JPS63310765A - Ceramic material ensuring superconduction at high temperature - Google Patents

Ceramic material ensuring superconduction at high temperature

Info

Publication number
JPS63310765A
JPS63310765A JP62145245A JP14524587A JPS63310765A JP S63310765 A JPS63310765 A JP S63310765A JP 62145245 A JP62145245 A JP 62145245A JP 14524587 A JP14524587 A JP 14524587A JP S63310765 A JPS63310765 A JP S63310765A
Authority
JP
Japan
Prior art keywords
ceramic material
superconduction
high temperature
superconducting
material ensuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62145245A
Other languages
Japanese (ja)
Inventor
Noboru Ichinose
昇 一ノ瀬
Mitsuyoshi Nishida
西田 光儀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP62145245A priority Critical patent/JPS63310765A/en
Publication of JPS63310765A publication Critical patent/JPS63310765A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the mechanical strength of La-Ba-Cu-O type ceramics without deteriorating the superconducting characteristics by incorporating F into the ceramics. CONSTITUTION:This ceramic material ensuring superconduction at high temp. has a compsn. represented by a formula (Lu1-xBax)3Cu3O9-yFz (where Lu is one or more kinds of rare earth elements selected among Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm and Yb, x=0.2-0.8, y=2.2-3 and z=0-1). Since the F in the compsn. acts as a mineralizer when the ceramic material is sintered, the sinterability of the ceramic material is improved and the mechanical strength is also improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高温で超電導を示すセラミック系超電導化合
物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to ceramic superconducting compounds that exhibit superconductivity at high temperatures.

従来の技術 従来、電気抵抗がOになる超電導転移温度TCの高い超
電導材料としては、Nb5Sn、Nb5Qeなどの合金
系のものが知られている。しかしこれらはせいぜいTC
が23Kまでであり、広く実用化されるにはほど遠いも
のであった。
BACKGROUND OF THE INVENTION Conventionally, alloy-based materials such as Nb5Sn and Nb5Qe are known as superconducting materials having a high superconducting transition temperature TC at which the electrical resistance becomes O. However, these are at most TC
was up to 23K, and was far from being widely put into practical use.

最近J、 G、 Bedno l z等によりBa−L
a−Cu−0系酸化物混合相の焼結体が13に以下で抵
抗率が減少すること、また直流磁化率が30により反磁
性に転することを示し、高温超電導の可能性を示唆して
以来、各国で高温超電導体の研究が活発に行われている
。1987年に入って、C,W、P、Chu等により 
Y13a 2 Cu 30r−y系で、液体窒素温度7
7)(ヲ上回る90に程度のTCを示すことが発表され
、続りてYを他の希土類元素で置換した、組成式 Ln
Ba 2 Cu 30q−y (Ln G、を希土類光
% ) テ表ワされるセラミック材料が、いずれも同程
度の高りTCを有する超電導体であることがわかってき
た。
Recently, Ba-L by J, G, Bednolz et al.
It was shown that the resistivity of the a-Cu-0 mixed oxide sintered body decreases below 13, and that the DC magnetic susceptibility changes to diamagnetic at 30, suggesting the possibility of high-temperature superconductivity. Since then, research on high-temperature superconductors has been actively conducted in various countries. In 1987, C. W. P. Chu et al.
Y13a 2 Cu 30r-y system, liquid nitrogen temperature 7
7) (It was announced that it showed a TC of about 90, exceeding that of Ln, and subsequently, Y was replaced with another rare earth element.
It has become clear that the ceramic materials used in Ba 2 Cu 30q-y (LnG, rare earth %) are all superconductors having similar high TC.

発明が解決しようとする問題点 これらのセラミック超電導体は、通常焼結法によって製
造される。ところが従来の得られているものは焼結性が
悪く、非常に脆いという欠点があり、実用上問題があっ
た。
Problems to be Solved by the Invention These ceramic superconductors are usually manufactured by a sintering method. However, the conventionally available materials have poor sinterability and are extremely brittle, which poses practical problems.

本発明はL n−B a−Cu−0系超電導セラミツク
材料の特性、特にその機械的強度を改善することを目的
とする。
The object of the present invention is to improve the properties of Ln-B a-Cu-0 based superconducting ceramic materials, especially their mechanical strength.

問題点を解決するための手段 本発明者等は種々検討した結果、この種の超電導セラミ
ックスの機械的強度は、弗素(F)を含有させることに
より大ぎく向上することを見出した。
Means for Solving the Problems As a result of various studies, the present inventors have found that the mechanical strength of this type of superconducting ceramic can be greatly improved by incorporating fluorine (F).

即ち本発明は、  (Ln+−x8ax)3cu 30
s−yFz<但ししnはY、 l−a 、 Nd 、 
3n 。
That is, the present invention provides (Ln+-x8ax)3cu 30
s-yFz<where n is Y, 1-a, Nd,
3n.

Eu 、Gd 、Dy 、Ho 、Er 、Tnおよび
Ybから選ばれる選ばれる希土類元素の1種または2種
以上の組合わせ、0.2≦x≦0.8.2.2≦y≦3
.0.0<Z≦1.0)なる組成を有する高温超電導セ
ラミック材料である。
One or a combination of two or more selected rare earth elements selected from Eu, Gd, Dy, Ho, Er, Tn and Yb, 0.2≦x≦0.8.2.2≦y≦3
.. It is a high temperature superconducting ceramic material having a composition of 0.0<Z≦1.0).

J 弗素を含有させることにより、L n−Ba−Cu−0
系セラミツクスの機械的強度が大幅に改善される。
By containing J fluorine, L n-Ba-Cu-0
The mechanical strength of ceramics is significantly improved.

これは弗素が焼結時、鉱化剤として動き、焼結性が向上
するためと考えられる。
This is thought to be because fluorine acts as a mineralizer during sintering, improving sinterability.

弗素fiizを1.0以下としたのは、1.0を越える
と鉱化剤としての効果がなくなり、逆に焼結密度が低下
するためである。第1図は、 [)■o2Yo、a B
a 2.OCu 306.6 FZで表わされるセラミ
ック材料において弗素量2と密度との関係を調べたもの
である。この図より、2が1.0を越えると、弗素を全
く含有しない場合より密度が低下していることがわかる
The reason why fluorine fiiz is set to 1.0 or less is because if it exceeds 1.0, the effect as a mineralizing agent disappears, and conversely, the sintered density decreases. Figure 1 shows [)■o2Yo, a B
a2. The relationship between the amount of fluorine 2 and the density was investigated in the ceramic material represented by OCu 306.6 FZ. This figure shows that when 2 exceeds 1.0, the density is lower than when no fluorine is contained.

バリウム(8a )のmxが、0.2≦x≦0.8ノ範
囲外では、超電導を示すペロブスカイト相が得られなか
ったり、Tcが液体窒糸温度以下になったりして、高温
超電導体が得られない。
If mx of barium (8a) is outside the range of 0.2≦x≦0.8, a perovskite phase exhibiting superconductivity may not be obtained, or Tc may be below the liquid nitrogen temperature, resulting in a high-temperature superconductor. I can't get it.

またyが2.2≦y≦3.0の範囲外では、第2図に示
すように十分高いTcが得られない。第2図はYo、9
3a 2.I Cu 309−y Fo、3で表わされ
る化合物において、yとTcの関係を調べたものである
Further, if y is outside the range of 2.2≦y≦3.0, a sufficiently high Tc cannot be obtained as shown in FIG. Figure 2 is Yo, 9
3a 2. In the compound represented by I Cu 309-y Fo, 3, the relationship between y and Tc was investigated.

本発明の超電導セラミック材料は、通常のセラミックス
と同様の方法でV3nされる。即ち例えば所定の元素の
酸化物、または加熱によって酸化物になる化合物と、弗
化物とを原料として、これらを混合し、仮焼工程を経て
1000℃以下の温度で焼結することによって冑る。一
般に酸素欠陥を有する化合物なので、酸素雰囲気中で焼
成し、次いで酸素気流中で熱処理すると高い7’cが得
られることがある。
The superconducting ceramic material of the present invention is subjected to V3n in the same manner as ordinary ceramics. That is, for example, an oxide of a predetermined element or a compound that becomes an oxide upon heating and a fluoride are used as raw materials, and these are mixed and sintered at a temperature of 1000° C. or lower through a calcination step. Since it is a compound that generally has oxygen vacancies, a high 7'c value may be obtained if it is fired in an oxygen atmosphere and then heat treated in an oxygen stream.

実施例 実施例1 Y203 、Ba CO3、Cu O,YF3を出発原
料として、これらを最終組成がYo93a2.+Cu 
30[1,2FO,Sとなるように混合し、空気中98
0℃で焼成してセラミック材料を製造した。
Examples Example 1 Using Y203, Ba CO3, Cu O, and YF3 as starting materials, the final composition was Yo93a2. +Cu
Mix to make 30[1,2FO,S, 98% in air.
A ceramic material was produced by firing at 0°C.

得られた試料は下記の比特性を示す超電導体であった。The obtained sample was a superconductor exhibiting the following specific characteristics.

超電導転移温度  95に 硬度       15GPa 靭性値      4tvlpam05曲げ強度   
  600MPa   ’比較例1 実施例1と同様にして、Yo、9 Ba 2. l C
u 30ららの組成を有するセラミック材料を製造した
Superconducting transition temperature: 95 Hardness: 15GPa Toughness: 4tvlpam05 Bending strength
600MPa ' Comparative Example 1 Same as Example 1, Yo, 9 Ba 2. l C
A ceramic material with a composition of u 30 ra was produced.

得られた試料は下記の比特性を示す超電導体であつた。The obtained sample was a superconductor exhibiting the following specific characteristics.

超電導転移温度  88.5 K 硬度       6Gpa 靭性1fi       IMPamO5曲げ強度  
   200MPa 実施例2 Y2O2、Yb2O3、BaCO3、CuO1BaF3
を出発原料として、これらを岐路組成がYo゛3Yb 
09 Ba + a Cl sob + Fo、9とな
るように混合し、酸素中950℃で焼成して下記の比特
性を有する超電導セラミック材料を得た。
Superconducting transition temperature 88.5 K Hardness 6 Gpa Toughness 1fi IMPamO5 bending strength
200MPa Example 2 Y2O2, Yb2O3, BaCO3, CuO1BaF3
are the starting materials, and the crossroad composition is Yo゛3Yb
09 Ba + a Cl sob + Fo, 9, and fired at 950° C. in oxygen to obtain a superconducting ceramic material having the following specific characteristics.

超電導転移温度  90.5 K 硬度       12Qpa 靭性値      3.1 MPa m05曲げ強度 
    450MPa 比較例2 実施例2と同様にしてYo、3 Yb O,9Ba 1
.8Cu30b7の組成を有するセラミック材料を製造
した。得られた試料は下記の比特性を示す超電導体であ
った。
Superconducting transition temperature 90.5 K Hardness 12Qpa Toughness value 3.1 MPa m05 bending strength
450MPa Comparative Example 2 Same as Example 2 Yo, 3 Yb O, 9Ba 1
.. A ceramic material with a composition of 8Cu30b7 was produced. The obtained sample was a superconductor exhibiting the following specific characteristics.

超電導転移温度  85に 硬度       4.5GPa 靭性値      2tvlPam”5曲げ強度   
  270MPa ブで明の効果 本発明によって、優れた超電導特性を保持し、しかも従
来よりtよるかに礪懺的強度の大きい新規なセラミック
系超電導材料が得られたものであり、産業上極めて価値
が高い。
Superconducting transition temperature: 85, hardness: 4.5GPa, toughness: 2tvlPam”5, bending strength
The present invention provides a new ceramic superconducting material that maintains excellent superconducting properties and has a much higher tensile strength than conventional materials, and is extremely valuable industrially. expensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、組成式 Dy O,2Yo、a Ba 2.
00+、、sFzのセラミック材料において、弗素ff
1zと密度との関係を示したものであり、第2図は組成
式Yo、q 13a 2.I Cu 309−Y Fo
、3で表わされるセラミック材料において、YとTCの
関係を示したものである。 特許出願人 昭栄化学工業株式会社 鼓々 [3/cm’J
FIG. 1 shows the composition formula: Dy O, 2Yo, a Ba 2.
In ceramic materials of 00+, sFz, fluorine ff
It shows the relationship between 1z and density, and Figure 2 shows the compositional formula Yo, q 13a 2. I Cu 309-Y Fo
, 3 shows the relationship between Y and TC in the ceramic material represented by . Patent applicant Shoei Chemical Industry Co., Ltd. Tsuzum [3/cm'J

Claims (1)

【特許請求の範囲】[Claims] 1(Ln_1_−_xBa_x)_3Cu_3O_9_
−_yF_z(但しLnはY、La、Nd、Sm、Eu
、Gd、Dy、Ho、Er、TmおよびYbから選ばれ
る選ばれる希土類元素の1種または2種以上の組合わせ
、0.2≦x≦0.8、2.2≦y≦3.0、0<z≦
1.0)なる組成を有する高温超電導セラミック材料。
1(Ln_1_−_xBa_x)_3Cu_3O_9_
-_yF_z (However, Ln is Y, La, Nd, Sm, Eu
, one or a combination of two or more rare earth elements selected from Gd, Dy, Ho, Er, Tm and Yb, 0.2≦x≦0.8, 2.2≦y≦3.0, 0<z≦
A high temperature superconducting ceramic material having a composition of 1.0).
JP62145245A 1987-06-12 1987-06-12 Ceramic material ensuring superconduction at high temperature Pending JPS63310765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62145245A JPS63310765A (en) 1987-06-12 1987-06-12 Ceramic material ensuring superconduction at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62145245A JPS63310765A (en) 1987-06-12 1987-06-12 Ceramic material ensuring superconduction at high temperature

Publications (1)

Publication Number Publication Date
JPS63310765A true JPS63310765A (en) 1988-12-19

Family

ID=15380675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145245A Pending JPS63310765A (en) 1987-06-12 1987-06-12 Ceramic material ensuring superconduction at high temperature

Country Status (1)

Country Link
JP (1) JPS63310765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354963A1 (en) * 1987-09-24 1990-02-21 Mitsubishi Materials Corporation Process for producing superconductive ceramic sinter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354963A1 (en) * 1987-09-24 1990-02-21 Mitsubishi Materials Corporation Process for producing superconductive ceramic sinter
EP0354963A4 (en) * 1987-09-24 1991-05-08 Mitsubishi Kinzoku Kabushiki Kaisha Process for producing superconductive ceramic sinter

Similar Documents

Publication Publication Date Title
JP2871258B2 (en) Oxide superconductor and manufacturing method thereof
US4861753A (en) Process for making superconductors using barium nitrate
US5202306A (en) Fracture toughness for copper oxide superconductors
US4943557A (en) Method of making a high density YBa Cu3 Ox superconductor material
JPS63310765A (en) Ceramic material ensuring superconduction at high temperature
US5591698A (en) Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors
JP2533108B2 (en) Superconducting material
JPH07172834A (en) Oxide superconductive material and its production
Yuan et al. Superconducting properties of MgO-whisker reinforced BPSCCO composite
JPH03109214A (en) Oxide material for showing superconductivity and method of its preparation
US5270292A (en) Method for the formation of high temperature semiconductors
US5413980A (en) High-T superconductor and process for preparing it
JPS63270317A (en) Oxide superconductor
US5252544A (en) Oxide superconductor having the formula Pba (M1-x-y Cex Sry)4 Cu3-a Oz where M is at least one rare earth element
Sasaki et al. In situ Observation of Phase Transformation between Tetragonal and Orthorhombic Phases of YBa2Cu3O7− x
US5256635A (en) High temperature superconductor system comprising Tl2 Ba2 CuO+δ
JPH01157452A (en) Fiber reinforced superconductor
JP2593480B2 (en) Manufacturing method of oxide superconductor
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
JPH01164762A (en) Compound oxide type superconducting sintered body
JPH01145364A (en) Production of high-temperature superconducting ceramics
JP2597578B2 (en) Superconductor manufacturing method
KR970001258B1 (en) Super conducting material
Zhou et al. Grain growth and phase separation of ZrO2-Y2O3 ceramics annealed at high temperature
JPS63230524A (en) Superconductive material