JPH01157452A - Fiber reinforced superconductor - Google Patents

Fiber reinforced superconductor

Info

Publication number
JPH01157452A
JPH01157452A JP62314363A JP31436387A JPH01157452A JP H01157452 A JPH01157452 A JP H01157452A JP 62314363 A JP62314363 A JP 62314363A JP 31436387 A JP31436387 A JP 31436387A JP H01157452 A JPH01157452 A JP H01157452A
Authority
JP
Japan
Prior art keywords
fiber
oxide superconductor
superconductor
fine
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62314363A
Other languages
Japanese (ja)
Inventor
Hisashi Yoshino
芳野 久士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62314363A priority Critical patent/JPH01157452A/en
Publication of JPH01157452A publication Critical patent/JPH01157452A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the title dense superconductor having high mechanical strength and high critical current density by dispersing fine inorganic fibers in an oxide superconductor. CONSTITUTION:After precalcining a powder mixture of elements such as Y, Ba, Cu, etc., constituting an oxide superconductor and pulverizing the precalcined product, the pulverized product is molded to a desired shape, and calcined at 850-980 deg.C in O2-contg. atmosphere. Then, the calcined product is heat-treated while cooling the calcined product at <=600 deg.C to obtain thus an oxygen deficient perovskite type oxide superconductor expressed by the formula (wherein Ln is at least one kind of element selected from rare earth elements; delta is a number of deficient oxygen atom), which is then pulverized and an oxide superconductor is obtd. 99-80vol.% said powder and 1-20vol.% at least one kind of inorganic fine fiber selected from fine alumina fiber, fine SiC fiber, fine Si3N4 fiber, and fine potassium titanate fiber, are mixed. After molding preliminarily the mixture to a desired shape, the product is subjected to impact molding and sintered at 850-950 deg.C in O2-contg. atmosphere, then heat-treated at 300-600 deg.C in O2- contg. atmosphere to introduce thus oxygen thereinto.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導体に係り、特に機械的強度に優
れた酸化物超電導体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an oxide superconductor, and particularly to an oxide superconductor having excellent mechanical strength.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(Z、Phys、B Condensed Mat
ter64、189−193(1986))。その中で
もl/−Ba−Cu−0系で代表される酸素欠陥を有す
る欠陥ペロブスカイト型(LnBa2Cu3O−t−δ
型)(δハ酸素欠陥ヲ表ワL1通常1以下、Lnは、Y
、 La、 Sc、 Nd、 Sm、 Eu1Gd。
(Prior Art) In recent years, it has been announced that layered perovskite-type oxides based on Ba-La-Cu-0 may have a high critical temperature, and since then, research on oxide superconductors has been carried out in various places. (Z, Phys, B Condensed Mat
ter64, 189-193 (1986)). Among them, defective perovskite type (LnBa2Cu3O-t-δ
Type) (δ represents oxygen defects, L1 is usually less than 1, Ln is Y
, La, Sc, Nd, Sm, Eu1Gd.

Dy1No、[r、 rm、 yb、iよび[Uから選
ばれた少なくとも1種の元素、Baの一部はSr¥?で
置換可能)の酸化物超電導体は、臨界温疫が90に以上
と液体窒素以上の高い温度を示すため非常に有望な材料
として注目されティる( Phys、 Rev、 Le
tt、Vol、58No、 9.908−910)。
Dy1No, at least one element selected from [r, rm, yb, i and [U, part of Ba is Sr\? Oxide superconductors (which can be replaced by
tt, Vol. 58 No. 9.908-910).

しかしながら、この酸化物超電導体は結晶性の酸化物で
あって機械的応力に対して弱く、一定値以上歪むと超電
導特性が低下または消滅する。このため、従来の酸化物
超電導体を用いた5!)電部材では、用途によっては実
用的な機械的強度、たとえば引張り強度や曲げ強度を得
ることが困難であり、使用時において所望の電流密度を
得ることが困難であるという問題があった。
However, this oxide superconductor is a crystalline oxide and is weak against mechanical stress, and when it is distorted beyond a certain value, its superconducting properties deteriorate or disappear. For this reason, 5! using conventional oxide superconductors! ) In electrical components, it is difficult to obtain practical mechanical strength, such as tensile strength or bending strength, depending on the use, and it is difficult to obtain a desired current density during use.

(発明が解決しようとする問題点) このように、従来の酸化物超電導体を用いた導電部材は
、用途によっては別械的強度が不充分であるという問題
があった。
(Problems to be Solved by the Invention) As described above, the conventional conductive member using an oxide superconductor has a problem in that the mechanical strength is insufficient depending on the application.

本発明は、かかる従来の難点を解消すべくなされたもの
で、酸化物超電導体を用い、実用上充分な機械的強度を
有するmM強化超電導体を提供することを目的としてい
る。
The present invention was made to solve these conventional problems, and an object of the present invention is to provide an mM-strengthened superconductor using an oxide superconductor and having a mechanical strength sufficient for practical use.

[発明の構成] (問題点を解決するための手段) ザなわら、本発明の繊維強化超電導体は、酸化物超電′
導体中に、無機微繊維が分散されてなることを特徴とし
ている。
[Structure of the Invention] (Means for Solving the Problems) The fiber-reinforced superconductor of the present invention is an oxide superconductor.
It is characterized by having inorganic fine fibers dispersed in the conductor.

本発明には各種の酸化物超電導体を用いることができる
が、臨界温度の高い、希土類元素含有のペロブスカイト
型の酸化物超電導体を用いた場合に特に実用的効果が大
きい。
Although various oxide superconductors can be used in the present invention, the use of a perovskite-type oxide superconductor containing a rare earth element, which has a high critical temperature, has a particularly large practical effect.

上記の希土類元素を含有しペロブスカイト型構造を有す
る酸化物超電導体は、超電導状態を実現できるものであ
ればよく、LnBa2Cu3O□−δ系(δは酸素欠陥
を表し通常1以下の数、[nは、Y、La、 Sc、 
Nd、 Sm、 Eu、 Gd、 Dy、 Ho、 E
r、 Tm、 YbおよびLt+から選ばれた少なくと
も1種の元素、Baの一部はSr等で置換可能)等の酸
素欠陥を有する欠陥ペロブスカイト型、5r−La−C
u−0系等の層状ペロブスカイト型等の広義にペロブス
カイト型を有する酸化物が例示される。また希土類元素
も広義の定義とし、Sc、  YおよびLa系を含むも
のとする。
The above-mentioned oxide superconductor containing a rare earth element and having a perovskite structure may be one that can realize a superconducting state, and is based on LnBa2Cu3O□-δ (δ represents an oxygen defect and is usually a number of 1 or less, [n is ,Y,La,Sc,
Nd, Sm, Eu, Gd, Dy, Ho, E
5r-La-C
Examples include oxides having a perovskite type in a broad sense, such as a layered perovskite type such as u-0 type. Rare earth elements are also broadly defined to include Sc, Y, and La elements.

代表的な系としてY−Ba−Cu−0系のほかに、Yを
Eu。
In addition to the Y-Ba-Cu-0 system, Y is replaced by Eu as a typical system.

口■、Ho、 Er、 Tm、 Yb、 Lu等の希土
類で置換した系、5c−Ba−Cu−0系、5r−La
−Cu−0系、ざらにSrをBa、 Caで置換した系
等が挙げられる。
*, Ho, Er, Tm, Yb, system substituted with rare earth elements such as Lu, 5c-Ba-Cu-0 system, 5r-La
Examples include -Cu-0 series, and systems in which Sr is roughly replaced with Ba or Ca.

本発明に用いる酸化物超電導体は、たとえば以下に示す
製造方法により得ることができる。
The oxide superconductor used in the present invention can be obtained, for example, by the manufacturing method shown below.

まず、Y、 Ba5Cu等のべOブス力イト型酸化物超
電導体の構成元素を充分混合する。混合の際には、Y2
O3、CuO等の酸化物を原料として用いることができ
る。また、これらの酸化物のほかに、焼成後酸化物に転
化する炭酸塩、硝酸塩、水酸化物等の化合物を用いても
よい。さらには、共沈法等で得たシュウ酸塩等を用いて
もよい。ペロブスカイト型酸化物超電導体を構成する元
素は、基本的に化学m論比の組成となるように混合する
が、多少製造条件等との関係でずれていても差支えない
。たとえば、Y−Ba−Cu−0系ではY 1 mol
に対しBa 2 mol、Cu 3 nofが標準組成
であるが、実用上はY 1 mofに対して、Ba 2
±0.6 mol、Cu a±0.2 mol程度のず
れは問題ない。
First, the constituent elements of the beta-Obstone oxide superconductor, such as Y and Ba5Cu, are thoroughly mixed. When mixing, Y2
Oxides such as O3 and CuO can be used as raw materials. In addition to these oxides, compounds such as carbonates, nitrates, and hydroxides that are converted into oxides after firing may be used. Furthermore, oxalate obtained by a coprecipitation method or the like may be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a composition in a stoichiometric ratio, but there is no problem even if the composition deviates slightly depending on the manufacturing conditions and the like. For example, in the Y-Ba-Cu-0 system, Y 1 mol
The standard composition is Ba 2 mol and Cu 3 nof for Y 1 mof, but in practice, Ba 2 mol and Cu 3 nof are used for Y 1 mof.
A deviation of approximately ±0.6 mol and Cu a ±0.2 mol is not a problem.

前述の原料を混合した後、仮焼、粉砕し所望の形状にし
た後、850〜980℃程度で焼成する。仮焼は必ずし
も必要ではない。仮焼および焼成は充分な酸素が供給で
きるような酸素含有雰囲気中で行うことが好ましい。所
望の形状に焼成した後、酸素含有雰囲気中で熱処理して
超電導特性を付与する。上記熱処理は、通常600℃以
下で徐冷しながら行うようにする。
After mixing the above-mentioned raw materials, they are calcined and pulverized into a desired shape, and then fired at about 850 to 980°C. Calcining is not necessarily necessary. Preferably, calcination and firing are performed in an oxygen-containing atmosphere where sufficient oxygen can be supplied. After firing into a desired shape, it is heat-treated in an oxygen-containing atmosphere to impart superconducting properties. The above heat treatment is usually performed at 600° C. or lower while slowly cooling.

このようにして得られた酸化物超電導体は、酸素欠陥δ
を有する酸素欠陥型ペロブスカイト構造(LnBa  
Cu  O(δは通常1以下))となる。
The oxide superconductor thus obtained has oxygen defects δ
Oxygen-deficient perovskite structure (LnBa
Cu O (δ is usually 1 or less)).

231−δ なお、BaをSr、 Caの少なくとも1種で置換する
こともでき、ざらにCUの一部をTi1V、 Cr1H
n、 Fe。
231-δ Note that Ba can also be replaced with at least one of Sr and Ca, and roughly a part of CU can be replaced with Ti1V, Cr1H
n, Fe.

C01Ni、 Zn等で置換することもできる。It can also be replaced with C01Ni, Zn, etc.

この置換ωは、超電導特性を低下させない程度の範囲で
適宜設定可能であるが、あまりに多量の置換は超電導特
性を低下させてしまうので80molX以下、さらに実
用上は2011101%以下程度までとする。
This substitution ω can be set as appropriate within a range that does not reduce the superconducting properties, but too much substitution will reduce the superconducting properties, so it is set to 80 molX or less, and in practice, to about 2011101% or less.

本発明に用いる態別微繊維は、酸化物超電導体との熱膨
張差が小さく、かつ機械的強度に優れたセラミックス微
繊維であることが好ましい。このようなセラミックス微
繊維としては、アルミナ微IIi維、炭化ケイ素微11
11t、チタン酸カリウム微繊維、窒化ケイ素微繊維等
が挙げられる。これらのセラミックス微繊維は、CVD
法、VLS法および昇華再結晶法等の気相成長法や、溶
融原料からの紡糸法等により得ることができる。
The classified fine fibers used in the present invention are preferably ceramic fine fibers that have a small difference in thermal expansion from the oxide superconductor and have excellent mechanical strength. Such ceramic fine fibers include alumina fine IIi fibers, silicon carbide fine 11
11t, potassium titanate fine fibers, silicon nitride fine fibers, and the like. These ceramic fine fibers are made by CVD
It can be obtained by a vapor phase growth method such as a method, a VLS method, a sublimation recrystallization method, a spinning method from a molten raw material, or the like.

本発明の繊維強化超電導体は、たとえば次のようにして
製造することができる。
The fiber-reinforced superconductor of the present invention can be manufactured, for example, as follows.

まず、前述の酸化物超電導体をボールミル等の公知の手
段により粉砕して得た酸化物超電導体粉末99〜80体
積%と、無機微繊維1〜20体V1%とを混合し、所望
の形状に予備成形した後、火薬や圧縮ガス等を利用して
!75!加圧成形を施す。次いで、酸素含有雰囲気中8
50〜950℃で焼成した後、酸素含有雰囲気中3O0
〜600℃で酸素導入のための熱処理を行う。
First, 99 to 80 volume % of oxide superconductor powder obtained by pulverizing the above-mentioned oxide superconductor by a known means such as a ball mill, and 1 to 20 V1% of inorganic fine fibers are mixed, and a desired shape is obtained. After preforming, use gunpowder or compressed gas! 75! Apply pressure molding. 8 in an oxygen-containing atmosphere.
After firing at 50-950℃, 3O0 in oxygen-containing atmosphere
Heat treatment for oxygen introduction is performed at ~600°C.

酸化物超電導体粉末と無機微amとを混合するにあたっ
て、無機微繊維の割合いが1体積x未満であると、実用
的な機械的強度を得ることができないので好ましくない
。一方、無機微繊維の割合いが20体積%を超えると、
酸化物超電導体と反応する無機微illの量が増加して
超電導特性を低下させ過ぎるので好ましくない。
When mixing the oxide superconductor powder and the inorganic fine am, it is not preferable that the proportion of the inorganic fine fiber is less than 1 volume x, since practical mechanical strength cannot be obtained. On the other hand, when the proportion of inorganic fine fibers exceeds 20% by volume,
This is not preferable because the amount of inorganic fine ill that reacts with the oxide superconductor increases, resulting in excessive deterioration of superconducting properties.

また、焼成時および酸素導入時の熱処理は、無機微繊維
が酸化物超電導体と反応して消滅してしまわないように
条件設定する。この条件設定は用いる酸化物超電導体お
よび無機微繊維の組成にもよるが、焼成時で概ね900
℃2分〜3O分、酸素導入時で概ね500℃1時間〜2
4時間である。
Further, the heat treatment conditions during firing and oxygen introduction are set so that the inorganic fine fibers do not react with the oxide superconductor and disappear. Although this condition setting depends on the composition of the oxide superconductor and inorganic fine fiber used, it is approximately 900% when fired.
℃ 2 minutes to 30 minutes, approximately 500℃ when introducing oxygen 1 hour to 2
It is 4 hours.

(作 用) 本発明の繊維強化超電導体は、酸化物超電導体との熱膨
張差が小さくかつ機械的強度に優れた無機微lINが酸
化物超電導体中に分散されているため、超ff11体全
体の機械的強度が向上する。
(Function) The fiber-reinforced superconductor of the present invention has a super FF11 structure because inorganic fine IN, which has a small difference in thermal expansion from the oxide superconductor and has excellent mechanical strength, is dispersed in the oxide superconductor. Overall mechanical strength is improved.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例1 酸化物超電導体の原料として、Y2O3粉末0.5m0
1%、BaCO3粉末2mo1%、 CuO粉末3mO
1%を用い、これらを充分混合して大気中900℃で8
時間焼成した後ボールミルを用いて粉砕して、平均粒径
2μmの酸化物超電導体粉末とした。
Example 1 Y2O3 powder 0.5m0 as raw material for oxide superconductor
1%, BaCO3 powder 2mo1%, CuO powder 3mO
1%, mix them thoroughly and heat them at 900℃ in the atmosphere for 8 hours.
After baking for a period of time, it was ground using a ball mill to obtain an oxide superconductor powder with an average particle size of 2 μm.

この酸化物超Ti導体粉末90体積%とSiC微繊維1
0体g1%とを充分混合し、10×10×20ilIl
lに予備成形した後、火薬を用いたVfJs加圧成形に
より104k(Jf/ ciの圧力を加えて、7x 7
x 15mn+の成形物を得た。
This oxide super Ti conductor powder 90% by volume and SiC fine fiber 1
0 body g1% and 10×10×20ilIl
After preforming to 7x7 by applying a pressure of 104k (Jf/ci) by VfJs pressure forming using gunpowder,
A molded product of x 15 mn+ was obtained.

得られた成形物を、酸素含有雰囲気中900℃で10分
焼成した後、酸素含有雰囲気中500℃で12時間熱処
理して酸化物超電導体の結晶構造中の酸素空席に酸素を
導入して繊維強化超電導体を17だ。
The obtained molded product was fired at 900°C for 10 minutes in an oxygen-containing atmosphere, and then heat-treated at 500°C for 12 hours in an oxygen-containing atmosphere to introduce oxygen into the oxygen vacancies in the crystal structure of the oxide superconductor, forming a fiber. The reinforced superconductor is 17.

このようにして得たm雑強化超電導体の臨界温度は87
に1曲げ強度は11k(Jf/ciであった。
The critical temperature of the m miscellaneous reinforced superconductor obtained in this way is 87
The bending strength was 11k (Jf/ci).

なお、無機微繊維として^1□03を用いた場合でも、
同様の結果が得られた。
Furthermore, even when ^1□03 is used as the inorganic fine fiber,
Similar results were obtained.

比較例 実施例と同様にして冑た酸化物超電導体粉末を用いて、
実施例と同様に予備成形、衝撃加圧成形、焼成および酸
素導入のための熱処理を施して、酸化物超電導体を得た
Comparative Example Using oxide superconductor powder prepared in the same manner as in Example,
An oxide superconductor was obtained by performing preforming, impact molding, firing, and heat treatment for oxygen introduction in the same manner as in Examples.

この酸化物超電導体の臨界温度は90K、曲げ強度は5
kQf/a!であった。
The critical temperature of this oxide superconductor is 90K, and the bending strength is 5
kQf/a! Met.

[発明の効果] 以上説明したように、本発明の、tIN強化超電導体は
、従来の酸化物超電導体に比べて機械的強度に優れてい
る。
[Effects of the Invention] As explained above, the tIN-reinforced superconductor of the present invention has superior mechanical strength compared to conventional oxide superconductors.

したがって、本発明によれば酸化物超電導体を用いた超
電導部材の用途を広げることが可能となる。
Therefore, according to the present invention, it is possible to expand the uses of superconducting members using oxide superconductors.

さらに、本発明の繊維強化超電導体は衝撃加圧成形によ
り得られるため、酸化物超電導体結晶の緻密化も図られ
、これにより臨界電流密度も向上する。
Furthermore, since the fiber-reinforced superconductor of the present invention is obtained by impact molding, the oxide superconductor crystal can be made denser, thereby improving the critical current density.

出願人     株式会社 東芝 代理人弁理士  須 山 佐 −Applicant: Toshiba Corporation Representative Patent Attorney Su Yamasa -

Claims (5)

【特許請求の範囲】[Claims] (1)酸化物超電導体中に、無機微繊維が分散されてな
ることを特徴とする繊維強化超電導体。
(1) A fiber-reinforced superconductor characterized in that inorganic fine fibers are dispersed in an oxide superconductor.
(2)無機微繊維は、アルミナ微繊維、炭化ケイ素微繊
維、チタン酸カリウム微繊維および窒化ケイ素微繊維の
少なくとも1種であることを特徴とする特許請求の範囲
第1項記載の繊維強化超電導体。
(2) The fiber-reinforced superconductor according to claim 1, wherein the inorganic fine fibers are at least one of alumina fine fibers, silicon carbide fine fibers, potassium titanate fine fibers, and silicon nitride fine fibers. body.
(3)酸化物超電導体は、希土類元素を含有するペロブ
スカイト型の酸化物超電導体であることを特徴とする特
許請求の範囲第1項または第2項記載の繊維強化超電導
体。
(3) The fiber-reinforced superconductor according to claim 1 or 2, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element.
(4)酸化物超電導体は、Ln元素(Lnは、希土類元
素から選ばれた少なくとも1種の元素)、BaおよびC
uを原子比で実質的に1:2:3の割合で含有すること
を特徴とする特許請求の範囲第1項ないし第3項のいず
れか1項記載の繊維強化超電導体。
(4) The oxide superconductor contains Ln element (Ln is at least one element selected from rare earth elements), Ba and C
The fiber-reinforced superconductor according to any one of claims 1 to 3, characterized in that it contains u in an atomic ratio of substantially 1:2:3.
(5)酸化物超電導体は、LnBa_2Cu_3O_7
_−_δ(δは酸素欠陥を表わす)で表わされる酸素欠
陥型ペロブスカイト構造を有することを特徴とする特許
請求の範囲第1項ないし第4項のいずれか1項記載の繊
維強化超電導体。
(5) The oxide superconductor is LnBa_2Cu_3O_7
The fiber-reinforced superconductor according to any one of claims 1 to 4, characterized in that it has an oxygen-deficient perovskite structure represented by _-_δ (δ represents an oxygen defect).
JP62314363A 1987-12-11 1987-12-11 Fiber reinforced superconductor Pending JPH01157452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314363A JPH01157452A (en) 1987-12-11 1987-12-11 Fiber reinforced superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314363A JPH01157452A (en) 1987-12-11 1987-12-11 Fiber reinforced superconductor

Publications (1)

Publication Number Publication Date
JPH01157452A true JPH01157452A (en) 1989-06-20

Family

ID=18052432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314363A Pending JPH01157452A (en) 1987-12-11 1987-12-11 Fiber reinforced superconductor

Country Status (1)

Country Link
JP (1) JPH01157452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106373A1 (en) * 2002-06-18 2003-12-24 University Of Wollongong Superconducting material and method of synthesis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106373A1 (en) * 2002-06-18 2003-12-24 University Of Wollongong Superconducting material and method of synthesis
US7838465B2 (en) 2002-06-18 2010-11-23 University Of Wollongong Method of synthesis of a superconducting material

Similar Documents

Publication Publication Date Title
JPS63291817A (en) Oxide superconductor
JPH01157452A (en) Fiber reinforced superconductor
JPS63270317A (en) Oxide superconductor
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2593475B2 (en) Oxide superconductor
JPS63279512A (en) Superconductor wire rod and its manufacture
JP2752969B2 (en) Oxide superconductor
JP2597579B2 (en) Superconductor manufacturing method
JPH01160860A (en) Production of sintered material of oxide superconductor
JPS63279513A (en) Superconductor wire rod and its manufacture
JPH01164762A (en) Compound oxide type superconducting sintered body
JP2597578B2 (en) Superconductor manufacturing method
JPH01160858A (en) Sintered material of oxide superconductor
JPS63307110A (en) Oxide superconductor
JPS63270309A (en) Oxide superconductor
JPH01164785A (en) Production of oxide superconductor
JPH0259466A (en) Oxide superconducting sintered body
JP2000344525A (en) Bismuth based oxide superconducting body and calcined powder for manufacturing the same
JPS63279530A (en) Manufacture of superconductor molding
JPH01126259A (en) Production of oxide superconductor
JPS63291818A (en) Oxide superconductor
JPH01157453A (en) Production of oxide superconductor
JPH02157154A (en) Ceramics electrical conductive material
JPS63310765A (en) Ceramic material ensuring superconduction at high temperature