JPH01145443A - Hydraulic shock absorber - Google Patents

Hydraulic shock absorber

Info

Publication number
JPH01145443A
JPH01145443A JP30288487A JP30288487A JPH01145443A JP H01145443 A JPH01145443 A JP H01145443A JP 30288487 A JP30288487 A JP 30288487A JP 30288487 A JP30288487 A JP 30288487A JP H01145443 A JPH01145443 A JP H01145443A
Authority
JP
Japan
Prior art keywords
valve
damping force
pressure
spool
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30288487A
Other languages
Japanese (ja)
Inventor
Shoichiro Matsunaga
松永 昌一郎
Hiroshi Nakanishi
博 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP30288487A priority Critical patent/JPH01145443A/en
Publication of JPH01145443A publication Critical patent/JPH01145443A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To perform a frequency responsive control of damping force by opening and closing a control valve between a in-cylinder capacity chamber and an external accumulator with a phase delay, generated in a pipe line for a vibrative pressure of the in-cylinder capacity chamber, serving as the pilot pressure. CONSTITUTION:When a piston rod 2 moves to the upper by applying vibration, working fluid in an upper chamber A is allowed to flow into a bottom chamber B passing through a piston valve passage 4. And the fluid is allowed to flow in an accumulator 5 via a damping valve 6, but a pressure in this time is given to also the side of a piston valve 7, in a relatively low frequency range, moving a spool 8 to the right, opening a passage port 9, closing a port 11 and reducing damping force. Further, when the piston rod 2 moves to the bottom, the spool 8 moves to the left, and a low cut control condition is similarly obtained. While in a high frequency range, placing the spool 8 in a balanced condition by both end springs 12, 13, a high cut control of damping force is performed. Thus enabling a short small sized pipe to be used as a pipe line for performing a frequency responsive control of damping force, a device enables its miniaturization and weight lightening to be attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車輌におけるサスペンション機構に用いて有
用な油圧緩衝器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydraulic shock absorber useful for use in a suspension mechanism in a vehicle.

〔従来の技術〕[Conventional technology]

東輌におけるサスペンションの制振機能は。 What is the vibration damping function of the suspension in the Tou vehicle?

該系の共振動作を防止して乗心地を保ち、しかも、高度
には走行状態に応じてその機部を加減して操安性を確保
する必要かある。
It is necessary to prevent the system from resonating to maintain ride comfort, and at higher altitudes to adjust the mechanical parts according to the driving conditions to ensure maneuverability.

そのために、この種サスペンションに用いられる油圧緩
衝器としては、周波数応答式、或いは、減衰力調整式な
どが好ましく、例えば1発生減衰力の周波数応答の共振
防止手段として、減衰力制御のための作動油の流路中に
有弾性材からなる管路T(第8図参照)を設け、該管路
Tを通過する作動油の入口側流量Q、がQ+= Qos
in2πft 但し、Qo:基準ii、f:周波数、t:時間で振動す
るとき、該管路Tの人口圧P、と出口圧P2との圧力比
p2/p、が第9図示の周波数特性を有することを利用
した装置(実願60−204099号出願明細書記載の
装置等)がすでに提案されている。
For this reason, the hydraulic shock absorber used in this type of suspension is preferably a frequency response type or a damping force adjustable type. A pipe T (see Fig. 8) made of an elastic material is provided in the oil flow path, and the inlet flow rate Q of the hydraulic oil passing through the pipe T is Q+=Qos
in2πft However, when vibrating with Qo: reference ii, f: frequency, and t: time, the pressure ratio p2/p between the population pressure P of the pipe T and the outlet pressure P2 has the frequency characteristic shown in FIG. A device (such as the device described in the specification of Utility Model Application No. 60-204099) that utilizes this has already been proposed.

〔発明か解決しようとする問題点〕[The problem that the invention attempts to solve]

ところて、かかる管路特性を利用した従来の周波数応答
式の油圧緩衝器では、共振防止のための減衰力を発生す
る周波数帯f、及びr2(共振点)を得るには相当長い
管路長を必要とすると共に、実用上必要な機構自体の総
減衰力に対する該管路における発生減衰力の寄与分を上
げるためには1作動油の充分なfitiを確保する必要
から管路径を大きくしなければならない。
However, in conventional frequency-responsive hydraulic shock absorbers that utilize such pipe characteristics, a considerably long pipe length is required to obtain the frequency bands f and r2 (resonance points) that generate damping force to prevent resonance. In addition, in order to increase the contribution of the damping force generated in the pipe to the total damping force of the mechanism itself that is necessary for practical use, the diameter of the pipe must be increased because it is necessary to ensure a sufficient fit for one hydraulic fluid. Must be.

即ち、管路の周波数特性を利用して、減衰力に周波数依
存性をもたせる従来の手段では、そのための管路構成か
嵩張り且つ亜〈ならざるを得なかった。
That is, in the conventional means of making the damping force frequency dependent by utilizing the frequency characteristics of the conduit, the conduit structure for this purpose had to be bulky and compact.

一方、実装車種或いは走行路面の状況などによっては、
サスペンションにおける油圧緩衝器の減衰力を周波数依
存下にローカット及びハイカット制御して有効である。
On the other hand, depending on the vehicle model or driving road conditions,
It is effective to control the damping force of the hydraulic shock absorber in the suspension by frequency-dependent low-cut and high-cut control.

そこで、本発明は、上述のような管路における周波数特
性を利用してローカット及びハイカット特性を得る小嵩
軽量化された装置の開発を1」的とする。
Therefore, the present invention aims to develop a device that is small in size and light in weight and that obtains low-cut and high-cut characteristics by utilizing the frequency characteristics in the conduit as described above.

(問題点を解決するための手段) しかして、この目的は、本発明によれば、シリンダ内容
室と外部アキュームレータとの間の作動油流路中に制御
弁を配置する一方、該流路の絞り込み側路中に有弾性材
からなる管路を設け、該管路の出口圧をパイロット圧と
して前記弁の開閉動作を、流路圧に対する周波数応答の
位相差制御するように構成してなる油圧緩衝器によって
達成することか出来る。
(Means for Solving the Problem) According to the present invention, the control valve is disposed in the hydraulic fluid flow path between the cylinder inner chamber and the external accumulator, while A hydraulic system configured such that a conduit made of an elastic material is provided in the narrowing side passage, and the opening/closing operation of the valve is controlled by the phase difference of the frequency response with respect to the passage pressure using the outlet pressure of the conduit as a pilot pressure. This can be achieved by using a buffer.

(作 用) シリンダ内容室と外部アクチュエータとの連結流路中に
配置した制御弁は、該流路の開閉による前記両者の連通
、又は遮断を行うことは素より、その連通下での流量規
制を行うように作用する。
(Function) The control valve placed in the connecting flow path between the cylinder inner chamber and the external actuator does not only communicate or shut off the two by opening and closing the flow path, but also regulates the flow rate under the communication. It acts to do the following.

これに対し、前記流路の絞り込み側路中に配置した管路
は1通過油により前述の周波数依存の減衰力を発生させ
るが、流量を制限された絞り込み下てのこの場合の発生
減衰力は、緩衝審自体の減衰力に4える影響(寄与分)
が殆んど無視出来る程度で、l&構と有効な作用ではな
くなる。
On the other hand, the pipe line placed in the narrowing side passage of the flow path generates the above-mentioned frequency-dependent damping force due to the first-pass oil, but the damping force generated in this case under the narrowing with a limited flow rate is , the influence (contribution) on the damping force of the buffer itself
is almost negligible, and is no longer as effective as the l& structure.

ところで、一般にこの種の管路はその周波数特性か前記
特定の周波数帯f、及びf2で発生減衰力のピーク値を
有す一方て、管路入口圧P、と出口圧P2との間の位相
が、第1O図示の如く、周波数か高くなるに連れて出口
圧P2に位相遅れが生じる特性を有す。
By the way, in general, this type of pipe has its frequency characteristics such that the peak value of the damping force generated is in the specific frequency bands f and f2, while the phase between the pipe inlet pressure P and outlet pressure P2 is However, as shown in Figure 1O, it has a characteristic that as the frequency increases, a phase lag occurs in the outlet pressure P2.

従って、上記本発明の手段による管路の出口圧P2をパ
イロット圧として前記制御弁の開閉動作を制御するとき
、位相遅れの少ない低周波数域で該弁を開路向きに作動
させて、前記流路によるシリンダ内容室と外部アクチュ
エータとの連通下に、シリンダ内ピストン動作による減
衰力を極減させるローカット制御が出来、前記位相遅れ
の大きい高周波数域で該弁を開路向きに作動させること
によって、それまで前記流星の閉鎖下にピストンバルブ
等による発生減衰力を極減させるハイカット制御か可滝
となる。
Therefore, when controlling the opening/closing operation of the control valve by using the outlet pressure P2 of the pipe line as a pilot pressure according to the means of the present invention, the valve is operated in the direction of opening the flow path in a low frequency range with little phase delay. The communication between the cylinder inner chamber and the external actuator enables low-cut control to minimize the damping force caused by the movement of the piston inside the cylinder, and by operating the valve in the open direction in the high frequency range where the phase delay is large, Until the meteor is closed, a high-cut control system is used to minimize the damping force generated by the piston valve, etc.

(実施例) 次に、本発明の好ましい実施例について説明する。(Example) Next, preferred embodiments of the present invention will be described.

第1図は本発明の一実施例を示す流路系の構成図で、シ
リンダ1中をピストンロッド2に支持されて摺動するピ
ストン3の移動で、該ピストン3により区分されたシリ
ンダ上下室A、 Hの作動油がピストンバルブ通路4を
通って両室間を移動する際に、所望の減衰力か発生する
ようになしである。
FIG. 1 is a configuration diagram of a flow path system showing an embodiment of the present invention, in which the movement of a piston 3 that slides in a cylinder 1 while being supported by a piston rod 2 causes the upper and lower chambers of the cylinder to be divided by the piston 3. When the hydraulic fluids A and H move between the two chambers through the piston valve passage 4, the desired damping force is generated.

5は外部のアキュームレータて、従来周知の如く、前記
上室Aとの間に減衰バルブ6を備えた連通路によって連
結しであると共に、該減衰バルブ6に並列にスプール8
を有すピストンバルブ7を配置しである。
Reference numeral 5 denotes an external accumulator, which is connected to the upper chamber A by a communication passage provided with a damping valve 6, as is conventionally known, and has a spool 8 in parallel with the damping valve 6.
A piston valve 7 having a diameter is disposed.

そして、該ピストンバルブ7はその具体的構成側を第2
図に示すように、Tii記上室Aからの通路口9を中央
にその左右両側に前記アキュームレータ5への通路口I
O及び11を有し、前記スプール8の両端(ピストン8
b及び8c外側)に配置したスプリンタ12及び13の
拡圧力による平衡占位位置て、その中央ピストン8aが
前記通路口9を閉鎖する位置に在り、該スプール8がそ
の平衡位置から移動した際に該通路口9を開放し1、’
?側の通路口10又は11の一方を閉鎖すると共に他方
を前記通路口9と連通させるようになしてあり、かつ、
これ等通路口IO及びIIには互いに逆向きのチエツク
弁14及び15を配在せしめである。
Then, the piston valve 7 has its specific configuration side as the second
As shown in the figure, passage openings I to the accumulator 5 are located on both left and right sides of the passage opening 9 from the upper chamber A in the center.
O and 11, both ends of the spool 8 (piston 8
When the central piston 8a is in a position to close the passage opening 9, and the spool 8 moves from its equilibrium position, Open the passage port 9 to 1,'
? One of the side passage openings 10 or 11 is closed and the other is communicated with the passage opening 9, and
Check valves 14 and 15, which are oriented in opposite directions, are arranged at these passage ports IO and II.

一方、該ピストンバルブ7には、これを迂回する一対の
側路を附設し、両側路に有弾性バイブからなる管路Tr
、絞りal又はat(但し、at>at)、絞りa3又
はa、(但し、a4>ai)及び今一つの管路T2を順
次直列に接続しである。
On the other hand, the piston valve 7 is provided with a pair of side passages that bypass the piston valve 7, and a conduit Tr consisting of an elastic vibrator is provided on both sides of the piston valve 7.
, the aperture al or at (where at>at), the aperture a3 or a (where a4>ai), and another pipe T2 are successively connected in series.

そして、前記一方の側路の絞りa、と83との接続間m
と前記ピストンバルブ7のピストン8b側パイロツト室
とを接続し、他方の側路の絞りatとa、との接続間n
とピストン8C側パイロツト室とを接続しである6 その他、16は前記シリンダlにおける車体側取付は部
、IIは前記ピストンロッド2における11(軸側取付
は部を示す。
and a connection m between the aperture a of the one side passage and the connection 83;
and the pilot chamber on the piston 8b side of the piston valve 7, and the connection n between the throttle at and a of the other side passage.
and the pilot chamber on the piston 8C side. 6. In addition, 16 indicates the part attached to the vehicle body side in the cylinder I, and II indicates the part 11 (attached to the shaft side) in the piston rod 2.

かかる実施例によれば、今、ピストン動作の停止時、王
室Aの内圧Pp、アキュームレータ5の内圧P0及び前
記側路の接続間m、n即ちパイロット室圧p、、、 p
nが共に等しく、この状態で、スプール8がスプリング
12及び13の拡圧力による釣合い下に第1図示の平衡
状態にあり、通路口9と通路010又は11との連通を
断った閉じ状態にある。
According to this embodiment, when the piston operation is stopped, the internal pressure Pp of the chamber A, the internal pressure P0 of the accumulator 5, and the pilot chamber pressures p, .
n are both equal, and in this state, the spool 8 is in the equilibrium state shown in the first figure under balance due to the expansion forces of the springs 12 and 13, and is in a closed state where communication between the passage opening 9 and the passage 010 or 11 is cut off. .

そして、外部からの加振によりピストンロッド2が第1
図の上方に移動する圧側行程で、加圧される上室Aの作
動油がピストンバルブ通路4を通って下室Bに流れると
共に、シリンダ内に侵入するピストンロッド2の体I[
(ロフト径×進入圧)に相当する作動油が王室Aから同
図上実線矢標で示す向きに減衰バルブ6を通ってアキュ
ームレータ5に流れるが、そのときの圧力P、かピスト
ンバルブ7側にも与えられる。
Then, the piston rod 2 is moved to the first position by external vibration.
In the pressure side stroke that moves upward in the figure, the pressurized hydraulic oil in the upper chamber A flows through the piston valve passage 4 to the lower chamber B, and at the same time the body I of the piston rod 2 enters the cylinder.
Hydraulic oil corresponding to (loft diameter x inlet pressure) flows from Royal A to the accumulator 5 through the damping valve 6 in the direction shown by the solid line arrow in the figure, but at that time the pressure P or the piston valve 7 side is also given.

そして、このピストンロッド2の移動が比較的低周波域
の作動であるときに、管路子、によるその人口圧P +
 = P−に対する出口圧P2の位相遅れか、第10図
に示すように極めて小さいので、両側路の接続間m、n
の圧力P1、Poは略同相にある。
Then, when the movement of the piston rod 2 is an operation in a relatively low frequency range, the population pressure P + due to the conduit element is
= The phase delay of the outlet pressure P2 with respect to P- is extremely small as shown in Fig. 10, so the distance between m and n between the connections on both sides is
The pressures P1 and Po are approximately in phase.

しかし、この両側の絞りalと82とのオリフィス面積
かa、>a、であるのて、スプール8の両端パイロット
室の圧力P、、 P、はP、> Pnとなる。これによ
って、該スプール8が同図上右方向に移動し、これまで
中央ピストン8aにより閉鎖されていた通路口9か開放
されて、通路口lOと連通ずる一方1通路口11か閉じ
られる。
However, since the orifice areas of the throttles al and 82 on both sides are a, > a, the pressures P, P, in the pilot chambers at both ends of the spool 8 become P, > Pn. As a result, the spool 8 moves to the right in the figure, and the passage opening 9, which has been closed by the central piston 8a, is opened and communicated with the passage opening IO, while the first passage opening 11 is closed.

従って、前記上室Aからの作動油か通路口9及び10を
経てチエツク弁14を押し開いてアキュームレータ5に
至るところの、前記減衰バルブ6に対する流路抵抗の小
さいバイパス路を通って流れるので、前記ピストンロッ
ド2の移動に対する減衰力を一挙に低減させることが出
来ることになる。
Therefore, the hydraulic oil from the upper chamber A passes through the passage ports 9 and 10, pushes open the check valve 14, and flows through the bypass path with low flow resistance to the damping valve 6, which reaches the accumulator 5. This means that the damping force against the movement of the piston rod 2 can be reduced all at once.

同しくピストンロット2か同図の下方に向けて移動する
伸行程の低周波作動域では、アキュームレータ5からの
作動油が減衰バルブ6を通って上室Aに向かう一方で、
ピストンバルブ7側に享えられる結果、側路における管
路T2による位相差の極めて少ない略同相下で、絞りa
l及びa4のオリフィス面積a4>a3によるパイロッ
ト室圧p、< pnか生じ、これによって、スプール8
が同図と左方向に移動し9前述の圧行程時とは逆に通路
口9と通路口15とを連通させるようになるつ 従って、上記アキュームレータ5からの作動油は、同図
上点線矢標で示す向きにチエツク弁I5を押し開きピス
トンバルブ7を通って流れ。
Similarly, in the low-frequency operating region of the extension stroke where the piston rod 2 moves downward in the figure, the hydraulic fluid from the accumulator 5 passes through the damping valve 6 and goes to the upper chamber A.
As a result, the aperture a
The pilot chamber pressure p, < pn is generated due to the orifice area a4>a3 of l and a4, which causes the spool 8
9 moves to the left in the figure, and 9 comes to communicate with the passage port 9 and the passage port 15, contrary to the pressure stroke described above. Therefore, the hydraulic oil from the accumulator 5 flows in the direction indicated by the dotted line arrow in the figure. Push open check valve I5 in the direction shown by the mark and flow through piston valve 7.

減衰力が一挙に低減される。The damping force is reduced all at once.

このときの流路系における各要部の特性を第3図に示す
FIG. 3 shows the characteristics of each main part in the flow path system at this time.

即ち、ピストンロッド2の低周波域伸圧行程において、
該第3図上P、、制御特性曲線で示す如く、ローカット
制御状態となる。
That is, in the low frequency range expansion stroke of the piston rod 2,
As shown by the control characteristic curve P in FIG. 3, a low-cut control state is entered.

尚、このP、、制御特性曲線で示されるように、制御結
果のシリンダ内室圧P、かピストンバルブ7の流路抵抗
及び減衰バルブ6によりアキュームレータ5の内圧P。
Note that, as shown in the control characteristic curve, this P is the cylinder internal pressure P as a result of the control, or the internal pressure P of the accumulator 5 due to the flow path resistance of the piston valve 7 and the damping valve 6.

に対して幾分の高い圧力を有することは、該バルブ7の
スプール8のそのときの占位状態を保持するために有効
である。
It is effective to maintain the current position of the spool 8 of the valve 7 by having a somewhat higher pressure than the spool 8 of the valve 7.

かかる低りj波域の作動に対して、高周波域の作動は、
その要部特性を第4図に示す如く、伸圧両行程において
、管路T1又はT2により側路の接続間m、nの圧力(
パイロット室圧> p、、 pnに上室Aの圧力P、に
対する大きな位相遅れ(第1O図参I!@)が生じるの
で、スプール8の両側パイロット室圧間ににおける差圧
P、−P、 (第4図上p、−p、特性図の斜線部分)
に比例するスプール8の開口面積か同特性図上斜線部で
示すように遅れて制御され、しかも、チエツク弁14又
はI5の作用によりP、> P、になるまでは(同図上
S期間)このピストンバルブ7を通る作動油の流路が閉
鎖されているので、この閉鎖の間減衰ハルプロで制御さ
れる減衰力が同図P、制御特性図に示すように発生する
In contrast to the operation in the low j-wave region, the operation in the high frequency region is as follows.
As shown in Fig. 4, the characteristics of the main parts are as follows: In both the expansion strokes, the pressure (m, n) (
Since a large phase delay (see Figure 1O, I!@) occurs in the pilot chamber pressure>p, pn with respect to the pressure P in the upper chamber A, the differential pressure P, -P, between the pilot chamber pressures on both sides of the spool 8, (Figure 4 upper p, -p, hatched area in the characteristic diagram)
The opening area of the spool 8, which is proportional to , is controlled with a delay as shown by the shaded area in the characteristic diagram, and moreover, until P becomes > P due to the action of the check valve 14 or I5 (period S in the diagram) Since the flow path of the hydraulic oil passing through the piston valve 7 is closed, during this closure, a damping force controlled by the damping HAL PRO is generated as shown in the control characteristic diagram P in FIG.

しかして、−上記第1I7I示実施例によれば伸圧行程
における減衰力のローカット制御かなされる。
According to the first embodiment shown in FIG. 1, low-cut control of the damping force in the expansion stroke is performed.

これに対して、ハイカット制御を行う場合には第5図示
実施例が適用される。
On the other hand, when performing high-cut control, the fifth embodiment shown in the drawings is applied.

次に、これに付いて説明するに、当該実施例の構成が前
記第1図示実施例の構成と異なる部分は一対の側路にお
ける一方の管路T、と他方の管路T2か省略され、かつ
、これ等側路の各絞りa、乃至a4のオリフィス面積が
全て回−に調整されている点であり、従って、その他の
同様な両者の各機能部材には夫々同一の記号を符しであ
る。
Next, to explain this, the difference in the configuration of this embodiment from the configuration of the first illustrated embodiment is that one pipe T and the other pipe T2 in a pair of side passages are omitted, In addition, the orifice area of each of the apertures a to a4 of these side passages is all adjusted in a circular manner, and therefore, the same symbols are given to the other similar functional members of both. be.

そして、この要部の低周波域動作特性を第6図に示し、
高周波域動作特性を第7 UAに示す。
The low frequency operating characteristics of this main part are shown in Figure 6.
The high frequency operating characteristics are shown in the 7th UA.

今、ピストンロット2か低周波域の振動で上下動する押
圧行程で、シリンダlの上室Aとアキュームレータ5と
の間を流れる作動油はこの連通路中の減衰バルブ6によ
って大きい流路抵抗を与えられるので、減衰力が発生す
る状況にある。
Now, during the pressing stroke in which the piston rod 2 moves up and down due to vibrations in the low frequency range, the hydraulic oil flowing between the upper chamber A of the cylinder l and the accumulator 5 is subjected to a large flow resistance by the damping valve 6 in this communication path. Therefore, we are in a situation where a damping force is generated.

そして、この上室Aの圧力P、はピストンバルブ7側に
も与えられるが、低周波作動域てはその側路中の管路T
1又はT2による位相遅れか生じないので、それ等の接
続間m、nの圧力Pヨ、Pnは同相となる。その結果、
ピストンバルブ7の両側パイロット室間に差圧へ−P。
The pressure P in the upper chamber A is also applied to the piston valve 7 side, but in the low frequency operating range, the pipe T in the side passage is
Since only a phase delay of 1 or T2 occurs, the pressures Pyo and Pn between those connections m and n are in phase. the result,
-P to the differential pressure between the pilot chambers on both sides of the piston valve 7.

か生しないので、スプール8は両端のスプリング12.
13の拡圧力による釣合下に同図示位置の平衡状態にあ
る。
Since the spool 8 does not regenerate, the springs 12.
Under the balance due to the expansion force of 13, it is in an equilibrium state at the position shown in the figure.

従って1通路口9か中央ピストン8aによって閉鎖され
ており、有効スプール開口面積か零になるので、該ピス
トンバルブ7を通って流れる作動油はなくて、この低周
波域では前記減衰バルブ6によるP、制御特性図に示す
ような減衰力か発生する。
Therefore, the first passage port 9 is closed by the central piston 8a, and the effective spool opening area becomes zero, so no hydraulic oil flows through the piston valve 7, and in this low frequency range, the P by the damping valve 6 is reduced. , a damping force as shown in the control characteristic diagram is generated.

一方、高周波での伸圧行程では、前記管路TI又はT2
によりその出口圧P2に位相差(第1O図参照)が生じ
、かつ、絞りa、乃至a4によるfIti規制か均等で
あるので、伸行程てm続開m側の圧力P、か他方側の圧
力P。に先行し、スプール8と第5EAJ:右方向にて
通路口9と通路口11とを連通させ、圧行程では逆動作
により通路口9と通路口I2とを連通させて、第7図F
有効スプール開口面積特性図で示すように、ピストンバ
ルブ7か開閉動作する。
On the other hand, in the expansion process at high frequency, the pipe TI or T2
Therefore, a phase difference (see Fig. 1O) occurs in the outlet pressure P2, and fIti is regulated equally by the throttles a to a4, so that during the extension process, the pressure P on the open m side or the pressure P on the other side . Prior to this, the spool 8 and the fifth EAJ: communicate the passage port 9 and the passage port 11 in the right direction, and in the pressure stroke, communicate the passage port 9 and the passage port I2 by reverse operation, and as shown in FIG.
As shown in the effective spool opening area characteristic diagram, the piston valve 7 opens and closes.

該バルブ7の開口動作とチエツク弁14及び15の作用
で、前記開ロrf1積特性図上、tl線図示の部分でピ
ストンバルブ側流路か開放されるのて、前述のローカッ
ト時と同様に減衰力が発生しなくなり、ピストンロッ1
〜2の移動かデスポイントに近づく速度減速でp、>p
、時にチエ・7り弁I4又は15が該流路を閉じて、減
衰力か生じる。
Due to the opening operation of the valve 7 and the action of the check valves 14 and 15, the piston valve side flow path is opened at the portion indicated by the tl line on the open low rf1 product characteristic diagram, and the flow path on the piston valve side is opened in the same way as at the time of low cut described above. Damping force no longer occurs and piston rod 1
~2 movement or speed deceleration approaching the death point p, >p
, the chain valve I4 or 15 closes the flow path and a damping force is generated.

しかし、この場合の減衰力は、pn> p、下で極めて
低く、その結果、第7図Bp、制御特性図で示すように
事実上のハイカットの減衰力制御がなされる。
However, the damping force in this case is extremely low when pn>p, and as a result, a de facto high-cut damping force control is performed as shown in the control characteristic diagram of FIG. 7Bp.

そして、上記各実施例において、絞りa、乃至a4のオ
リフィス面積を加減することにより位相制御下のスプー
ル8の両端の差圧を変えることか出来るのて、減衰力の
周波数応答を可変としてすることも11T衡である。
In each of the above embodiments, the differential pressure between both ends of the spool 8 under phase control can be changed by adjusting the orifice area of the apertures a to a4, so that the frequency response of the damping force can be made variable. It is also 11T equilibrium.

〔発明の効果〕〔Effect of the invention〕

このように、本発明油圧緩衝器によれば、シリンダ内容
室と外部アキュームレータとの間の作動油流路中に配置
した制御弁を、管路により生しる前記シリンダ内容室の
振動圧力に対する位相遅れをパイロット圧として、開閉
するようになしたのて1周波数応答型のハイ力・ント及
びローカット等の減衰力制御を行うことが出来、しかも
、そのために使用する前記管路として比較的角い長さの
小径管を用いることか出来て。
As described above, according to the hydraulic shock absorber of the present invention, the control valve disposed in the hydraulic fluid flow path between the cylinder inner chamber and the external accumulator is controlled in phase with respect to the vibration pressure of the cylinder inner chamber generated by the pipe. By using the delay as pilot pressure to open and close, it is possible to perform damping force control such as single frequency response type high force, low cut, etc. Moreover, the pipe used for this purpose is relatively square. It is possible to use a length of small diameter pipe.

装置の小嵩軽駿化を計り得る等、その効果は実用上多大
なるものである。
The practical effects are great, such as making the device smaller and lighter.

4 、 [−3面の簡単な説明 第1図は本発明油圧緩衝器の波路系を示す構成図、第2
図は本発明油圧緩衝器における制御弁装置の一例を示す
縦断面図、第3図及び第4図は前記第1図示実施例にお
けるローカット制御動作時の機構要部の作動特性図、第
5図は本発明油圧緩衝器の他の実施例を示す流路系の構
成図、第6図及び第7図は前記第5図示実施例における
ハイカット調御動作時の機a要部の作動特性図、第8図
は管路の一例を示す説明図、第9図は管路における減衰
力の周波数特性図、第10図は管路における位相差特性
図である。
4. [Brief explanation of -3 side] Figure 1 is a configuration diagram showing the wave path system of the hydraulic shock absorber of the present invention, Figure 2 is a configuration diagram showing the wave path system of the hydraulic shock absorber of the present invention.
The figure is a longitudinal sectional view showing an example of the control valve device in the hydraulic shock absorber of the present invention, FIGS. 3 and 4 are operational characteristic diagrams of the main parts of the mechanism during low-cut control operation in the first illustrated embodiment, and FIG. is a block diagram of a flow path system showing another embodiment of the hydraulic shock absorber of the present invention, and FIGS. 6 and 7 are operational characteristic diagrams of the main parts of machine a during high-cut control operation in the fifth illustrated embodiment, FIG. 8 is an explanatory diagram showing an example of a conduit, FIG. 9 is a frequency characteristic diagram of damping force in the conduit, and FIG. 10 is a phase difference characteristic diagram in the conduit.

(符号の説IJ1) l・・・シリンダ    2・・・ピストンロット3・
・・ピストン    5・・・アキュームレータ6・・
・減衰バルブ   7・・・ピストンバルブ8・・・ス
プール    9.10.11・・・通路口14、15
・・・チエツク弁 Tl+ Tt・・・管 路a、乃至
a4・・・絞り 第1図 第2図 第3図 第4図 第5図 第8図 丁 第9図 第10図 第6図 第7図 手続補正書(FJ創 昭和63年4月/い    ( 昭和62年特 許 願第302884号2、発明の名称 油圧緩衝器 コ、補正をする者 事件との関係  特許出願人 住所 名称 (092)カヤバエ業株式会社 4、代理人 住所 東京都中央区京橋二丁目5番2号5、補正の対象 (【)明細書の発明の詳細な説明の欄 別   紙 :」)明細書第8頁第16行に「進入圧」とあるな「進
入量」と訂正する。
(Code theory IJ1) l...Cylinder 2...Piston rod 3.
・・Piston 5・Accumulator 6・・
- Damping valve 7... Piston valve 8... Spool 9.10.11... Passage ports 14, 15
...Check valve Tl+Tt...Pipe line a, to a4...Aperture Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 8 D Fig. 9 Fig. 10 Fig. 6 Fig. 7 Drawing procedure amendment (FJ creation April 1988/I) (1986 Patent Application No. 302884 2, title of invention Hydraulic shock absorber, relationship with the case of person making the amendment Patent applicant address name (092) Kayabae Gyo Co., Ltd. 4, Agent address: 2-5-2, Kyobashi, Chuo-ku, Tokyo, Subject of amendment ([) Column for detailed explanation of the invention in the specification: Paper:'') Specification, page 8, No. 16 The line that says "approach pressure" should be corrected to "approach amount."

:2)明細書第13頁第20行に「伸行程」とあるな「
圧行程」と訂正する。
:2) It says "extension process" on page 13, line 20 of the specification.
I corrected it to ``pressure stroke''.

[3)明細書第14頁第2行に「通路口11」とあるを
「通路口10Jと、同第3行に「圧行程」とあるな「伸
行程」と、同第3行から第4行に「通路口12」とある
な「通路口11Jと、同第12行から第13行に「減速
で・・・・生じる。」とあるな「減速で、即ち、圧行程
のとき(P、< P。時)にスプール8が左方へ移動し
1通路口9と通路口111を閉じ、伸行程のとき(p、
> p、時)にスプール8が右方へ移動し、通路口11
と通路口9を閉じ。
[3] In the second line of page 14 of the specification, "passage opening 11" should be replaced with "passage opening 10J," and in the third line of the same specification, "compression stroke" should be replaced with "extension stroke," and from the third line to The 4th line says ``Passage opening 12'', and the 12th to 13th lines say ``During deceleration...'', ``During deceleration, that is, during the pressure stroke ( When P, < P.), the spool 8 moves to the left and closes the first passage port 9 and the passage port 111, and during the extension stroke (p,
>p, time), the spool 8 moves to the right and the passageway opening 11
and closed passageway 9.

所定の減衰力が生じる。」と、同第14行にrPo>P
pJとあるを「減速」と夫々訂正する。
A predetermined damping force is generated. ”, and rPo>P on the 14th line.
Correct pJ to "deceleration".

(4)図面については、別紙の通り第1図、第2図及び
第5図を訂正する(第6図及び第7図は変更なし)。
(4) Regarding the drawings, Figures 1, 2, and 5 will be corrected as shown in the attached sheet (Figures 6 and 7 remain unchanged).

第1図 第2図 第5図 第6図     第7図 〕9−Figure 1 Figure 2 Figure 5 Figure 6 Figure 7 ]9-

Claims (3)

【特許請求の範囲】[Claims] (1)シリンダ内容室と外部アキュームレータとの間の
作動油流路中に制御弁を配置する一方、該流路の絞り込
み側路中に有弾性材からなる管路を設け、該管路の出口
圧をパイロット圧として前記弁の開閉動作を、流路圧に
対する周波数応答の位相差制御するように構成してなる
ことを特徴とする油圧緩衝器。
(1) A control valve is disposed in the hydraulic oil flow path between the cylinder inner chamber and the external accumulator, and a conduit made of an elastic material is provided in the narrowing side path of the flow path, and an outlet of the conduit is provided. A hydraulic shock absorber characterized in that the opening and closing operation of the valve is controlled by a phase difference of a frequency response with respect to channel pressure using pilot pressure.
(2)前記制御弁が前記位相差の小さい周波数域で開路
向きに動作するローカット制御であるところの特許請求
の範囲第1項記載の油圧緩衝器。
(2) The hydraulic shock absorber according to claim 1, wherein the control valve is a low-cut control that operates in a direction to open the circuit in a frequency range where the phase difference is small.
(3)前記制御弁が前記位相差の高い周波数域で開路向
きに動作するハイカット制御であるところの特許請求の
範囲第1項記載の油圧緩衝器。
(3) The hydraulic shock absorber according to claim 1, wherein the control valve is a high-cut control that operates in the direction of opening in a frequency range where the phase difference is high.
JP30288487A 1987-11-30 1987-11-30 Hydraulic shock absorber Pending JPH01145443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30288487A JPH01145443A (en) 1987-11-30 1987-11-30 Hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30288487A JPH01145443A (en) 1987-11-30 1987-11-30 Hydraulic shock absorber

Publications (1)

Publication Number Publication Date
JPH01145443A true JPH01145443A (en) 1989-06-07

Family

ID=17914262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30288487A Pending JPH01145443A (en) 1987-11-30 1987-11-30 Hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JPH01145443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759947A1 (en) * 1997-02-26 1998-08-28 Marrel Sa Hydraulic damping control valve for e.g. coil=spring suspensions of motor vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759947A1 (en) * 1997-02-26 1998-08-28 Marrel Sa Hydraulic damping control valve for e.g. coil=spring suspensions of motor vehicles

Similar Documents

Publication Publication Date Title
JP4587089B2 (en) Damping force adjustable hydraulic shock absorber
US4802561A (en) Adjustable shock absorber
JP4840557B2 (en) Damping force adjustable hydraulic shock absorber
US5078240A (en) Adjustable vibration damper with valve body in piston having directional flow control
EP0204809B1 (en) A restriction valve device for hydraulic pressure fluids in vehicle shock absorbing mechanisms
JPH0396730A (en) Valve for hydraulic fluid and shock absorber including the same
JP3306526B2 (en) Damping force adjustable hydraulic shock absorber
GB2282864A (en) Hydraulic shock absorber
JPH0579526A (en) Damping force adjusting type hydraulic buffer
JP3297829B2 (en) Damping force adjustable hydraulic shock absorber
JPH05178055A (en) Semi-active suspension
JP3338531B2 (en) Damping force adjustable damper
JP4478848B2 (en) Damping force adjustable hydraulic shock absorber
JPH01145443A (en) Hydraulic shock absorber
JP3430321B2 (en) Damping force adjustable hydraulic shock absorber
JPH109327A (en) Damping force regulating type hydraulic shock absorber
JPS6021259B2 (en) Damping force characteristic variable adjustment device for vehicle hydraulic dampers
JPH06510102A (en) buffer unit
JP3265523B2 (en) Damping force adjustable hydraulic shock absorber
JPH0642572A (en) Damping force adjusting type hydraulic buffer
JP2001041272A (en) Damping force adjustment type hydraulic buffer
JPH023055B2 (en)
JPS6138344U (en) Variable damping force hydraulic shock absorber
JP3484488B2 (en) Damping force adjustable hydraulic shock absorber
JPH1061710A (en) Damping force adjusting hydraulic shock absorber