系素材では、脱炭焼鈍
で形成される酸化膜は表層部の〔(Fe、Mn)O〕a
〔SiO2 〕bの薄膜層と内層のSiO2 主体のヌード
ル状に発達する酸化膜によって構成される。本発明者ら
は膨大な実験と研究により酸化膜の性状のグラス被膜や
磁気特性への影響を検討し、これらが多大な影響を及ぼ
すことを見出した。
In the component material according to the present invention, the oxide film formed by the decarburization annealing has a surface layer of [(Fe, Mn) O] a
It is composed of a thin film layer of [SiO 2 ] b and an inner oxide film mainly composed of SiO 2 and developed in a noodle shape. The present inventors have studied the effects of the properties of the oxide film on the glass coating and the magnetic properties through extensive experiments and studies, and found that these have a great effect.

【0019】即ち、表層の〔(FeO、MnO)〕a
〔SiO2 〕b形成量によってグラス被膜の形成反応速
度が著しく影響を受け、酸化膜全SiO2 量によってグ
ラス被膜(フォルステライト+スピネル)の形成量を支
配するため、これらを適正化することによりグラス被膜
の性状の適正化とグラス被膜形成過程までのインヒビタ
ーの安定化がもたらされて良好なグラス被膜と良好な磁
気特性が得られることを発見するに至ったものである。
That is, [(FeO, MnO)] a in the surface layer
The formation reaction rate of the glass film is significantly affected by the amount of [SiO 2 ] b formed, and the amount of glass film (forsterite + spinel) formed is governed by the total amount of SiO 2 in the oxide film. It has been found that the properties of the glass coating are optimized and the inhibitor is stabilized until the glass coating formation process, so that a good glass coating and good magnetic properties can be obtained.

【0020】〔(FeO、MnO)〕a〔SiO2 〕b
は(FeO+MnO)/酸化膜全SiO2 として0.1
5〜0.60に制限される。0.15未満ではグラス被
膜形成時の反応促進効果が弱く、良好なグラス被膜が得
られない。このため、昇温過程での脱インヒビターも早
まって磁束密度が低下する傾向が見られる。逆に、0.
60を越えるとグラス被膜形成時に融点が下がったり、
(FeO+MnO)リッチなグラス被膜層を形成する。
このような場合には、ピンホール状の欠陥が生じたり、
極端な場合にはグラス被膜中のFeO、MnO等が仕上
焼鈍鋼板で還元され、薄膜化して、密着性の悪いグラス
被膜となる。
[(FeO, MnO)] a [SiO 2 ] b
Is 0.1 as (FeO + MnO) / total oxide film SiO 2
Limited to 5 to 0.60. If it is less than 0.15, the effect of promoting the reaction during the formation of the glass film is weak, and a good glass film cannot be obtained. For this reason, there is a tendency for the inhibitor to be removed during the heating process to be accelerated and the magnetic flux density to decrease. Conversely, 0.
If it exceeds 60, the melting point will decrease when the glass film is formed,
A (FeO + MnO) -rich glass coating layer is formed.
In such a case, a pinhole-shaped defect occurs,
In extreme cases, FeO, MnO, and the like in the glass coating are reduced by the finish-annealed steel sheet and become thinner, resulting in a glass coating with poor adhesion.

【0021】次に、酸化膜中の全SiO2 量は0.4〜
1.6g/m2 の割合で形成される。前述のようにグラ
ス被膜の主成分はフォルステライト(Mg2 SiO4
であり、本発明の成分系材料では同時に鋼中Alにより
もたらされるAl2 3 や焼鈍分離剤のMgO、SiO
2 、Al2 3 、TiO2 等によるスピネル構造被膜に
よって構成される。全SiO2 量はこれらの最終的なグ
ラス被膜の形成量を支配するために重要である。SiO
2 量が0.4g/m2 未満ではグラス被膜が極端に薄く
なって良好な密着性が得られず、被膜張力による鉄損の
改善効果も小さい。また、昇温過程での脱インヒビター
が早まって磁束密度が低下する。逆に1.6g/m2
越えるとグラス被膜が厚くなり過ぎたり、内部の被膜層
が増大して鉄損特性や磁束密度の低下をもたらすため好
ましくない。0.4〜1.6g/m2 の範囲ではこれら
の問題がなく、良好なグラス被膜と磁性が得られる。
Next, the total amount of SiO 2 in the oxide film is 0.4 to 0.4.
It is formed at a rate of 1.6 g / m 2 . As mentioned above, the main component of the glass coating is forsterite (Mg 2 SiO 4 )
In the component material of the present invention, Al 2 O 3 brought by Al in steel and MgO and SiO
2 , a spinel structure coating of Al 2 O 3 , TiO 2 or the like. The total SiO 2 content is important to control the amount of these final glass coatings formed. SiO
If the amount is less than 0.4 g / m 2 , the glass coating becomes extremely thin, and good adhesion cannot be obtained, and the effect of improving iron loss due to coating tension is small. In addition, the removal of the inhibitor during the heating process is accelerated, and the magnetic flux density is reduced. On the other hand, if it exceeds 1.6 g / m 2 , the glass coating becomes too thick, or the inner coating layer increases, leading to a decrease in iron loss characteristics and magnetic flux density, which is not preferable. In the range of 0.4 to 1.6 g / m 2 , these problems do not occur, and a good glass coating and magnetism can be obtained.

【0022】また、SiO2 量は前述の如く最終的なグ
ラス被膜の量を決めるため、板厚に応じて形成するのが
好ましい。SiO2 量は下記式 2t+0.1≦W≦11/3t+0.15 0.15≦t≦0.4 (t:板厚(mm)、W:酸化膜中全SiO2 量(g/
2 )) によって制御される。このように制御されれば各板厚に
おいて同一の被膜張力が得られ、磁性に対するグラス被
膜の悪影響がない。また、これによってグラス被膜下部
のサブスケール層も適正にコントロールされ、磁区細分
化処理による鉄損改善効果も顕著に得られる。また、被
膜の密着性も各板厚において良好に保たれる。
Further, since the amount of SiO 2 to determine the amount of the aforementioned as final glass film, it is to form in accordance with the thickness preferred. The amount of SiO 2 is represented by the following formula: 2t + 0.1 ≦ W ≦ 11 / 3t + 0.15 0.15 ≦ t ≦ 0.4 (t: plate thickness (mm), W: total SiO 2 amount in oxide film (g /
m 2 )). With this control, the same coating tension is obtained at each plate thickness, and there is no adverse effect of the glass coating on magnetism. In addition, the sub-scale layer below the glass coating is appropriately controlled by this, and the effect of improving iron loss by the magnetic domain refining treatment is remarkably obtained. Further, the adhesion of the coating film is well maintained at each plate thickness.

【0023】このような酸化膜成分、性状のコントロー
ルは、焼鈍温度、雰囲気露点、均熱時間、昇温速度、雰
囲気ガス量等によって行われる。脱炭焼鈍の温度は81
5〜950℃の範囲が重要で、この条件を外れると本発
明のような酸化膜の成分が得られにくい。他の条件は板
厚、鋼成分等に応じて決められる。図1には、脱炭焼鈍
後の酸化膜中全SiO2 と(FeO+MnO)の最適領
域を、図2には酸化膜中全SiO2と鋼板板厚の最適領
域を示す。
Such control of the oxide film components and properties is performed by controlling the annealing temperature, the atmospheric dew point, the soaking time, the rate of temperature rise, the amount of atmospheric gas, and the like. Decarburization annealing temperature is 81
The range of 5 to 950 [deg.] C. is important, and if this condition is not satisfied, it is difficult to obtain the components of the oxide film as in the present invention. Other conditions are determined according to the sheet thickness, steel composition, and the like. FIG. 1 shows the optimal region of the total SiO 2 and (FeO + MnO) in the oxide film after the decarburizing annealing, and FIG. 2 shows the optimal region of the total SiO 2 in the oxide film and the thickness of the steel sheet.

【0024】焼鈍分離剤としては、望ましくは水和水分
1.0〜2.5%のMgO100重量部に対し、Ti、
Sb、Sr、Zr、Cu、Mn、Na、K等の酸化物、
硫化物、硫酸塩、硼酸塩、塩化物等の1種または2種以
上を0.1〜10重量部添加したものが使用される。水
和水分が1.0%未満では、仕上焼鈍昇温過程でコイル
板間の酸化度が下がり過ぎて、前記〔(Fe、Mn)
O〕a〔SiO2 〕bの還元反応が進行し、(FeO+
MnO)が減少するため1.0%以上に制限される。一
方、2.5%を越えると板間の酸化度が高くなって追加
酸化現象を生じ、このため(FeO+MnO)の増加や
SiO2 量の増加をもたらし、脱炭焼鈍で形成した酸化
膜成分が適正域から外れるという問題が生じるため2.
5%以下に制限される。MgO添加物は酸化膜中の
〔(Fe、Mn)O〕a〔SiO2 〕bと同様にグラス
被膜特性を向上する目的で添加される。これによりグラ
ス被膜の形成時期まで(FeO+SiO2 )が安定に保
たれ、安定した被膜形成促進効果が得られる。これによ
り同時にインヒビターの安定化がもたらされ、磁気特性
が安定向上する。前記添加物が0.1重量部未満ではこ
ようなグラス被膜形成時期の酸化膜の保護効果や被膜形
成の促進効果が得られない。一方、10重量部を越える
と、(FeO+MnO)量との関係で過酸化現象を起こ
し易く、特に酸化物、塩化物の添加の場合にはシモフ
リ、スケール状の被膜欠陥が生じ、さらに内部被膜層の
増加により磁性を劣化する。
As the annealing separator, desirably, for 100 parts by weight of MgO having a hydration moisture of 1.0 to 2.5%, Ti,
Oxides such as Sb, Sr, Zr, Cu, Mn, Na, and K;
One to which 0.1 to 10 parts by weight of one or more of sulfide, sulfate, borate, chloride and the like is added is used. If the hydrated water content is less than 1.0%, the degree of oxidation between the coil plates is excessively reduced during the temperature rise in the finish annealing, and the [(Fe, Mn)
O] a [SiO 2 ] b reduction reaction proceeds and (FeO +
MnO) is reduced, so that it is limited to 1.0% or more. On the other hand, if it exceeds 2.5%, the degree of oxidation between the plates is increased to cause an additional oxidation phenomenon, which results in an increase in (FeO + MnO) and an increase in the amount of SiO 2 , and an oxide film component formed by the decarburization annealing causes 1. The problem of deviating from the proper range occurs.
Limited to 5% or less. The MgO additive is added for the purpose of improving the properties of the glass coating as in the case of [(Fe, Mn) O] a [SiO 2 ] b in the oxide film. Thus, (FeO + SiO 2 ) is kept stable until the glass coating is formed, and a stable coating formation promoting effect is obtained. This leads to the stabilization of the inhibitor at the same time, and the magnetic properties are stably improved. If the amount of the additive is less than 0.1 parts by weight, the effect of protecting the oxide film at the time of forming the glass film and the effect of accelerating the film formation cannot be obtained. On the other hand, if it exceeds 10 parts by weight, peroxidation is liable to occur in relation to the amount of (FeO + MnO). In particular, when oxides or chlorides are added, shimofuri and scale-like coating defects occur, and further, the internal coating layer The magnetism is degraded due to the increase of.

【0025】次に、本発明により、グラス被膜特性が優
れ、磁気特性が良好な高磁束密度方向性電磁鋼板が得ら
れるメカニズムとしては次のように考えられる。本発明
では脱炭焼鈍時に形成した適正量のSiO2 と同時に適
正量の〔(Fe、Mn)O〕a〔SiO2 〕bを形成す
ることにより焼鈍分離剤のMgOとの反応性を著しく高
めてフォルステライト被膜形成開始温度を下げると共
に、最終的に適正量のフォルステライト、スピネル構造
のグラス被膜を形成する。この際、本発明領域では磁性
に有害なグラス被膜の内部被膜層(スピネル主体)が適
正量にコントロールされ、均一で密着性が良く、磁区細
分化効果に優れる良質のグラス被膜を形成する。この被
膜形成過程においては、緻密なグラス被膜の早期形成に
よって雰囲気からのN2 の侵入等によるインヒビターの
弱体化を防止し、さらに良質な被膜により昇温時後段の
追加酸化による酸化膜中SiO2 の増加を抑え、磁性に
有害な内部被膜層の形成を防止する。これらにより、良
好な磁束密度と低鉄損が得られる。このようにして得ら
れた製品では、グラス被膜界面が比較的スムーズで鉄損
改善のために行われる磁区細分化処理において著しい改
善効果が得られる。
Next, the mechanism by which the present invention can provide a high magnetic flux density grain-oriented electrical steel sheet having excellent glass coating properties and good magnetic properties is considered as follows. In the present invention, the reactivity of the annealing separator with MgO is significantly increased by forming an appropriate amount of [(Fe, Mn) O] a [SiO 2 ] b simultaneously with an appropriate amount of SiO 2 formed during decarburizing annealing. In addition to lowering the forsterite film formation starting temperature, a glass film having an appropriate amount of forsterite and spinel structure is finally formed. At this time, in the area of the present invention, the inner coating layer (mainly spinel) of the glass coating, which is harmful to magnetism, is controlled to an appropriate amount, and a uniform glass coating with good adhesion and excellent magnetic domain refining effect is formed. The coating in the forming process to prevent the weakening of the inhibitor by penetration such as N 2 from the atmosphere by the early formation of dense glass film, further high-quality oxide film by adding the oxidation of subsequent during heating by coating SiO 2 To prevent the formation of an internal coating layer harmful to magnetism. As a result, good magnetic flux density and low iron loss can be obtained. In the product obtained in this manner, the glass film interface is relatively smooth, and a remarkable improvement effect can be obtained in the magnetic domain refining treatment performed for improving iron loss.

【0026】また、焼鈍分離剤としては水和水分が1.
0〜2.5%と低いMgOにTi、Sb、Sr、Zr、
Cu、Mn等の化合物が添加されるが、本発明では、脱
炭焼鈍で形成する酸化膜の〔(Fe、Mn)O〕a〔S
iO2 〕bと酸化膜中の全SiO2 量をグラス被膜形成
時期まで安定に保つのが重要で、このためには、このよ
うに限定したMgOを適用すれば板間の雰囲気の酸化度
が適正に保たれ、追加酸化或いは還元反応を起こすこと
がない。MgOへの添加剤は前記脱炭酸化膜の構成成分
と共にグラス被膜の形成促進補助剤として働き、被膜特
性と磁気特性の安定化効果をもたらす。
Further, as the annealing separating agent, hydration moisture is 1.
Ti, Sb, Sr, Zr, MgO as low as 0-2.5%
Compounds such as Cu and Mn are added, but in the present invention, [(Fe, Mn) O] a [S
It is important to keep the amount of iO 2 ] b and the total amount of SiO 2 in the oxide film stable until the time of forming the glass film. For this purpose, if MgO limited in this way is used, the degree of oxidation of the atmosphere between the plates is reduced. It is kept properly and does not cause additional oxidation or reduction reaction. The additive to MgO works together with the constituents of the decarboxylation film as an auxiliary for promoting the formation of a glass film, and has an effect of stabilizing the film characteristics and magnetic characteristics.

【0027】[0027]

【実施例】【Example】

実施例1 重量でC:0.075%、Si:3.30%、Mn:
0.065%、S:0.025%、Al:0.029
%、N:0.0078%、Cu:0.08%、Sn:
0.06%を含み、残部Feおよび不可避的不純物から
なる高磁束密度方向性電磁鋼板素材を公知の方法で熱延
し、酸洗、冷延して最終板厚0.225mmとした。こ
の鋼板を板温830℃、N2 25%+H2 75%中で露
点と均熱時間を変えて脱炭焼鈍を行い、表1に示すよう
に酸化膜の成分を変更して焼鈍した。この鋼板に焼鈍分
離剤として水和水分1.5%のMgO100重量部に対
し、同表に示すように添加物の種類を変更したものを塗
布し、乾燥後、1200℃×20Hrの最終仕上焼鈍を
行った。その後、絶縁被膜剤として30%コロイド状シ
リカ70ml+50%リン酸Al 50ml+クロム酸
5gからなる処理液を乾燥後の重量で5g/m2 になる
ように塗布し、850℃×30秒の焼付処理を行って製
品とした。この試験における被膜特性と磁気特性の結果
を表2に示す。
Example 1 C: 0.075% by weight, Si: 3.30%, Mn:
0.065%, S: 0.025%, Al: 0.029
%, N: 0.0078%, Cu: 0.08%, Sn:
A high magnetic-flux-density-oriented electrical steel sheet material containing 0.06%, the balance being Fe and unavoidable impurities was hot-rolled by a known method, pickled, and cold-rolled to a final sheet thickness of 0.225 mm. This steel sheet was subjected to decarburizing annealing at a sheet temperature of 830 ° C. and N 2 25% + H 2 75% while changing the dew point and the soaking time, and as shown in Table 1, the components of the oxide film were changed and annealed. To this steel sheet, as an annealing separator, 100 parts by weight of MgO having a hydration moisture of 1.5% was applied with a different type of additive as shown in the same table, dried, and then subjected to a final finish annealing at 1200 ° C. × 20 hours. Was done. Thereafter, a treatment liquid consisting of 70% of 30% colloidal silica + 50 ml of 50% Al phosphate + 5 g of chromic acid as an insulating coating agent was applied so as to have a dry weight of 5 g / m 2 , and baked at 850 ° C. for 30 seconds. Go to the product. Table 2 shows the results of the coating properties and magnetic properties in this test.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】この結果、(FeO+MnO)/酸化膜全
SiO2 を本発明域に制御した条件では、いずれもグラ
ス被膜が均一で、外観が良好で、密着性の良好なものが
得られた。また、この場合にはいずれも磁気特性が著し
く良好な結果が得られた。一方、(FeO+MnO)/
酸化膜全SiO2 が0.05の場合には被膜が著しく薄
く、密着性も不良であった。また、(FeO+MnO)
/酸化膜全SiO 2 が0.65と高い場合には、グラス
被膜は厚く形成されたが、局所的にピンホール状やガス
マーク状のムラが発生し、光沢もなく、やや密着性も悪
い結果となった。さらにこの場合には、磁気特性が著し
く悪い結果となった。
As a result, (FeO + MnO) / total oxide film
SiOTwoUnder the conditions where the temperature was controlled in the range of the present invention,
Film with uniform appearance, good appearance and good adhesion
Obtained. In addition, in this case, the magnetic properties are remarkable.
Excellent results were obtained. On the other hand, (FeO + MnO) /
Oxide film total SiOTwoIs 0.05, the coating is extremely thin
And the adhesion was poor. Also, (FeO + MnO)
/ Oxide film total SiO TwoIs higher than 0.65, the glass
Although the film was formed thick, it was locally pinhole-shaped or gas
Mark-shaped unevenness occurs, lacks luster, and has poor adhesion
Result. Furthermore, in this case, the magnetic properties are remarkable.
The result was bad.

【0031】実施例2 重量でC:0.078%、Si:3.15%、Mn:
0.060%、S:0.024%、Al:0.027
%、N:0.0079%、Cu:0.080%、Sn:
0.080%を含み、残部Feおよび不可避的不純物か
らなる高磁束密度方向性電磁鋼板素材を実施例1と同様
に処理して最終板厚0.29mmとした。この鋼板を連
続焼鈍炉内で板温840℃×130秒、N2 25%+H
2 75%の雰囲気中で、PH2O/PH2と雰囲気ガス量を
変更して処理し、表3に示すような組成の酸化膜を形成
した。この鋼板に焼鈍分離剤として、水和水分2.0%
のMgOをベースとして同表3に示すような添加剤を添
加したスラリーを塗布し、乾燥後1200℃、20Hr
の最終仕上焼鈍を行った。次いで、実施例1と同様にし
て絶縁被膜剤を処理して製品とした。この試験における
被膜特性と磁気特性の結果を表4に示す。
Example 2 C: 0.078%, Si: 3.15%, Mn:
0.060%, S: 0.024%, Al: 0.027
%, N: 0.0079%, Cu: 0.080%, Sn:
A high magnetic flux density grain-oriented electrical steel sheet material containing 0.080%, the balance being Fe and unavoidable impurities was treated in the same manner as in Example 1 to a final sheet thickness of 0.29 mm. This steel sheet is heated in a continuous annealing furnace at a sheet temperature of 840 ° C. × 130 seconds, N 2 25% + H
In an atmosphere of 275%, the treatment was carried out while changing the atmosphere gas amount to P H2 O / P H2 to form an oxide film having the composition shown in Table 3. Hydration water 2.0% as an annealing separator for this steel sheet
A slurry containing the additive shown in Table 3 based on MgO was applied, dried, and dried at 1200 ° C. for 20 hours.
Was subjected to final finish annealing. Next, the insulating coating agent was treated in the same manner as in Example 1 to obtain a product. Table 4 shows the results of the coating properties and magnetic properties in this test.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】この結果、本発明によるものは、いずれも
均一で光沢のあるまた密着性の良好なグラス被膜を形成
した。また、磁気特性も磁束密度、鉄損値ともかなり良
好なものが得られた。一方比較材の(FeO+MnO)
/酸化膜全SiO2 0.08の場合には被膜形成反応
が十分に行われず、薄くて密着性が悪い結果となった。
また、(FeO+MnO)/酸化膜全SiO2 0.6
8の場合には被膜は厚く形成したが、不均一で光沢がな
く、ピンホール状等のムラが点在した。これらの比較材
では磁気特性も不良であった。
As a result, all of the compositions according to the present invention formed a uniform, glossy and good-adhesion glass coating. In addition, the magnetic properties obtained were quite good in both magnetic flux density and iron loss value. On the other hand, the comparative material (FeO + MnO)
/ In the case of oxide films total SiO 2 0.08 The film-forming reaction is not sufficiently, resulting in adhesion is poor thin.
Also, (FeO + MnO) / oxide film total SiO 2 0.6
In the case of No. 8, although the film was formed thick, it was non-uniform, lacked luster, and had irregularities such as pinholes. These comparative materials also had poor magnetic properties.

【0035】[0035]

【発明の効果】本発明によれば、仕上焼鈍過程でタイト
なグラス被膜が早期に形成され、最終製品として均一
で、適正な内部被膜層を有する良好な被膜特性が得られ
る。また、これにより、鋼中のインヒビターが二次再結
晶時期まで安定に保たれ、良好な磁気特性が得られる。
According to the present invention, a tight glass film is formed early in the finish annealing process, and a good film property having a uniform and appropriate internal film layer as a final product can be obtained. This also keeps the inhibitor in the steel stable until the secondary recrystallization stage, and provides good magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の脱炭焼鈍における酸化膜の成分SiO
2 と〔(Fe、Mn)O〕a〔SiO2 〕b中の(Fe
O+MnO)量/酸化膜全SiO2 量の最適条件を示す
図である。本発明の条件域は図中の斜線域で示される。
FIG. 1 shows a component SiO of an oxide film in decarburization annealing according to the present invention.
2 and [(Fe, Mn) O] a [SiO 2 ] b in (Fe)
O + MnO) content / oxide film is a diagram showing the total amount of SiO 2 of the optimum conditions. The condition area of the present invention is indicated by a hatched area in the figure.

【図2】本発明の鋼板板厚と最適SiO2 形成域を示す
図である。本発明では、良好な磁気特性と被膜特性を得
るため、図中の斜線域にSiO2 量が制御される。
FIG. 2 is a diagram showing a steel sheet thickness and an optimum SiO 2 formation region of the present invention. In the present invention, in order to obtain good magnetic properties and coating properties, the amount of SiO 2 is controlled in the shaded area in the figure.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/16 H01F 1/16 B (72)発明者 石橋 希瑞 福岡県北九州市戸畑区飛幡町1番1号 新日本製鐵株式会社 八幡製鐵所内 (72)発明者 北河 久和 福岡県北九州市戸畑区飛幡町1番1号 新日本製鐵株式会社 八幡製鐵所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location H01F 1/16 H01F 1/16 B (72) Inventor Kiizumi Ishibashi Tobita-cho, Tobata-ku, Kitakyushu-shi, Fukuoka No. 1-1 Inside Nippon Steel Corporation Yawata Works (72) Inventor Hisaka Kitagawa No. 1-1 Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量でC:0.03〜0.12%、S
i:2.5〜4.5%、Mn:0.03〜0.20%、
S:0.01〜0.06%、酸可溶Al:0.01〜
0.05%、N:0.0030〜0.012%、Sn:
0.03〜0.5%、Cu:0.02〜0.3%を含
み、残部はFeと不可避の不純物からなる電磁鋼スラブ
を熱延し、焼鈍と急冷処理をし、酸洗し、1回または焼
鈍を挟む2回以上の冷延により最終板厚とし、脱炭焼鈍
し、焼鈍分離剤を塗布し、最終仕上焼鈍することからな
る高磁束密度方向性電磁鋼板の製造方法において、脱炭
焼鈍工程において生成する酸化膜成分が、〔(Fe、M
n)O〕a〔SiO2 〕b中のFe、Mn分が(FeO
+MnO)/酸化膜全SiO2 として0.15〜0.6
0となり、且つ酸化膜中全SiO2 が0.4〜1.6g
/m2 となるように脱炭焼鈍し、焼鈍分離剤を塗布し、
最終仕上焼鈍を行うことからなるグラス被膜特性が優
れ、磁気特性の良好な高磁束密度方向性電磁鋼板の製造
方法。
1. C: 0.03 to 0.12% by weight, S
i: 2.5 to 4.5%, Mn: 0.03 to 0.20%,
S: 0.01 to 0.06%, acid-soluble Al: 0.01 to
0.05%, N: 0.0030 to 0.012%, Sn:
0.03 to 0.5%, Cu: 0.02 to 0.3%, the balance is hot rolled electromagnetic steel slab consisting of Fe and unavoidable impurities, annealing and quenching, pickling, In a method for producing a high magnetic flux density grain-oriented electrical steel sheet, which is performed by cold rolling one or more times including annealing to obtain a final sheet thickness, decarburizing annealing, applying an annealing separator, and final finishing annealing. The oxide film component generated in the carbon annealing step is [(Fe, M
n) The content of Fe and Mn in O] a [SiO 2 ] b is (FeO)
+ MnO) /0.15 to 0.6 as total oxide film SiO 2
0, and the total SiO 2 in the oxide film is 0.4 to 1.6 g.
/ M 2 , decarburizing annealing, applying an annealing separator,
A method for producing a high magnetic flux density grain-oriented electrical steel sheet having excellent glass coating properties and excellent magnetic properties by performing final finish annealing.
【請求項2】 脱炭焼鈍における酸化膜中全SiO2
成量を、tを板厚(mm)、Wを酸化膜中全SiO
2 (g/m2 )として、下記式の範囲とすることからな
る請求項1記載のグラス被膜特性が優れ、磁気特性の良
好な高磁束密度方向性電磁鋼板の製造方法。 2t+0.1≦W≦11/3t+0.15 0.15≦t≦0.4
2. The total amount of SiO 2 formed in the oxide film in the decarburizing annealing is represented by t: plate thickness (mm), and W: total SiO 2 in the oxide film.
The method for producing a high magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein the glass coating properties are excellent and the magnetic properties are good, wherein 2 (g / m 2 ) is within the range of the following formula. 2t + 0.1 ≦ W ≦ 11 / 3t + 0.15 0.15 ≦ t ≦ 0.4
【請求項3】 焼鈍分離剤として水和水分1.0〜2.
5%のMgO100重量部に対し、Ti、Sb、Sr、
Zr、Cu、Mn、Na、K等の酸化物、硫化物、硫酸
塩、硼酸塩、塩化物等の1種または2種以上を0.1〜
10重量部添加したものを使用することを特徴とする請
求項1または2記載のグラス被膜特性が優れ、磁気特性
の良好な高磁束密度方向性電磁鋼板の製造方法。
3. A hydrated water of 1.0 to 2. as an annealing separating agent.
For 100 parts by weight of 5% MgO, Ti, Sb, Sr,
One or more of oxides, sulfides, sulfates, borates, chlorides and the like of Zr, Cu, Mn, Na, K and the like are used in an amount of 0.1 to 2%.
3. The method for producing a high magnetic flux density grain-oriented electrical steel sheet according to claim 1 or 2, wherein the magnetic flux density is 10% by weight.
JP4103220A 1992-04-22 1992-04-22 Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties Expired - Lifetime JP2599069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4103220A JP2599069B2 (en) 1992-04-22 1992-04-22 Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4103220A JP2599069B2 (en) 1992-04-22 1992-04-22 Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties

Publications (2)

Publication Number Publication Date
JPH05295441A JPH05295441A (en) 1993-11-09
JP2599069B2 true JP2599069B2 (en) 1997-04-09

Family

ID=14348416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4103220A Expired - Lifetime JP2599069B2 (en) 1992-04-22 1992-04-22 Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties

Country Status (1)

Country Link
JP (1) JP2599069B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5494268B2 (en) * 2010-06-15 2014-05-14 Jfeスチール株式会社 Annealing separator and method for producing grain-oriented electrical steel sheet
KR101762341B1 (en) * 2015-12-18 2017-07-27 주식회사 포스코 Annealing separating agent for oriented electrical steel, oriented electrical steel, and method for manufacturing oriented electrical steel
JP7031364B2 (en) * 2018-02-26 2022-03-08 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
US11603575B2 (en) 2018-03-20 2023-03-14 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing thereof
EP3913075A4 (en) * 2019-01-16 2022-09-07 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JPH05295441A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
US5512110A (en) Process for production of grain oriented electrical steel sheet having excellent magnetic properties
JP3220362B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPS633022B2 (en)
JP2599069B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
JP3846064B2 (en) Oriented electrical steel sheet
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JPH10130727A (en) Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JP3562433B2 (en) Grain-oriented silicon steel sheet with excellent magnetic and coating properties
JPH0762440A (en) Manufacture of grain-oriented silicon steel sheet with highly tensile and uniform glass coating film and excellent in magnetic property
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JP3336547B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JPH08165525A (en) Production of grain-oriented silicon steel sheet excellent in good glass coating and extremely good in magnetic characteristic
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
JPH08143975A (en) Annealing releasing agent and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic characteristics
JPH0832928B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and glass film properties
JPS633008B2 (en)
JP3463417B2 (en) Method for producing grain-oriented silicon steel sheet stably obtaining excellent magnetic properties
JP2781524B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JPH11269543A (en) Production of grain oriented electric steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 16