JPH0117021B2 - - Google Patents

Info

Publication number
JPH0117021B2
JPH0117021B2 JP56043234A JP4323481A JPH0117021B2 JP H0117021 B2 JPH0117021 B2 JP H0117021B2 JP 56043234 A JP56043234 A JP 56043234A JP 4323481 A JP4323481 A JP 4323481A JP H0117021 B2 JPH0117021 B2 JP H0117021B2
Authority
JP
Japan
Prior art keywords
pilot
differential pressure
valve
pressure
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56043234A
Other languages
Japanese (ja)
Other versions
JPS57157854A (en
Inventor
Masaru Nakamura
Toshio Uchimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP4323481A priority Critical patent/JPS57157854A/en
Publication of JPS57157854A publication Critical patent/JPS57157854A/en
Publication of JPH0117021B2 publication Critical patent/JPH0117021B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gear-Shifting Mechanisms (AREA)
  • Control Of Transmission Device (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は複数の摩擦ブレーキシリンダを作動し
て変速比を異ならせる伝動装置の変速制御装置に
関するものである。 遊星歯車式の伝動装置は、一般に前進方向と後
進方向の歯車列と、数組の異なる速度比の速度歯
車列を組合せた構成のものと、前述の前後方向歯
車列及び速度歯車列の組合せにさらに高速と低速
の高低速歯車列を加えた構成のもの等が知られて
いる。 かかる伝動装置は、歯車列となる遊星歯車機構
の回転要素の回転を固定することによつて作動状
態となり、前・後進方向歯車列と速度歯車列ある
いは前・後進方向歯車列と速度歯車列及び高・低
速歯車列の各歯車列より選択されたそれぞれの遊
星歯車機構を組合せ作動することにより異なる変
速比を得る。前述の遊星歯車機構の回転要素の固
定は、遊星歯車機構の備える摩擦ブレーキシリン
ダへ液圧を加えることによつて得られる。 液圧は、一般的には前後進歯車列へ選択的に液
圧を供給する前・後方向制御弁と、速度歯車列へ
選択的に液圧を供給する速度段制御弁を含む液圧
制御装置、あるいは高・低速歯車列へ選択的に液
圧を供給する高低速制御弁を加えた液圧制御装置
により作用される。 前述の各制御弁は、1本または2本の操作レバ
と機械的コントロールリンク機構により連結され
る。 たとえば、速度段制御弁と前後方向制御弁を1
本の操作レバーに機械的リンク連結し操作レバー
の左右方向揺動により前後方向制御弁の切換えを
するとともに、操作レバーの前後方向揺動により
速度段制御弁の変速切換えをはかるコントロール
リンク機構がある。 その他には、1本の操作レバーに速度段制御
弁・前後方向制御弁及び高低速制御弁を機械的リ
ンク連結した構成あるいは速度制御弁と高・低速
制御弁を1本の操作レバーに機械的リンク連結
し、前後方向制御弁を別の1本の操作レバーに機
械的リンク連結する構成等が実施されている。 前記した従来の各歯車列ごとに個別の制御弁を
備えて機械的コントロールリンク機構により1本
の操作レバーに連結し、操作レバーの左右前後方
向揺動にて複数制御弁の切換シフトをする方式は
コントロールリンク機構が複雑なだけでなく、複
数の制御弁が切換位置へ正規にシフト及停止する
ようにコントロールリンク機構の動きの調整を必
要としやつかいであつた。 本発明は上記の事情に鑑みなされたものであ
り、その目的は異なる速度比を有する速度歯車列
と方向駆動歯車列あるいは高低速駆動歯車列を含
みそれぞれの歯車列より1個の遊星歯車機構を選
択組合せして変速動力の伝動状態を得る伝動装置
において、変速組合せパターンを持つた単一セレ
クタバルブにより2つの選択した各歯車列の遊星
歯車機構の摩擦ブレーキシリンダにブレーキ係合
作動液圧流体が供給されるようにした伝動装置の
変速制御装置を提供することである。 以下図面を参照して本発明の実施例を説明す
る。 第1図は前進6速・後進1速の伝動装置Mの変
速制御装置を示すものであり、図中のH・Lは図
示しない高・低速駆動歯車列を構成する遊星機構
のそれぞれの摩擦ブレーキシリンダ、,,
は速度歯車列を構成する遊星機構のそれぞれの摩
擦ブレーキブレーキシリンダ、Rは方向駆動列前
後進方向歯車列を構成する遊星機構のそれぞれの
摩擦ブレーキシリンダを示す。 そして、各摩擦ブレーキシリンダはバネ力で切
となり、受圧室H′,L′,′,′,′,R′に液
圧が供給されると接となる構造であり、下記作動
表図に示すように変速比が得られる。
The present invention relates to a speed change control device for a transmission device that operates a plurality of friction brake cylinders to provide different speed ratios. Planetary gear type transmissions generally have a configuration that combines forward and reverse gear trains, several sets of speed gear trains with different speed ratios, and a combination of the aforementioned longitudinal gear train and speed gear train. Furthermore, configurations in which high-speed and low-speed gear trains are added are also known. Such a transmission device is put into operation by fixing the rotation of the rotational element of the planetary gear mechanism, which is a gear train, and operates by fixing the rotation of the rotational element of the planetary gear mechanism, which is a gear train, and has a forward/reverse direction gear train and a speed gear train, or a forward/reverse direction gear train, a speed gear train, and a speed gear train. Different speed ratios are obtained by operating the planetary gear mechanisms selected from each of the high and low speed gear trains in combination. Fixation of the rotating elements of the planetary gear mechanism described above is obtained by applying hydraulic pressure to a friction brake cylinder provided in the planetary gear mechanism. Hydraulic pressure is generally controlled by front and rear control valves that selectively supply hydraulic pressure to forward and backward gear trains, and speed control valves that selectively supply hydraulic pressure to speed gear trains. or a hydraulic control system with the addition of a high/low speed control valve that selectively supplies hydraulic pressure to the high and low speed gear trains. Each of the aforementioned control valves is connected by one or two operating levers and a mechanical control linkage. For example, if the speed control valve and longitudinal direction control valve are
There is a control link mechanism that is mechanically connected to the operating lever and switches the longitudinal control valve by swinging the operating lever in the left-right direction, and also changes the speed of the speed control valve by swinging the operating lever in the longitudinal direction. . Other methods include a structure in which the speed control valve, longitudinal direction control valve, and high/low speed control valve are mechanically linked to one operating lever, or a structure in which the speed control valve and the high/low speed control valve are mechanically linked to one operating lever. A configuration in which the longitudinal direction control valve is mechanically linked to another operating lever has been implemented. The above-mentioned conventional method provides individual control valves for each gear train and connects them to a single operating lever by a mechanical control link mechanism, and switches and shifts multiple control valves by swinging the operating lever in the left-right and front-back directions. Not only was the control link mechanism complicated, but the movement of the control link mechanism had to be adjusted so that the plurality of control valves could be properly shifted to the switching position and stopped. The present invention has been made in view of the above circumstances, and its object is to include a speed gear train and a directional drive gear train or a high and low speed drive gear train having different speed ratios, and to generate one planetary gear mechanism from each gear train. In a transmission device that selectively combines transmission states of variable speed power, a single selector valve having a variable speed combination pattern supplies brake engagement hydraulic fluid to the friction brake cylinders of the planetary gear mechanism of each of the two selected gear trains. It is an object of the present invention to provide a speed change control device for a transmission device. Embodiments of the present invention will be described below with reference to the drawings. Fig. 1 shows the speed change control device of the transmission device M with 6 forward speeds and 1 reverse speed, and H and L in the figure are respective friction brakes of the planetary mechanism constituting the high and low speed drive gear trains (not shown). Cylinder,,,
denotes each friction brake brake cylinder of the planetary mechanism constituting the speed gear train, and R denotes each friction brake cylinder of the planetary mechanism constituting the directional drive train forward and backward direction gear train. Each friction brake cylinder is configured to be disconnected by spring force and to be in contact when hydraulic pressure is supplied to the pressure receiving chambers H', L', ', ', ', R', as shown in the operation chart below. The gear ratio can be obtained as follows.

【表】 第1図の前進6速・後進1速のパワートレイン
構成をもつ伝動装置の実施例の場合、前記各歯車
列の摩擦ブレーキシリンダH,L,R,,,
の摩擦ブレーキシリンダ回路には、第1〜第5
パイロツト差圧シフトバルブ10〜14を備えて
ある。 各パイロツト差圧シフトバルブ10〜14は、
ポンプ15の回路16より分岐したレジユシング
バルブ17を有するパイロツト圧回路18よりの
パソロツト圧を受ける。 前記パイロツト圧回路18は、それぞれのパイ
ロツト差圧シフトバルブに対して第1〜第5分流
回路19〜23にわかれ、各パイロツト差圧シフ
トバルブの両端受圧面にパイロツト圧を作用す
る。 各分流回路19〜23は、第1〜第5ドレン回
路24〜28に連通し、各ドレン回路24〜28
は選択的に単一セレクタバルブ29により開閉さ
れる。 前記各パイロツト差圧シフトバルブ10〜14
は、両端の受圧面積を等しくしてあり、一方側に
置いた付勢バネ30により中立位置にバランス保
持される。 そして、両端の受圧面間の中間路に絞り31〜
35を備えてあつて、ドレン回路24〜28が選
択的に開放されたときに、絞り31〜35は前記
シフトバルブの両端受圧面に差圧を発生させ、パ
イロツト圧流体を前記バルブ付勢ばね30に打勝
つ力に維持して中立位置より作用位置へシフトす
るように運動切換をする。 前述のパイロツト差圧シフトバルブ10〜14
のシフト運動はパイロツト圧ドレーン回路24〜
28を選択的に解放する単一セレクタバルブ29
により制御する。 この単一セレクタバルブ29は、変速パターン
の組合せ切換位置を持つていて、作動表に示すご
とく摩擦ブレーキシリンダのパイロツト差圧シフ
トバルブ10〜14を組合せてシフトし、ブレー
キ係合作動液圧流体の供給を作用する。 ブレーキ係合作動液圧流体はポンプ15より回
路16から供給される。回路16の入り口には絞
り36を設けてあつて、絞り36以後の下流回路
の流体排出作用により分岐したパイロツト圧回路
18に圧力変動の波及するのを防止して、パイロ
ツト差圧シフトバルブ10〜14のバランスが崩
れないように保護する。 前述の回路16には公知の油圧モジユレーシヨ
ンバルブ37と油圧モジユレーシヨン作用の繰返
し再現バルブ38を設けてあり、ブレーキ係合作
動液圧流体を調圧のうえ、パイロツト差圧シフト
バルブ10〜14に回路を連結してある。 本実施例の前進6速、後進1速パワトレインの
場合低速度段と第3速度段は回転クラツチを用い
ているのでシール保護のためにレジユシングバル
ブ39にて減圧した別回路40を持つている。 第2〜第5パイロツト差圧シフトバルブ11〜
14は、前記流体の摩擦ブレーキシリンダへの供
給位置(作用位置)とシリンダからの排出位置
(中立位置)をもつた2位置ポジシヨンを持つて
いる。なお、第1パイロツト差圧シフトバルブ1
0は、選択的にいずれか一方の摩擦ブレーキシリ
ンダに対する流体の給排出をするシフトバルブと
してある。つまり、中立位置であるとH摩擦ブレ
ーキシリンダに供給し、作用位置であるとL摩擦
ブレーキシリンダに供給する。 以上において、単一セレクタバルブ29が中立
位置Nにあるときはパイロツト差圧シフトバルブ
10〜14のドレン回路24〜28は閉鎖されて
いるために図示の状態にあり、以下後進位置R、
前進1速位置F1、前進2速位置F2、前進3速
位置F3、前進4速位置F4、前進5速位置F5、
前進6速位置F6とシフトすると、作動表に記し
たごとく摩擦ブレーキシリンダのパイロツト差圧
シフトバルブがシフトされてブレーキ係合作動液
圧流体を摩擦ブレーキシリンダに供給し、変速動
力伝動を制御する。 つまり、後進位置Rとすると第1・第5ドレー
ン回路24,28が解放されて第1・第2パイロ
ツト差圧シフトバルブ10,11が作動位置とな
つてLとRと摩擦ブレーキシリンダが作動する。 前進1速位置F1とすると第2・第5ドレーン
回路25,28が解放されて第1、第3パイロツ
ト差圧シフトバルブ10,12が作動位置となつ
てLとの摩擦ブレーキシリンダが作動する。 前進2速位置F2とすると第2ドレーン回路2
5が解放し、第3パイロツト差圧シフトバルブ1
2が作動位置となつてHとの摩擦ブレーキシリ
ンダが作動する。 前進3速位置F3とすると第3・第5ドレーン
回路26,28が解放され第1・第4パイロツト
差圧シフトバルブ10,13が作動位置となつて
Lとの摩擦ブレーキシリンダが作動する。 前進4速位置F4とすると第3ドレーン回路2
6が解放され第4パイロツト差圧シフトバルブ1
3が作動位置となつてHとの摩擦ブレーキシリ
ンダが作動する。 前進5速位置F5とすると第4・第5ドレーン
回路27,28が解放され第1・第5パイロツト
差圧シフトバルブ10,14が作動位置となつて
Lとの摩擦ブレーキシリンダが作動する。 前進6速位置F6とすると第4ドレーン回路2
7が解放され第5パイロツト差圧シフトバルブ1
4が作動位置となつてHとの摩擦ブレーキシリ
ンダが作動する。 以上の様に、単一セレクタバルブ29のみを順
次シフトすることで後進1速・前進1速〜前進6
速に順次変速比が得られる。つまり、単一セレク
タバルブ29は変速組合せパターンを備えてい
る。 したがつて、1本の操作レバを機械的コントロ
ールリンク機構で単一セレクタバルブ29に連結
すれば良いので、その構造が簡単となると共に、
調整が容易となる。 第2図に示す実施例は、前進8速、後進8速の
場合の実施例を示すものであつて、速度歯車列
,,,及びL・Hの高低速駆動列の摩擦
ブレーキシリンダにたいして、パイロツト差圧シ
フトバルブ401〜405を回路結合のうえ、変速
パターンの組合せ制御をもつた単一セレクタバル
ブ55により作動表に記すこととパイロツト差圧
シフトバルブの作用制御を行ない、速度比の選択
をする。いつぽう、F・Rの方向駆動列の選択を
別のマニアルシフト弁50により操作するように
した実施例を示すものである。 また、この実施例の場合は、前述の実施例で説
明したパイロツト圧回路の圧力保持手段として用
いた絞り36のかわりに、圧力維持弁51を用い
た実施例としてあり、また、前述の実施例の場合
は、単一セレクタバルブ29をN位置としたとき
にパイロツト差圧シフトバルブ10〜14が中立
(流体供給遮断位置)に付勢バネの力で戻るよう
にしているが、この戻りに不具合があるとブレー
キ係合作動液圧流体はブレーキ摩擦シリンダに入
つて車両を発進状態にする危険がある。 第2図の実施例は、この危険を避けるために、
ブレーキ作動液圧回路52にカツトオフバルブ5
3を設け、パイロツト圧回路54からのパイロツ
ト圧にて作動を制御するようにし、車両の中立時
はパイロツト圧を単一セレクタバルブ55の中立
よりドレンさせて、カツトオフバルブ53による
回路遮断をはかり、ブレーキ摩擦シリンダへの係
合作動液圧流体の供給を断つようにしてある。 本発明は以上の様に構成したので、パイロツト
差圧シフトバルブのドレン回路をドレン側に連通
すると、パイロツト圧回路のパイロツト圧油は絞
りを有する中間路及びドレン回路を経てドレン側
に流れて絞り前後に差圧が生じて、パイロツト差
圧シフトバルブの両端受圧面に作用するパイロツ
ト圧が差圧が生じてパイロツト差圧シフトバルブ
が第2の位置となり、ドレン回路をドレン側に連
通しないと中間路にパイロツト圧が流れずにパイ
ロツト差圧シフトバルブの両端受圧面に作用する
パイロツト圧に差圧が生じないからパイロツト差
圧シフトバルブは第1の位置となる。 このようであるから、パイロツト差圧シフトバ
ルブはドレン回路をドレン側に連通したり、遮断
したりすることでスムーズに第1の位置、第2の
位置に切換つて摩擦ブレーキシリンダを時間遅れ
なく直ちに作動できる。 さらに、各パイロツト差圧シフトバルブのドレ
ン回路は単一セレクタバルブ29によつてドレン
側に連通されると共に、その単一セレクタバルブ
29は複数の変速パターンの組合せ切換位置を有
し、いずれかの切換位置にシフトすることで所定
の変速比と対応するいずれかの摩擦ブレーキシリ
ンダの受圧室と接続したパイロツト差圧シフトバ
ルブのドレン回路がドレン側に連通して所定の変
速比になる。 したがつて、前述のパイロツトシフト差圧シフ
トと単一セレクタバルブ29を組み合せること
で、その単一セレクタバルブ29をいずれかの切
換位置にシフトすることで、時間遅れなく所定の
変速比に変速できると共に、単一セレクタバルブ
29をシフトするのみで変速できるから操作系統
を簡易化できる。
[Table] In the case of the embodiment of the transmission device with the power train configuration of 6 forward speeds and 1 reverse speed shown in Fig. 1, the friction brake cylinders H, L, R, .
The friction brake cylinder circuit includes the first to fifth
Pilot differential pressure shift valves 10-14 are provided. Each pilot differential pressure shift valve 10 to 14 is
It receives the pilot pressure from a pilot pressure circuit 18 having a regulating valve 17 branched from the circuit 16 of the pump 15. The pilot pressure circuit 18 is divided into first to fifth branch circuits 19 to 23 for each pilot differential pressure shift valve, and applies pilot pressure to pressure receiving surfaces at both ends of each pilot differential pressure shift valve. Each of the shunt circuits 19 to 23 communicates with the first to fifth drain circuits 24 to 28, and each of the drain circuits 24 to 28
are selectively opened and closed by a single selector valve 29. Each of the pilot differential pressure shift valves 10 to 14
The pressure-receiving areas at both ends are equal, and the balance is maintained at a neutral position by a biasing spring 30 placed on one side. Then, the throttle 31~
35, when the drain circuits 24 to 28 are selectively opened, the throttles 31 to 35 generate a pressure difference between the pressure receiving surfaces at both ends of the shift valve, and direct the pilot pressure fluid to the valve biasing spring. The movement is switched so as to maintain the force overcoming the force of 30 and shift from the neutral position to the operating position. The aforementioned pilot differential pressure shift valves 10 to 14
The shift movement is caused by the pilot pressure drain circuit 24~
Single selector valve 29 selectively releases 28
Controlled by This single selector valve 29 has a combination switching position for the speed change pattern, and shifts the pilot differential pressure shift valves 10 to 14 of the friction brake cylinder in combination as shown in the operation table, and shifts the brake engagement hydraulic fluid. Act supply. Brake engagement hydraulic fluid is supplied from circuit 16 by pump 15 . A throttle 36 is provided at the inlet of the circuit 16 to prevent pressure fluctuations from spreading to the pilot pressure circuit 18 which is branched off due to the fluid discharge action of the downstream circuit after the throttle 36, and to prevent pressure fluctuations from spreading to the pilot pressure circuit 18 branched off. Protect 14 from losing balance. The aforementioned circuit 16 is provided with a well-known hydraulic modulation valve 37 and a hydraulic modulation action repeating valve 38, which regulates the pressure of the brake engagement hydraulic fluid and then operates the pilot differential pressure shift valves 10 to 14. The circuit is connected to the . In the case of the 6 forward speed, 1 reverse speed powertrain of this embodiment, since the low speed stage and the 3rd speed stage use a rotary clutch, there is a separate circuit 40 that is depressurized by a reducing valve 39 to protect the seal. ing. 2nd to 5th pilot differential pressure shift valves 11 to
Reference numeral 14 has two positions, including a position for supplying the fluid to the friction brake cylinder (acting position) and a position for discharging the fluid from the cylinder (neutral position). Note that the first pilot differential pressure shift valve 1
0 is a shift valve that selectively supplies and discharges fluid to either one of the friction brake cylinders. That is, when it is in the neutral position, it is supplied to the H friction brake cylinder, and when it is in the operating position, it is supplied to the L friction brake cylinder. In the above, when the single selector valve 29 is in the neutral position N, the drain circuits 24 to 28 of the pilot differential pressure shift valves 10 to 14 are closed, so they are in the state shown in the figure, and henceforth, in the reverse position R,
1st forward gear position F1, 2nd forward gear position F2, 3rd forward gear position F3, 4th forward gear position F4, 5th forward gear position F5,
When shifting to the forward 6th speed position F6, the pilot differential pressure shift valve of the friction brake cylinder is shifted as shown in the operation table to supply brake engagement hydraulic fluid to the friction brake cylinder and control the transmission of power for changing speed. In other words, when the reverse position is set to R, the first and fifth drain circuits 24 and 28 are released, the first and second pilot differential pressure shift valves 10 and 11 are in the operating position, and the L, R and friction brake cylinders are operated. . When the first forward speed position F1 is reached, the second and fifth drain circuits 25 and 28 are released, the first and third pilot differential pressure shift valves 10 and 12 are brought to the operating position, and the friction brake cylinder with L is operated. If the forward 2nd speed position is F2, the second drain circuit 2
5 is released and the third pilot differential pressure shift valve 1
2 is in the operating position, and the friction brake cylinder with H is activated. When the third forward speed position is set to F3 , the third and fifth drain circuits 26 and 28 are released, the first and fourth pilot differential pressure shift valves 10 and 13 are in the operating position, and the friction brake cylinder with L is operated. If the forward 4th gear position is F 4 , the third drain circuit 2
6 is released and the fourth pilot differential pressure shift valve 1
3 is in the operating position and the friction brake cylinder with H is activated. When the fifth forward speed position is set to F5, the fourth and fifth drain circuits 27 and 28 are released, the first and fifth pilot differential pressure shift valves 10 and 14 are in the operating position, and the friction brake cylinder with L is operated. If the forward 6th speed position is F6, the fourth drain circuit 2
7 is released and the fifth pilot differential pressure shift valve 1
4 is in the operating position, and the friction brake cylinder with H is activated. As described above, by sequentially shifting only the single selector valve 29, 1st reverse speed, 1st forward speed to 6th forward speed is achieved.
The transmission ratio can be obtained sequentially. In other words, the single selector valve 29 has a speed change combination pattern. Therefore, it is only necessary to connect one operating lever to the single selector valve 29 using a mechanical control linkage, which simplifies the structure and
Adjustment becomes easy. The embodiment shown in FIG. 2 shows an embodiment in the case of 8 forward speeds and 8 reverse speeds, and the pilot The differential pressure shift valves 40 1 to 40 5 are connected in a circuit, and a single selector valve 55 that controls the combination of speed change patterns is used to record the operation table and control the operation of the pilot differential pressure shift valve, thereby selecting the speed ratio. do. This shows an embodiment in which the selection of the F and R direction drive trains is operated by another manual shift valve 50. In addition, in this embodiment, a pressure maintenance valve 51 is used in place of the throttle 36 used as a pressure retention means in the pilot pressure circuit explained in the previous embodiment, and In this case, when the single selector valve 29 is set to the N position, the pilot differential pressure shift valves 10 to 14 return to neutral (fluid supply cutoff position) by the force of the biasing spring, but there is a problem with this return. If there is, there is a risk that brake engagement hydraulic fluid will enter the brake friction cylinder and cause the vehicle to move away. In order to avoid this danger, the embodiment of FIG.
A cut-off valve 5 is provided in the brake operating hydraulic pressure circuit 52.
3 is provided so that the operation is controlled by the pilot pressure from the pilot pressure circuit 54, and when the vehicle is in the neutral position, the pilot pressure is drained from the neutral position of the single selector valve 55, and the circuit is cut off by the cut-off valve 53. , the supply of engagement hydraulic fluid to the brake friction cylinder is cut off. Since the present invention is constructed as described above, when the drain circuit of the pilot differential pressure shift valve is communicated with the drain side, the pilot pressure oil in the pilot pressure circuit flows to the drain side through the intermediate path having a throttle and the drain circuit, and is then throttled. A differential pressure is created between the front and rear, and the pilot pressure acting on the pressure receiving surfaces at both ends of the pilot differential pressure shift valve becomes the second position. The pilot differential pressure shift valve is in the first position because no pilot pressure flows through the pilot pressure path and no differential pressure is generated between the pilot pressures acting on the pressure receiving surfaces at both ends of the pilot differential pressure shift valve. Because of this, the pilot differential pressure shift valve can smoothly switch to the first position and the second position by connecting or cutting off the drain circuit to the drain side, and immediately activates the friction brake cylinder without any time delay. Can operate. Furthermore, the drain circuit of each pilot differential pressure shift valve is communicated to the drain side by a single selector valve 29, and the single selector valve 29 has a combination switching position for a plurality of speed change patterns, and can be set to either one of the plurality of shift pattern combinations. By shifting to the switching position, the drain circuit of the pilot differential pressure shift valve connected to the pressure receiving chamber of one of the friction brake cylinders corresponding to a predetermined gear ratio is communicated to the drain side, and the predetermined gear ratio is achieved. Therefore, by combining the aforementioned pilot shift differential pressure shift and the single selector valve 29, by shifting the single selector valve 29 to any of the switching positions, the gear can be shifted to a predetermined gear ratio without time delay. In addition, the operation system can be simplified because the gear can be changed by simply shifting the single selector valve 29.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明のそれぞれ異なる実施
例を示す説明図であり、第3図は第2実施例の作
動表図である。
1 and 2 are explanatory diagrams showing different embodiments of the present invention, and FIG. 3 is an operation table diagram of the second embodiment.

Claims (1)

【特許請求の範囲】 1 複数の摩擦ブレーキシリンダを作動して変速
比を異ならせる伝動装置の変速制御装置におい
て、 前記各摩擦ブレーキシリンダの受圧室を、パイ
ロツト差圧シフトバルブによつてポンプの吐出側
にそれぞれ接続制御すると共に、該各パイロツト
差圧シフトバルブを、バネ力で受圧室をドレン側
に連通する第1の位置となり、両端受圧面に作用
するパイロツト圧の差圧によつて受圧室をポンプ
の吐出側に連通する第2の位置となる構造とし、 そのパイロツト差圧シフトバルブの両端受圧面
を絞り有する中間路で連通し、その中間路の一方
側をパイロツト圧回路に接続すると共に、他方側
をドレン回路に接続し、 各パイロツト差圧バルブのドレン回路を選択的
にドレン側に連通する単一セレクタバルブ29を
設け、 該単一セレクタバルブ29を、所定の変速比と
対応するいずれかの摩擦ブレーキシリンダの受圧
室と接続したパイロツト差圧シフトバルブのドレ
ン回路をドレン側に連通する複数の変速パターン
の組合せ切換位置にシフトされる構造としたこと
を特徴とする伝動装置の変速制御装置。
[Scope of Claims] 1. In a speed change control device for a transmission device that operates a plurality of friction brake cylinders to vary the speed ratio, the pressure receiving chamber of each friction brake cylinder is controlled by a pilot differential pressure shift valve to control the discharge of a pump. At the same time, each pilot differential pressure shift valve is placed in the first position where the pressure receiving chamber is communicated with the drain side by the spring force, and the pressure receiving chamber is controlled by the differential pressure of the pilot pressure acting on the pressure receiving surfaces at both ends. is structured to be a second position communicating with the discharge side of the pump, and the pressure receiving surfaces at both ends of the pilot differential pressure shift valve are communicated through an intermediate passage having a throttle, and one side of the intermediate passage is connected to the pilot pressure circuit. , the other side is connected to a drain circuit, and a single selector valve 29 is provided to selectively communicate the drain circuit of each pilot differential pressure valve to the drain side, and the single selector valve 29 is connected to a predetermined gear ratio. Shifting of a transmission device characterized by having a structure in which a drain circuit of a pilot differential pressure shift valve connected to a pressure receiving chamber of one of the friction brake cylinders is shifted to a combination switching position of a plurality of shifting patterns communicating with the drain side. Control device.
JP4323481A 1981-03-26 1981-03-26 Speed change controller of transmission Granted JPS57157854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4323481A JPS57157854A (en) 1981-03-26 1981-03-26 Speed change controller of transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4323481A JPS57157854A (en) 1981-03-26 1981-03-26 Speed change controller of transmission

Publications (2)

Publication Number Publication Date
JPS57157854A JPS57157854A (en) 1982-09-29
JPH0117021B2 true JPH0117021B2 (en) 1989-03-28

Family

ID=12658212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4323481A Granted JPS57157854A (en) 1981-03-26 1981-03-26 Speed change controller of transmission

Country Status (1)

Country Link
JP (1) JPS57157854A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249063A (en) * 1985-08-28 1987-03-03 Kubota Ltd Hydraulic structure of working vehicle
CN109649368A (en) * 2019-01-25 2019-04-19 眉山中车制动科技股份有限公司 A kind of brake auxiliary system, brake and detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085032A (en) * 1973-12-05 1975-07-09
JPS5122137A (en) * 1974-08-19 1976-02-21 Matsushita Electric Works Ltd NENSHO SOCHI

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085032A (en) * 1973-12-05 1975-07-09
JPS5122137A (en) * 1974-08-19 1976-02-21 Matsushita Electric Works Ltd NENSHO SOCHI

Also Published As

Publication number Publication date
JPS57157854A (en) 1982-09-29

Similar Documents

Publication Publication Date Title
JPS6219623B2 (en)
KR0168298B1 (en) Hydraulic control system of automatic transmission for a vehicle
EP0121705A2 (en) Hydraulic control system for automatic transmission with shockless 4-3 shifting well as shockless 2-3 shifting
US4607542A (en) Hydraulic control system for automatic transmission with shockless 4-3 and 4-2 shiftings
KR100222820B1 (en) Hydraulic control system of automatic transmission for a vehicle
JPS621141B2 (en)
JPH0117021B2 (en)
JP2854836B2 (en) Hydraulic pressure control system for vehicle automatic transmission
US5239896A (en) Hydraulic servomechanism control system in automatic transmission
US5725451A (en) Control system for automatic transmission
JPH05209683A (en) Oil pressure control device for shift-by-wire automatic transmission
KR100309015B1 (en) Hydraulic control system for automatic transmission
JPS6333023B2 (en)
KR100325218B1 (en) Hydraulic control system of automatic transmission
KR20000020024A (en) System for controlling hydraulic pressure in automatic transmission of vehicle
JP3091524B2 (en) Hydraulic control device for automatic transmission
KR100316923B1 (en) Hydraulic deviation reducing device for automatic transmission
JPH0914425A (en) Hydraulic controller for automatic transmission
KR100309021B1 (en) Hydraulic control system for automatic transmission
KR100298711B1 (en) System for controlling hydraulic pressure of automatic transmission in vehicle
JP3839367B2 (en) Hydraulic control device
KR100279434B1 (en) Hydraulic Control System of Automotive Transmission
KR100193260B1 (en) Hydraulic control system of automatic transmission for vehicles
JPH09264405A (en) Hydraulic control circuit for automatic transmission
JP2006177390A (en) Hydraulic control device for automatic transmission