JPH01175104A - Conductive material - Google Patents

Conductive material

Info

Publication number
JPH01175104A
JPH01175104A JP33003587A JP33003587A JPH01175104A JP H01175104 A JPH01175104 A JP H01175104A JP 33003587 A JP33003587 A JP 33003587A JP 33003587 A JP33003587 A JP 33003587A JP H01175104 A JPH01175104 A JP H01175104A
Authority
JP
Japan
Prior art keywords
oxide
powder
mica
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33003587A
Other languages
Japanese (ja)
Inventor
Motohiko Yoshizumi
素彦 吉住
Kuniaki Wakabayashi
若林 邦昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP33003587A priority Critical patent/JPH01175104A/en
Publication of JPH01175104A publication Critical patent/JPH01175104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To improve adhesion to a mica surface and conductivity of a conductive material by a method wherein the mica surface is coated with Sn oxide containing a certain amount of Sb oxide. CONSTITUTION:A mica surface is coated with Sn oxide containing Sb oxide whose weight ratio is 20 to 100 with respect to an Sn weight ratio of 100 with the mica as a carrier, constituting a conductive material. The amount of Sn oxide coat containing Sb oxide is a weight ratio of 20 to 50 with respect to a mica weight ratio of 100. This improves adhesion to the mica surface and conductivity of the filler itself.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、樹脂組成物等に導電性を付与するために該樹
脂に混入される充填材等として好適な導電性物質に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a conductive substance suitable as a filler or the like that is mixed into a resin composition or the like to impart conductivity to the resin composition.

〔従来技術と問題点〕[Conventional technology and problems]

樹脂組成物等の帯電を防止するため、導電性の充填材を
樹脂に混入して樹脂組成物等に導電性を付与することが
行なわれている。
In order to prevent charging of resin compositions, etc., conductive fillers are mixed into the resin to impart conductivity to the resin compositions.

従来、導電性物質として当初は金属粉末、金属繊維など
が用いられていたが、これらは比重が大きく樹脂組成物
の重量を増す欠点があるため、比重の小さい雲母やチタ
ン酸アルカリ繊維などに金属被覆を設けたもの、或いは
金属酸化物からなる導電性物質が開発された。金属酸化
物からなる充填材の一例として酸化Sn粉末が知られて
いる。酸化Sn粉末は比重が小さい上に白色であり、樹
脂に混入した際に樹脂の色調を損なわない利点を有する
ので広く利用されている。また酸化SnにSbを含有さ
せることにより導電性を高めた酸化Sn粉末も知られて
いる(特開昭57−71822号)。
Conventionally, metal powders, metal fibers, etc. were initially used as conductive materials, but these have the disadvantage of having a high specific gravity and increasing the weight of the resin composition. Conductive materials have been developed that are coated or made of metal oxides. Sn oxide powder is known as an example of a filler made of metal oxide. Sn oxide powder has a small specific gravity and is white, and has the advantage that when mixed into a resin, it does not impair the color tone of the resin, so it is widely used. Also known is Sn oxide powder whose conductivity is improved by incorporating Sb into Sn oxide (Japanese Patent Application Laid-Open No. 71822/1983).

更に、雲母やチタン酸アルカリ繊維の表面に上記Sb含
有酸化Snを被覆した導電性物質も試みられティる(特
公昭61−26933号)が、 Sb含有酸化Sn被覆
が雲母表面に均一に付着し難い問題があり、また導電性
も不十分である。
Furthermore, attempts have been made to use conductive materials in which the surface of mica or alkali titanate fibers is coated with the above-mentioned Sb-containing Sn oxide (Japanese Patent Publication No. 61-26933), but the Sb-containing Sn oxide coating does not adhere uniformly to the mica surface. There are difficult problems, and the conductivity is also insufficient.

〔問題解決の知見〕[Problem-solving knowledge]

本発明者は、酸化Sb含有酸化Snを雲母に施す際、従
来、酸化Sbの最適含有量と考えられていた量以上に酸
化Sb量を増加すれば、雲母表面への密着性も改善され
且つ同時に充填材自体の導電性も向上することを見出し
た。
The present inventor has discovered that when applying Sn oxide containing Sb oxide to mica, if the amount of Sb oxide is increased beyond the amount conventionally considered to be the optimum content of Sb oxide, the adhesion to the mica surface will be improved. At the same time, it has been found that the conductivity of the filler itself is improved.

〔発明の構成〕[Structure of the invention]

本発明によれば、雲母を担体とし、該雲母表面に酸化S
n 100重量部に対して酸化Sb 20〜100重量
部からなる酸化Sb含有酸化Sn被覆が施された導電性
物質が提供される。
According to the present invention, mica is used as a carrier, and oxidized S is added to the surface of the mica.
There is provided a conductive material coated with Sn oxide containing Sb oxide and comprising 20 to 100 parts by weight of Sb oxide based on 100 parts by weight of n.

また、その好適な実施態様として、雲母100重量部に
対して酸化Sb含有酸化Sn被覆が20〜50重量部で
ある導電性物質が提供される。
Further, in a preferred embodiment thereof, there is provided a conductive material in which the amount of the Sb oxide-containing Sn oxide coating is 20 to 50 parts by weight based on 100 parts by weight of mica.

酸化Sbを含有する酸化Sn粉末(A)、酸化Sb含有
酸化SnをTiO□粉末に被覆した粉末(B)、 酸化
Sb含有酸化Snを雲母に被覆した粉末(C)の夫々に
ついて酸化Sb含有量と比抵抗(Ω・Cl11)との変
化を調べた。この結果を図に示す。図示するように、上
記酸化Sn粉末(A)と、Tie2粉末担体粉末(B)
については、酸化Sb含有量(酸化Sn 100重量部
に対する酸化Sbの部数)が約15重量部である場合に
これら粉末(A)、 (B)自体の比抵抗が極小となる
。従って雲母等の酸化Sb含有酸化Sn被覆を施す場合
にも上記酸化Sbが最適量であると従来考えられていた
。ところが、酸化Sb含有酸化Snを雲母に被覆した粉
末(C)について実際にその酸化5bfit と比抵抗
との関係を調べると、図示するように意外にも該粉末(
C)の比抵抗が極小となる酸化5bftは上記粉末(A
)、(B)と大幅に異なり30〜40重量部である。
Sb oxide content for each of Sn oxide powder (A) containing Sb oxide, powder (B) in which TiO□ powder is coated with Sn oxide containing Sb oxide, and powder (C) in which mica is coated with Sn oxide containing Sb oxide. The change in specific resistance (Ω·Cl11) was investigated. The results are shown in the figure. As shown in the figure, the Sn oxide powder (A) and the Tie2 powder carrier powder (B)
When the Sb oxide content (the number of parts of Sb oxide relative to 100 parts by weight of Sn oxide) is about 15 parts by weight, the specific resistance of these powders (A) and (B) themselves becomes minimum. Therefore, it was conventionally thought that the above-mentioned Sb oxide was the optimum amount even when applying a Sn oxide coating containing Sb oxide such as mica. However, when we actually investigated the relationship between the oxidation 5bfit and specific resistance of powder (C) in which mica was coated with Sn oxide containing Sb oxide, we found that the powder (C) unexpectedly
The oxidized 5bft with which the specific resistance of C) is minimal is the above powder (A).
) and (B), it is 30 to 40 parts by weight.

また、酸化Sb含有量と上記被覆の密着性についてみる
と、酸化Sb含有量が30〜40重量部の酸化Sn被覆
は酸化Sb含有量が10〜15重量部の酸化Sn被覆よ
り雲母表面への密着性が良い。
In addition, regarding the Sb oxide content and the adhesion of the above-mentioned coatings, the Sn oxide coating with an Sb oxide content of 30 to 40 parts by weight has a higher adhesion to the mica surface than the Sn oxide coating with an Sb oxide content of 10 to 15 parts by weight. Good adhesion.

本発明においては、上記知見に基づき且つ実用性を考慮
し、酸化Sbの含有量を、酸化Sn 100重量部に対
して酸化Sb 20〜100重量部とする。酸化Sbが
20重量部より少ないと、粉末自体の比抵抗が高くなり
、導電性が低下する。酸化Sb量が100重量部を超え
ると灰青色が強くなる。
In the present invention, based on the above findings and considering practicality, the content of Sb oxide is set to 20 to 100 parts by weight per 100 parts by weight of Sn oxide. When the amount of Sb oxide is less than 20 parts by weight, the specific resistance of the powder itself becomes high and the conductivity decreases. When the amount of Sb oxide exceeds 100 parts by weight, the gray-blue color becomes stronger.

雲母に対する上記被覆の量は、雲母100重量部に対し
て20〜50重量部が好ましい。被覆の量が20重量部
より少ないと、導電性が低下する。被覆の量が50重量
部を超えると、Sb含有酸化Sn粉末との混合粉と変ら
なくなる。
The amount of the above-mentioned coating on mica is preferably 20 to 50 parts by weight per 100 parts by weight of mica. If the amount of coating is less than 20 parts by weight, the conductivity will decrease. When the amount of coating exceeds 50 parts by weight, it is no different from a mixed powder with Sb-containing Sn oxide powder.

本発明にかかる導電性物質は既知の方法(特公昭60−
49136号等)を利用して製造することが出来る。
The conductive material according to the present invention can be prepared by a known method (Japanese Patent Publication No. 1983-
No. 49136, etc.).

(発明の効果〕 本発明の導′貨性物質は、従来の酸化Sn被覆を有する
充填材や、酸化Sb含有酸化Sn被覆を有する充填材に
比へて平板状であり、従って本発明の導電性物質を樹脂
に混練する場合、従来の充填材より少ない量で足りる。
(Effects of the Invention) The conductive substance of the present invention has a tabular shape compared to the conventional filler having an Sn oxide coating or the filler having an Sb oxide-containing Sn oxide coating. When kneading the chemical substance into the resin, a smaller amount is required than with conventional fillers.

また本発明の8亀性物質は被覆の密着性が良いので、樹
脂に混入する際にも被覆が剥離する虞が無い。
In addition, since the 8-mercury substance of the present invention has good coating adhesion, there is no fear that the coating will peel off when mixed into the resin.

〔実施例及び比較例〕[Examples and comparative examples]

本発明の実施例および比較例を以下に示す。尚、原料は
いずれも市販品を用いる。
Examples and comparative examples of the present invention are shown below. All raw materials used are commercially available products.

実施例−1 雲母粉末450gを水4Ωに分散し攪拌しながら90℃
に保持した。6N−HCIに60%溶解した塩化第二S
nおよび三塩化Sbを各々326g、84g計量し混合
した。
Example-1 450g of mica powder was dispersed in 4Ω of water and heated to 90°C with stirring.
was held at 60% S chloride dissolved in 6N-HCI
326 g and 84 g of Sb trichloride and Sb trichloride were weighed and mixed.

NaOH]、46gを水500n+Qに溶解した。各溶
液をpHが5以上にならないように同時に滴下し、滴下
後、懸濁液を10分間攪拌し、雲母粉末表面に被覆を析
出させ攪拌終了時のpHは1.4であった。続いて該懸
濁液を濾過、洗浄し、乾燥した後に600℃で2時間焼
成して、5bo2含有SnO2被覆を有する雲母粉末か
らなる本発明の導電性物質を得た。該粉末を100kg
/ciの圧力でプレスして圧粉体とし、その比抵抗を求
めた。この結果を表1に示す。尚、上記析出皮膜をX線
回折により調べたところ、5n02のブロードな回折ピ
ークがみられるが5bo2の回折ピ−クは認められなか
った。従ってSbO□はSnO2に固溶しているものと
考えられる。
NaOH], 46 g was dissolved in 500 n+Q of water. Each solution was added dropwise at the same time so that the pH did not exceed 5. After the addition, the suspension was stirred for 10 minutes to deposit a coating on the surface of the mica powder, and the pH at the end of stirring was 1.4. Subsequently, the suspension was filtered, washed, dried and then calcined at 600° C. for 2 hours to obtain the conductive material of the present invention consisting of mica powder with a 5bo2-containing SnO2 coating. 100kg of the powder
A green compact was obtained by pressing at a pressure of /ci, and its specific resistance was determined. The results are shown in Table 1. When the deposited film was examined by X-ray diffraction, a broad diffraction peak of 5n02 was observed, but no diffraction peak of 5bo2 was observed. Therefore, it is considered that SbO□ is dissolved in SnO2.

実施例−2 雲母粉末40gを水400mQに分散した。塩化第一5
n(SnC1□・2H20) 13gと三塩化Sb5.
2gをHCI IIJに溶解した。これを雲母分散液に
滴下し、続けてKOH17,6gを水50mUに溶解し
た液を雲母分散液に滴下した。両液滴下後のPHは5.
0であった。滴下後10分間懸濁液を攪拌した後に35
%H20□液7gを添加し80℃に昇温後、1時間攪拌
を続は反応を終了した。この時のpHは2.6であった
。その後、実施例1と同様の処理工程を経て本発明に係
る導電性物質を得た。該導電性物質からなる圧粉体の比
抵抗を表1に示す。
Example-2 40 g of mica powder was dispersed in 400 mQ of water. Daiichichloride 5
n(SnC1□・2H20) 13g and Sb trichloride5.
2g was dissolved in HCI IIJ. This was added dropwise to the mica dispersion, and then a solution prepared by dissolving 17.6 g of KOH in 50 mU of water was added dropwise to the mica dispersion. The pH after dropping both liquids was 5.
It was 0. After stirring the suspension for 10 minutes after dropping,
After adding 7 g of %H20□ solution and raising the temperature to 80°C, stirring was continued for 1 hour, and the reaction was completed. The pH at this time was 2.6. Thereafter, the same treatment steps as in Example 1 were carried out to obtain a conductive material according to the present invention. Table 1 shows the specific resistance of the green compact made of the conductive material.

実施例−3 NaO813,1gを水300mQに溶解し55℃に保
持した。
Example-3 813.1 g of NaO was dissolved in 300 mQ of water and kept at 55°C.

この溶液に雲母粉末30gを分散した。塩化第二5n(
SnC14・xH2O)23.3g、三塩化Sb 4.
7gをエタノール75mΩに溶解した液を滴下し反応を
行った。滴下終了後20分間攪拌を継続し、反応を終了
した。この時のPHは2.8であった。この後実施例1
と同様の処理工程を経て本発明に係る導電性物質を得た
30 g of mica powder was dispersed in this solution. 5n chloride (
SnC14.xH2O) 23.3g, Sb trichloride 4.
A solution prepared by dissolving 7 g of ethanol in 75 mΩ was added dropwise to carry out a reaction. After the dropwise addition was completed, stirring was continued for 20 minutes to complete the reaction. The pH at this time was 2.8. After this Example 1
A conductive material according to the present invention was obtained through the same treatment steps as described above.

該導電性物質からなる圧粉体の比抵抗を表1に示す。Table 1 shows the specific resistance of the green compact made of the conductive material.

実施例4.5 SbOz / SnO□比を変えた以外は実施例1又は
2と同様の処理工程を経て本発明の導電性物質を製造し
た。該導電性物質からなる圧粉体の比抵抗を表1に示す
Example 4.5 A conductive material of the present invention was produced through the same processing steps as in Example 1 or 2, except that the SbOz/SnO□ ratio was changed. Table 1 shows the specific resistance of the green compact made of the conductive material.

比較例l SbO2/5nOzの比を変えた以外は実施例1と同様
の処理工程を経て導電性物質を製造した。組成比および
粉末比抵抗を表1に示す。
Comparative Example 1 A conductive material was manufactured through the same processing steps as in Example 1 except that the ratio of SbO2/5nOz was changed. Table 1 shows the composition ratio and powder specific resistance.

比較例2 三菱金属製Sb含有SnO□燻電粉、粉末比抵抗1.3
Ω・C11lの粉末112.5gと雲母粉末200を水
1Q中に分散して10分間時間攪拌した。続いて該’I
FE液を濾過、乾燥した。該粉末を100kg/a&の
圧力でプレスし圧粉体とし、その比抵抗を求めた。組成
比および粉末比抵抗を表1に示す。
Comparative Example 2 Mitsubishi Metals Sb-containing SnO□ smoked electric powder, powder specific resistance 1.3
112.5 g of 11 l of Ω·C powder and 200 g of mica powder were dispersed in 1 Q of water and stirred for 10 minutes. Then the 'I'
The FE solution was filtered and dried. The powder was pressed at a pressure of 100 kg/a to form a green compact, and its specific resistance was determined. Table 1 shows the composition ratio and powder specific resistance.

比較例3 比較例2と同じ導電粉11.2gと雲母粉末10gを乳
鉢混合径小型サンプルミルで1分間づつ2回処理した。
Comparative Example 3 11.2 g of the same conductive powder and 10 g of mica powder as in Comparative Example 2 were processed twice for 1 minute each in a mortar mixing diameter small sample mill.

該粉末を100kg/clの圧力でプレスし圧粉体とし
、その比抵抗を求めた。組成比および粉末比抵抗を表1
に示す。
The powder was pressed at a pressure of 100 kg/cl to form a green compact, and its specific resistance was determined. Table 1 shows the composition ratio and powder specific resistance.
Shown below.

OSbo□量比は5n02100重量部に対するSbO
□の重量部数(Sb02/5nOz )○被覆量比は雲
母100重量部に対するSb/SnO□の重量部数実施
例6、比較例4 アクリル樹脂7gを溶剤21gに溶解した。これに実施
例1で得た導電性粉末3gを加えホモミキサーで5分間
分散し、アプリケーターでポリエステルフィルムに塗工
した。乾燥膜厚は47μmであった。
The amount ratio of OSbo□ is 5n02100 parts by weight of SbO
Parts by weight of □ (Sb02/5nOz) ○ Coverage ratio is parts by weight of Sb/SnO□ relative to 100 parts by weight of mica Example 6, Comparative Example 4 7 g of acrylic resin was dissolved in 21 g of solvent. 3 g of the conductive powder obtained in Example 1 was added to this and dispersed for 5 minutes using a homomixer, and then applied to a polyester film using an applicator. The dry film thickness was 47 μm.

表面抵抗は1.4 X 107Ω/Δであった。The surface resistance was 1.4×107Ω/Δ.

Tie、にSb含有SnO□を被覆した1、9Ω・cm
の白色導電粉7gをアクリル樹脂7gを溶剤21gに溶
解した塗料とをホモミキサーで5分間分散した。アプリ
ケーターでポリエステルフィルムを塗工し、乾燥膜厚7
1.4μmを得た。この塗膜の表面抵抗は1.1×10
’Ω/Δであった。
Tie, coated with Sb-containing SnO□ 1.9Ω・cm
7 g of white conductive powder was dispersed with a paint prepared by dissolving 7 g of acrylic resin in 21 g of solvent using a homomixer for 5 minutes. Apply polyester film with applicator, dry film thickness 7
1.4 μm was obtained. The surface resistance of this coating is 1.1×10
'Ω/Δ.

以上の結果から明らかなように本発明に係る雪母担体導
@粉を樹脂に固型分比30%混入した場合の表面抵抗と
同程度の表面抵抗をTiO□担体Sb含有SnO□粉末
を用いて得ようとすれば、約1.5倍量、即ち固型分比
50%まで用いなければならない。
As is clear from the above results, using the TiO□ carrier Sb-containing SnO□ powder, the surface resistance was comparable to the surface resistance when the snow matrix carrier conductive powder according to the present invention was mixed into the resin at a solid content ratio of 30%. If you want to obtain the same amount, you have to use up to about 1.5 times the amount, that is, up to 50% solid content.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は酸化Sb含有酸化Sn粉末、及び該酸化Sn被覆
を有する粉末について酸化Sb量と比抵抗との関係を示
すグラフである。 特許呂願人三菱金属株式会社 代理人弁理士松井政広(化1名) 剛iSn 100q+rR*b碌ILSbtr9pfj
−手続補正書 昭和63年2月72日 特許庁長官 小 川 邦 夫 殿 1、事件の表示 昭和62年 特 許 願 第330035号2、発明の
名称 導電性物質 3、補正をする者 事件との関係  特許呂原人 名称(626)三菱金属−式会社 4、代理人(〒164) 住 所 東京都中野区本町1丁目31番4号シティーハ
イムゴスモ1003号室 電話(03)373−5571(代) 6、補正により増加する発明の数  なし7、補正の対
象 明細書の発明の詳細な説明の欄8、補正の内容 別
紙のとおり ×3−一 補正の内容 明細書の詳細な説明の欄の記載を次のとおり訂正する。 1、明細書の第9頁表1 」 □□□□l 」 と訂正する。 2、明a書の第10頁第2行目の「Δ」を「口二と訂正
する。 3、明細書の第10頁第8行目の「△」をr口」と訂正
する。
The drawing is a graph showing the relationship between the amount of Sb oxide and the specific resistance of a Sn oxide powder containing Sb oxide and a powder coated with Sn oxide. Patent applicant Masahiro Matsui (1 person) Patent attorney Mitsubishi Metals Corporation Tsuyoshi iSn 100q+rR*b 碌ILSbtr9pfj
- Procedural amendment February 72, 1988 Kunio Ogawa, Commissioner of the Patent Office 1, Indication of the case 1988 Patent Application No. 330035 2, Name of the invention Conductive substance 3, Person making the amendment Relationship Patent Rogen Name (626) Mitsubishi Metals - Shiki Kaisha 4, Agent (164) Address City Heim Gosmo Room 1003, 1-31-4 Honmachi, Nakano-ku, Tokyo Telephone (03) 373-5571 (Main) ) 6. Number of inventions increased by amendment None 7. Subject of amendment Column 8: Detailed explanation of the invention in the description 8. Contents of the amendment As shown in the attached document The description is corrected as follows. 1. Table 1 on page 9 of the specification is corrected as "□□□□l". 2. Correct ``Δ'' on page 10, line 2 of Book A to ``kuchi 2''. 3. Correct ``△'' on page 10, line 8 of the specification to read ``r ku''.

Claims (2)

【特許請求の範囲】[Claims] (1)雲母を担体とし、該雲母表面に酸化Sn100重
量部に対して酸化Sb20〜100重量部からなる酸化
Sb含有酸化Sn被覆が施された導電性物質。
(1) An electrically conductive material using mica as a carrier and having the surface of the mica coated with an Sb oxide-containing Sn oxide coating consisting of 20 to 100 parts by weight of Sb oxide based on 100 parts by weight of Sn oxide.
(2)雲母100重量部に対して酸化Sb含有酸化Sn
被覆が20〜50重量部である特許請求の範囲第1項記
載の導電性物質。
(2) Sn oxide containing Sb oxide based on 100 parts by weight of mica
The conductive material according to claim 1, wherein the coating is 20 to 50 parts by weight.
JP33003587A 1987-12-28 1987-12-28 Conductive material Pending JPH01175104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33003587A JPH01175104A (en) 1987-12-28 1987-12-28 Conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33003587A JPH01175104A (en) 1987-12-28 1987-12-28 Conductive material

Publications (1)

Publication Number Publication Date
JPH01175104A true JPH01175104A (en) 1989-07-11

Family

ID=18228043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33003587A Pending JPH01175104A (en) 1987-12-28 1987-12-28 Conductive material

Country Status (1)

Country Link
JP (1) JPH01175104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008002324T5 (en) 2007-08-30 2010-07-22 Kyocera Corporation Cutting tool and cutting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008002324T5 (en) 2007-08-30 2010-07-22 Kyocera Corporation Cutting tool and cutting method
DE112008002324B4 (en) 2007-08-30 2017-11-02 Kyocera Corporation Cutting tool and cutting method

Similar Documents

Publication Publication Date Title
EP0025583B1 (en) Electroconductive powder and process for production thereof
US5399432A (en) Galvanically compatible conductive filler and methods of making same
GB1574007A (en) Cermets
JPH07118217B2 (en) Conductive composition
JPH01175104A (en) Conductive material
JPS63241818A (en) Manufacture of superconducting wire rod
JPS5868918A (en) Electronic part with electrode layer and method of producing same
JP4046785B2 (en) Non-conductive carbonaceous powder and method for producing the same
JPS5837166A (en) Production of noble metal coated powder
JPH01172224A (en) Electrically conductive fiber
JPH064789B2 (en) Method for producing thin film conductive material
JPH08259838A (en) Nonelectroconductive carbonaceous powder and its production
JPH077876B2 (en) Conductive resin film and method for manufacturing the same
JP3032839B2 (en) Planar heating element
JPS6346258A (en) Electrically conductive resin composition
JPS5834870A (en) Composite powder composition
JPH0623537Y2 (en) Flake glass with protective coating
JPS58209002A (en) Method of producing white conductive powder
JP2583077B2 (en) Conductive iron oxide particle powder and method for producing the same
JPS61136532A (en) Fibrous white electroconductive substance
JP2704526B2 (en) Conductive iron oxide particle powder and method for producing the same
JPS6129624B2 (en)
JPH0575698B2 (en)
JP2704527B2 (en) Conductive iron oxide particle powder and method for producing the same
JPS58127742A (en) Electrically conductive resin blend composition