JPH01145376A - Production of little outgassing carbonaceous material and carbonaceous structural material using same - Google Patents

Production of little outgassing carbonaceous material and carbonaceous structural material using same

Info

Publication number
JPH01145376A
JPH01145376A JP62304306A JP30430687A JPH01145376A JP H01145376 A JPH01145376 A JP H01145376A JP 62304306 A JP62304306 A JP 62304306A JP 30430687 A JP30430687 A JP 30430687A JP H01145376 A JPH01145376 A JP H01145376A
Authority
JP
Japan
Prior art keywords
carbon
carbon material
reduced pressure
temperature
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62304306A
Other languages
Japanese (ja)
Inventor
Toshiro Yamashina
山科 俊郎
Tomoaki Hino
日野 友明
Toru Hoshikawa
星川 亨
Masaki Okada
雅樹 岡田
Soukan Miki
相煥 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP62304306A priority Critical patent/JPH01145376A/en
Publication of JPH01145376A publication Critical patent/JPH01145376A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title carbonaceous material esp. such material as virtually not to outgas even used under highly reduced pressure and elevated temperatures, by heating a carbonaceous material under highly reduced pressure at specified temperatures followed by cooling and then repeating the above- mentioned treatment. CONSTITUTION:A carbonaceous material is heated to temperatures of >=800 deg.C under highly reduced pressure followed by cooling and then repeating the above- mentioned treatment at least once. Said carbonaceous material is pref. a carbon/ carbon composite where carbon fiber is incorporated into the carbon matrix. Prior to the heat treatment, said carbonaceous material has pref. been treated to high purity so that the total ash content fall at or below 10ppm. The carbonaceous material obtained by the above processes is suitable as the first wall structural material for nuclear reactors, a structural material for semiconductor production equipment to be used at temperatures of >=500 deg.C under reduced pressure or an interval structural material in reaction vessels.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素材料の製造方法及びその製法により得られ
る炭素材料の用途に関し、更に詳しくはアウトガスの少
ない炭素材料の製造方法及びその用途に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a carbon material and uses of the carbon material obtained by the method, and more particularly to a method for producing a carbon material with less outgassing and uses thereof.

〔従来の技術〕[Conventional technology]

高真空装置内にて用いる材料はアウトガスの少ない材料
が望まれ、特にこれが高温下に使用されるときはアウト
ガスの少ないことが極めて重要となって来る。
It is desired that the material used in a high-vacuum device is a material that produces less outgas, and especially when the material is used at high temperatures, it is extremely important that the material produces less outgas.

一方黒鉛材料は各種の優れた特性、たとえば耐熱性、耐
放射線性、高温時の優れた機械的特性等を有し、これ等
の特性を生かして各種分野に於いて広く使用されており
、その一つとして高真空、高温下で使用する装置の構造
材料としての用途がある。また最近核融合炉の内壁(通
常核融合第一壁という)材としての用途が注目を集めて
いる。
On the other hand, graphite materials have various excellent properties, such as heat resistance, radiation resistance, and excellent mechanical properties at high temperatures, and are widely used in various fields by taking advantage of these properties. One use is as a structural material for equipment used under high vacuum and high temperatures. Recently, its use as a material for the inner wall of nuclear fusion reactors (usually referred to as the first fusion wall) has attracted attention.

周知の通り核融合炉の第−壁は高温プラズマからプラズ
マ粒子(イオン、電子)、高温中性粒子、光輻射の衝撃
による損耗が著しく、壁を構成している元素がプラズマ
中にとりこまれプラズマ精度を低下せしめる。従ってこ
の第−壁の材料としては、耐熱性大きく耐輻射性の良好
な材料を選ぶ必要がある。このため低蒸気圧、高融点で
低原子番号物質である黒鉛がこの第−壁の材料として有
望視されている。
As is well known, the first wall of a fusion reactor is subject to significant wear due to the impact of plasma particles (ions, electrons), high-temperature neutral particles, and light radiation from the high-temperature plasma, and the elements that make up the wall are absorbed into the plasma, causing the plasma to deteriorate. Decrease accuracy. Therefore, it is necessary to select a material for the second wall that has high heat resistance and good radiation resistance. For this reason, graphite, which has a low vapor pressure, high melting point, and low atomic number, is considered to be a promising material for the second wall.

しかし、炭素質材料は微量に残る残存原料分解生成物例
えばHz 、CHa或いは取扱中に吸着した成分例えば
H,O或いはIntoと炭素の高温下反応生成物、例え
ばHt、、CO,CO2などが高真空下、就中高温下で
の操作下において徐々に放出されて来る欠点があった。
However, carbonaceous materials have high concentrations of residual raw material decomposition products such as Hz, CHa that remain in trace amounts, or high-temperature reaction products of carbon with components adsorbed during handling such as H, O, or Into, such as Ht, CO, and CO2. It has the disadvantage that it is gradually released during operation under vacuum, especially at high temperatures.

このような放出ガスは、真空容器の到達真空度を劣化す
るばかりでなく、プラズマのエネルギーを光輻射により
散乱させて、プラズマエネルギーの低下を招<、Pk融
合プラズマ閉じ込め装置のみならず、一般のプラズマ装
置においても同様なことが言える。
Such emitted gas not only deteriorates the ultimate vacuum of the vacuum vessel, but also scatters the plasma energy by optical radiation, causing a decrease in plasma energy. The same can be said of plasma devices.

またイオン加速器や電子加速器では放出ガスの存在によ
り、イオンまたは電子の平均自由工程が短くなり、線量
の低下およびエネルギーの低下を招く、このように放出
(アウト)ガスの存在は、時には決定的とも言える機能
劣下、さらにはプラズマ密度が低下しディスラプシッン
現象(プラズマの崩壊)を起こしてしまう。
In addition, in ion accelerators and electron accelerators, the presence of emitted gas shortens the mean free path of ions or electrons, leading to a decrease in dose and energy. This results in functional deterioration, and furthermore, the plasma density decreases, causing a disruption phenomenon (plasma collapse).

これを換言すれば、かかる減圧、高温条件に曝される装
置内の炭素材料は機械的強度、耐熱性、耐食性、断熱性
の優れた構造材としての用途に用いられるものであるが
、そのアウトガス如何によっては、その装置の性能に極
めて大きな影響を持つものである。
In other words, the carbon materials inside the equipment that are exposed to such reduced pressure and high temperature conditions are used as structural materials with excellent mechanical strength, heat resistance, corrosion resistance, and insulation properties, but the outgas Depending on the situation, this can have a very large effect on the performance of the device.

C本発明が解決しようとする問題点〕 本発明が解決しようとする問題点は、従来の炭素材料の
有する欠点、即ちアウトガスの少ない炭素材料就中高真
空下、高温下で使用してもガスの放出の少ない炭素材料
を提供することである。
C Problems to be Solved by the Present Invention] The problems to be solved by the present invention are the drawbacks of conventional carbon materials, namely, carbon materials with little outgassing, especially when used under high vacuum and high temperature. An object of the present invention is to provide a carbon material that emits less.

〔問題点を解決するための手段〕[Means for solving problems]

発明者等は、種々の形態の炭素材料及びその加工処理方
法について研究し、ガス放出特性の少ない材料を長年探
索の結果、炭素材料を高減圧下、好ましくは3.0To
rr以下の減圧下に、800℃以上好ましくは1000
℃以上の温度で加熱処理し、一旦これを冷却し、再び上
記処理を少なくとも1回以上繰返すときは炭素材料内部
の残存成分を除去出来、もはやアウトガスの極めて少な
い炭素材料となることを見出し、本発明を完成したもの
である。
The inventors have studied various forms of carbon materials and their processing methods, and as a result of many years of searching for materials with low gas release characteristics, the inventors have developed carbon materials under high reduced pressure, preferably 3.0 To
Under reduced pressure of rr or less, at 800°C or more, preferably at 1000°C
We have discovered that by heat-treating at a temperature of ℃ or above, cooling it once, and repeating the above treatment at least once again, the remaining components inside the carbon material can be removed, resulting in a carbon material with extremely low outgassing. It is a completed invention.

本発明において使用される炭素基材としては、灰分が5
0ppm以下好ましくは10ppm以下で炭素繊維の織
物又はフェルト類、不織布類を骨材とし、炭素をマトリ
ックスとする、所謂炭素/炭素複合材などが特に例示さ
れる。
The carbon base material used in the present invention has an ash content of 5
Particular examples include so-called carbon/carbon composite materials in which the carbon fiber content is 0 ppm or less, preferably 10 ppm or less, and carbon fiber fabrics, felts, or nonwovens are used as aggregates and carbon is used as a matrix.

このような炭素材料を高減圧下で少なくとも800℃以
上の温度で加熱し、一旦冷却し、次いで再び上記の処理
を少なくとも1回好ましくは3回以上繰返すことにより
、炭素材料の内部に吸着、残存する微少成分を除去する
ことが可能となり、アウトガスの少ない炭素材料を収得
することが出来る。
By heating such a carbon material at a temperature of at least 800°C or higher under high vacuum, once cooling it, and then repeating the above treatment at least once, preferably three or more times, the carbon material is adsorbed and remains inside the carbon material. It becomes possible to remove the minute components that cause carbon dioxide, and it is possible to obtain a carbon material with less outgassing.

特に注目すべきことは、この種炭素材料を製造時に一旦
高減圧下で高温で加熱処理すると、炭素材料に吸着し、
残存していた成分が殆どすべて除去されて、アウトガス
の少ない材料となってしまい、もはや再び高温、高真空
下に曝してもそのアウトガスの少ない点については殆ど
変化はないであろうとの予測に反して、実に驚くべきこ
とに、1回の高減圧、高温加熱処理では炭素材料に吸着
、残存している微少成分は充分には除去出来ないことが
見出され、このような加熱処理を再度好ましくは3度行
うことにより、1回の加熱処理で除去出来なかった残存
成分を大幅に減少出来ることである。またこの処理を繰
返すことにより、更にその除去、即ちアウトガスの放出
が比例的にますます少なくなる事実をも併せて見出され
ている。
What is particularly noteworthy is that when this kind of carbon material is once heat-treated at high temperature under high vacuum during manufacturing, it adsorbs to the carbon material.
Almost all of the remaining components were removed, resulting in a material with low outgassing, and contrary to predictions that there would be little change in the low outgassing even if it were exposed to high temperature and high vacuum again. Surprisingly, it was discovered that a single high-pressure, high-temperature heat treatment cannot sufficiently remove the remaining minute components that are adsorbed to the carbon material. By performing the heat treatment three times, the remaining components that could not be removed in one heat treatment can be significantly reduced. It has also been found that by repeating this process, the amount of outgas removed, that is, the amount of outgas released, becomes proportionally smaller.

このような加熱処理を2回好ましくは複数回繰返し適用
することによって、これまで全く文献等には知られてい
なかった特性、即ち従来の炭素材料をガス放出特性が極
めて小さい材料たとえば金属なみの低ガス放出性材料に
変換、加工し得る新しい事実に基づき本発明は完成され
ているものである。
By repeatedly applying such heat treatment twice, preferably multiple times, it is possible to obtain properties that have not been previously known in the literature, i.e., to transform conventional carbon materials into materials with extremely low gas release properties, such as those with low gas release properties comparable to metals. The present invention has been completed based on the new fact that it can be converted and processed into a gas-releasing material.

本発明に於ける上記加熱処理条件は高減圧下、好ましく
は3.9Torr以下、特に好ましくはl Torr以
下で、800℃以上、好ましくは1000℃以上、特に
好ましくは1500℃以上で通常30分間以上、好まし
くは1時間以上保持する。この際の昇温速度は適宜に決
定出来るが、緩やかに昇温することが好ましい。
The above heat treatment conditions in the present invention are under high vacuum, preferably 3.9 Torr or less, particularly preferably 1 Torr or less, and usually 30 minutes or more at 800°C or more, preferably 1000°C or more, particularly preferably 1500°C or more. , preferably for at least 1 hour. Although the rate of temperature increase at this time can be determined as appropriate, it is preferable to increase the temperature slowly.

すでに述べた通り上記の様に処理した炭素材料を、常温
に戻し、大気中に20日間以上放置し、これを再度加熱
処理すると実施例に示す様に放出ガス量は、更に少なく
なり、これを繰り返す毎に放出ガス量は更に少なくなる
現象が認められている。
As already mentioned, when the carbon material treated as described above is returned to room temperature, left in the atmosphere for 20 days or more, and then heat-treated again, the amount of released gas is further reduced as shown in the example. It has been observed that the amount of released gas decreases with each repetition.

この事実は本発明方法により製造した材料は高温下、強
減圧で一旦炭素表面から吸着、吸蔵されたガスを放出さ
せた後は、例え空気中で取扱った後に、高真空下に装着
、又は再使用した場合でも驚くべきことに依然低レベル
のガス放出量を維持出来ることを示しており、更にこの
装置を常圧−真空上使用と繰り返し連用しても、低ガス
放出特性は向上こそすれ、低下はしないと言う実用上極
めて重要(低アウトガス)な特性を持つ材料となる。こ
の理由については、現時点ではなお明らかではないが、
加熱(昇温)と冷却(降温)を繰り返すことにより、充
分吸着乃至吸蔵されている揮発分が脱着・放出されるも
のとも解されるが、単にそればかりでは無く、このよう
な昇・降温処理によって炭素材料、とくにマトリックス
に用いた炭素の構造変化、内部表面積の激減等も推察さ
れ、驚くべき予想外の知見を得たものである。
This fact indicates that once the material produced by the method of the present invention has released the adsorbed and occluded gas from the carbon surface under high temperature and strong vacuum, even if it has been handled in air, it must be mounted under high vacuum or reused. It has been shown that surprisingly low levels of gas release can still be maintained even when using this device, and even when this device is repeatedly used at normal pressure and vacuum, the low gas release characteristics improve. It is a material that has a property that is extremely important in practice (low outgas), that is, it does not deteriorate. The reason for this is not clear at this point, but
It can be understood that by repeating heating (temperature raising) and cooling (temperature lowering), sufficient adsorbed or occluded volatiles are desorbed and released, but this is not the only way; This led to the inference of changes in the structure of carbon materials, especially the carbon used in the matrix, and a drastic decrease in internal surface area, resulting in surprising and unexpected findings.

さらに製造上の付帯的条件として、基材となる炭素材料
及び炭素/炭素複合材料を更に加熱処理前に予め高純度
化処理を行うことにより、本発明方法の効果が相乗的に
倍加する。
Furthermore, as an incidental condition for production, the effect of the method of the present invention is multiplied synergistically by subjecting the carbon material and carbon/carbon composite material serving as the base material to high purification treatment before heat treatment.

この際の高純度化処理方法としては、各種の方法がいず
れも適用され、特に好ま、しい方法として特願昭61−
297088号並びに特願昭61−224131に記載
した方法を例示出来る。このような方法で処理した材料
、たとえばハロゲン含有ガス雰囲気下にて、1800〜
2500℃100Torr以下、好ましくはI Tor
r以下にて重金属類(灰分)を10ppm以下、実質的
に3 ppm以下にまで脱灰した材料の場合、真空下で
、特に核融合反応装置、プラズマ発生装置など、特に有
害とされる金属(高原子価物質)が除かれているので、
本発明方法による加熱処理による効果と基材純化の効果
とが相まって、金属材料のそれにも匹敵する程低ガス放
出特性が一段と相乗的に向上する。
Various methods can be used as the purification treatment method at this time, and a particularly preferred method is
Examples include the methods described in No. 297088 and Japanese Patent Application No. 61-224131. Materials treated by such a method, for example, under a halogen-containing gas atmosphere,
2500°C 100 Torr or less, preferably I Torr
In the case of materials that have been deashed to 10 ppm or less, substantially 3 ppm or less, of heavy metals (ash) at temperatures below High valence substances) are removed, so
The effect of the heat treatment according to the method of the present invention and the effect of purifying the base material are combined to further synergistically improve the low gas release characteristics to the extent that they are comparable to those of metal materials.

このような特性を有する炭素材料は、前記、詳述したよ
うに (1)原子炉用第1壁構造材料用として好適のものであ
り、 (2)半導体製造用装置の内部構造材料としても極めて
有効である。特に、最近は高集積品指向の要請から装置
内部に使用する炭素材料についても不純物の混入を極度
に避ける目的から極めて高純度な炭素材料が要望されて
いる(例えば、特願昭62−174398)。このよう
な装置に使用する構造材料として、高純度化処理を行っ
た後、本発明方法により放出ガスを抑止させた材料は両
者が相乗的効果を発揮して極めて有効でる。
As detailed above, carbon materials with such characteristics are (1) suitable for use as first wall structural materials for nuclear reactors, and (2) extremely suitable as internal structural materials for semiconductor manufacturing equipment. It is valid. In particular, in recent years, due to the demand for highly integrated products, there has been a demand for carbon materials of extremely high purity to be used inside devices in order to avoid contamination with impurities (for example, Japanese Patent Application No. 174398/1986). . As a structural material used in such a device, a material whose gas emission is suppressed by the method of the present invention after being subjected to a high purification treatment is extremely effective as the two exhibit a synergistic effect.

半導体製造装置をさらに例示すると、プラズマCVD用
ボート、エピタキシャル成長用サセプター、液相エピタ
キシャル成長用サセプター、スライドボード、シリコン
単結晶引上げ装置用黒鉛材料、Ga−As単結晶引上げ
装置用黒鉛材料などが具体的に挙げられる。
Further examples of semiconductor manufacturing equipment include boats for plasma CVD, susceptors for epitaxial growth, susceptors for liquid phase epitaxial growth, slide boards, graphite materials for silicon single crystal pulling equipment, graphite materials for Ga-As single crystal pulling equipment, etc. Can be mentioned.

(3)その他、分子線エピタキシャル用のセル、ルツボ
、電子線蒸着装置のルツボ(電子ビームで蒸発させるの
で高温になる);核融合装置用リミッタ−、アーマ−タ
イル(約2000℃の高温になる)、CVD用基板、P
CVD用基板またはホルダー(例えばダイヤモンド析出
には900〜1000℃以上の温度が必要となる);イ
オン注入装置用電極材、PBN(ルツボ等)の製造用装
置構造材料;原子吸光用チューブ、キュベツト材料;G
金属(例えば鉄鋼)に含有されるガス成分分析用黒鉛ル
ツボ、金属溶解用ルツボ;真空蒸着用ルツボ;X線発生
装置内のターゲット構成材料;レーザー発振装置内の鏡
面並びに同支持構造材料等が挙げられる。
(3) In addition, cells for molecular beam epitaxial, crucibles, crucibles for electron beam evaporation equipment (they become high temperatures because they are evaporated by electron beams); limiters for nuclear fusion equipment, armor tiles (they become high temperatures of about 2000°C) ), CVD substrate, P
Substrates or holders for CVD (for example, a temperature of 900 to 1000°C or higher is required for diamond precipitation); electrode materials for ion implantation equipment, structural materials for equipment for manufacturing PBN (crucibles, etc.); tubes for atomic absorption, cuvette materials ;G
Examples include graphite crucibles for analyzing gas components contained in metals (e.g. steel), crucibles for metal melting; crucibles for vacuum evaporation; target constituent materials in X-ray generators; mirror surfaces in laser oscillation equipment and support structure materials thereof, etc. It will be done.

これ等は一般に減圧下、高温下に於いて使用され効果を
示すが、特に3.OTorr以下、500℃以上の温度
条件に於いて特に顕著な効果を示し、更に減圧度、温度
が高められた条件、例えばl Torr以下、800℃
以上での、高真空かつ高温度条件に曝される高性能装置
の構造材料としては極めて大きな効果を示すものである
These are generally used under reduced pressure and high temperatures and show their effectiveness, but in particular 3. It shows a particularly remarkable effect under temperature conditions of OTor or less and 500°C or more, and it also shows a remarkable effect under conditions where the degree of reduced pressure and temperature are increased, such as 1 Torr or less and 800°C.
As mentioned above, it is extremely effective as a structural material for high-performance equipment exposed to high vacuum and high temperature conditions.

以下本発明の実施例の態様を例によって説明する。Hereinafter, aspects of embodiments of the present invention will be explained by way of example.

実施例1 〈高純度化工程〉 所定の黒鉛材料を第1図に示す装置を用いて先ず高純度
化した。即ち炭素材料を容器に入れ、3゜0 Torr
の減圧下、800〜1000℃に5時間保ったのち、更
に温度を上げ、2500℃にて10時間保持する。材料
の黒鉛化がある程度進んだ段階でガス供給管(8)から
ジクロルジフルオルメタンを1〜741!STP 7k
g炭素の割合で流し、黒鉛材中に含まれる不純物、特に
金属不純物を蒸気圧の高いハロゲン塩として揮散、除去
した。
Example 1 <High Purification Step> A predetermined graphite material was first highly purified using the apparatus shown in FIG. That is, carbon material is placed in a container and heated to 3°0 Torr.
After maintaining the temperature at 800 to 1000°C for 5 hours under reduced pressure, the temperature was further raised and maintained at 2500°C for 10 hours. When the graphitization of the material has progressed to a certain extent, dichlorodifluoromethane is supplied from the gas supply pipe (8) to 1 to 741! STP 7k
g carbon to volatilize and remove impurities, especially metal impurities, contained in the graphite material as a halogen salt with a high vapor pressure.

所定の黒鉛材料としては、東し■製炭素繊維布に住友デ
ュレス■製しゾール型フェノール樹脂を30重景%含浸
せしめ、積層後、熱圧成形した成形品(以下rcc、と
いう)を、700℃にて5時間、焼成炭化した炭素/炭
素・複合材を用いた、また「CC」を高純度化したもの
をrCCUJと記す。
As the specified graphite material, a molded product (hereinafter referred to as RCC) made by impregnating carbon fiber cloth manufactured by Toshi ■ with 30% of Shisol-type phenolic resin manufactured by Sumitomo Dures ■, laminating it, and then hot-pressing it, was used. A carbon/carbon composite material that was fired and carbonized at ℃ for 5 hours, and a highly purified version of "CC" is referred to as rCCUJ.

〈加熱処理〉及びく測定方法〉 上記の方法で調製した炭素材料を第2図に示す゛装置0
1)を用いて、下記方法によりガス放出試験を行った。
<Heat treatment> and measurement method> The carbon material prepared by the above method was heated using the apparatus 0 shown in Fig. 2.
1), a gas release test was conducted by the following method.

サンプル準備室021の真空圧が10−’Toorにな
ったら(この間約1hr)ゲートパルプ(ロ)をあけて
、サンプルを昇温、脱離、分析室面まで下げて、真空に
引きつづけた。真空圧が1.5 Xl0−”Torrに
なったら(この間約2hrs)実験を開始する。
When the vacuum pressure in the sample preparation chamber 021 reached 10-'Toor (approximately 1 hr during this time), the gate pulp (b) was opened, and the sample was heated, desorbed, and lowered to the surface of the analysis chamber, and the vacuum was continued. The experiment begins when the vacuum pressure reaches 1.5 Xl0-'' Torr (during approximately 2 hrs).

先ず温度を熱電対I2のでモニターして、温度コントロ
ーラーで赤外炉のパワーを制御して昇温速度を制御した
。サンプルケースが十分、熱平衡になるようにゆっくり
としだ昇温速度とした(10’C/ll1in ) *
温度は室温から1000℃まで上昇させ(この間、約1
00分)、この間放出されるガスを四重極it分析計α
ηでモニターした。モニターしたガスは質量数が1〜5
0(即ちm/e=1〜50)であり、1〜50のスキャ
ン時間は2分とした。
First, the temperature was monitored with thermocouple I2, and the temperature increase rate was controlled by controlling the power of the infrared furnace with a temperature controller. The heating rate was set slowly to ensure that the sample case reached sufficient thermal equilibrium (10'C/ll1in) *
The temperature was raised from room temperature to 1000℃ (during this time, the temperature
00 minutes), and the gas released during this time was measured using a quadrupole IT analyzer α.
It was monitored with η. The monitored gas has a mass number of 1 to 5.
0 (that is, m/e=1 to 50), and the scan time for 1 to 50 was 2 minutes.

但し共試々料は7 m/i X 7m/m X 1m/
mのものを用いた。
However, the joint sample is 7 m/i x 7 m/m x 1 m/
m was used.

各種放出ガス(m/e=2(L) 、1B(HzO) 
、28(CO)、m/e・39及び41(炭化水素)が
主な放出ガス)に対して第3図のような脱離スペクトル
を求めた。
Various released gases (m/e=2(L), 1B(HzO)
, 28 (CO), m/e・39 and 41 (hydrocarbons) were the main released gases), and desorption spectra as shown in FIG. 3 were obtained.

但し第3図で10℃は1分に対応するものである、第3
図の値を室温〜1000℃まで積分したものを第4図に
示す。また共試々料は実験終了後は大気中に取り出し、
通称ビニール袋(開放無封)内に放置して、28日間の
間隔をおいて第2回目、再び28日問おいて第3回目の
ガス放出実験を行った。
However, in Figure 3, 10°C corresponds to 1 minute.
FIG. 4 shows the values obtained by integrating the values shown in the figure from room temperature to 1000°C. In addition, after the experiment, the co-sample was taken out into the atmosphere.
The samples were left in what is commonly called a plastic bag (open and unsealed), and a second gas release experiment was conducted at an interval of 28 days, and a third gas release experiment was conducted again at an interval of 28 days.

〈測定結果〉 結果を第4図に示す。但し第4図中(1)〜(3)は1
回目〜3回目の結果を示す。また横軸は四重極質量分析
計の信号強度(単位A)を室温から1000℃(100
分間)まで積分した値(単位:A・S)である。同図中
の横欄の下に示した化学記号は不純物の成分を示す。
<Measurement results> The results are shown in Figure 4. However, (1) to (3) in Figure 4 are 1
The results from the 3rd time to the 3rd time are shown. The horizontal axis shows the signal intensity (unit: A) of the quadrupole mass spectrometer from room temperature to 1000°C (100°C).
This is the value (unit: A・S) integrated up to 1 minute). The chemical symbols shown below the horizontal column in the figure indicate impurity components.

第4図から明らかなように、炭素/炭素複合材の場合昇
・降温操作を繰り返すことによりガスの放出特性が著し
く向上(低減)する。
As is clear from FIG. 4, in the case of a carbon/carbon composite material, gas release characteristics are significantly improved (reduced) by repeating temperature raising and lowering operations.

この効果は例え材料を一旦空気中に曝した後も減殺され
ることなく残って居り、むしろ回を重ねる毎にガス放出
量は却って少なくなり、高真空装置内部構造材として極
めて好都合な性質を付与することができることが図示し
た結果からあきらかである。
This effect remains undiminished even after the material is once exposed to the air; on the contrary, the amount of gas released decreases each time the material is exposed to air, giving it extremely favorable properties as an internal structural material for high-vacuum equipment. It is clear from the results shown that this can be done.

実施例2 上記実施例1に於いて、高純度だけを行わず、その他は
すべて実施例1と同様に処理した。この結果各種アウト
ガスの放出は実施例1の夫々の場合に比し、平均すると
約10〜15%程度多かった。4、図面の簡単な説明 
Example 2 In Example 1 above, all other treatments were performed in the same manner as in Example 1, except that high purity was not performed. As a result, the release of various outgases was about 10 to 15% higher on average than in each case of Example 1. 4. Brief explanation of the drawing
.

第1図は本発明に於いて炭素材料を高純度化する際に使
用する装置の一例であり、第2図はアウトガス測定用装
置の一例を示す、第3及び4図はアウトガス測定結果を
示し、第5図は各種黒鉛材料の比表面積測定結果を示す
Figure 1 shows an example of an apparatus used to highly purify a carbon material in the present invention, Figure 2 shows an example of an apparatus for measuring outgas, and Figures 3 and 4 show the results of outgas measurement. , FIG. 5 shows the specific surface area measurement results of various graphite materials.

(1)・・・・・・ガス放出管 (2)・・・・・・保温材 (3)・・・・・・保温材 (4)・・・・・・被加熱炭素材 (5)・・・・・・高周波コイル (6)・・・・・・サセプター (7)・・・・・・受皿 (8)・・・・・・ガス供給管 (9)・・・・・・ジャケット 01)・・・・・・昇温脱離装置 (121・・・・・・サンプル準備室 03)・・・・・・昇温脱離装置 側・・・・・・ゲートパルプ (+5)・・・・・・減圧装置 06)・・・・・・ 〃 〃 面・・・・・・質量分析計 側・・・・・・BAケージ Q9)・・・・・・黒鉛材料(サンプル)+2[D・・
・・・・熱電対 (以上) 特許出願人   山 科 俊 部 東洋炭素株式会社 s1図 第2図 第3図 手続補正書帽釦 昭和63年5月1り
(1) Gas release pipe (2) Heat insulation material (3) Heat insulation material (4) Carbon material to be heated (5) ...High frequency coil (6) ...Susceptor (7) ...Saucer (8) ...Gas supply pipe (9) ...Jacket 01)...Temperature-programmed desorption device (121...Sample preparation chamber 03)...Temperature-programmed desorption device side...Gate pulp (+5)・・・・・・Pressure reducing device 06)・・・〃 〃 Surface・・・・・・Mass spectrometer side・・・BA cage Q9)・・・Graphite material (sample) +2 [D...
...Thermocouple (and above) Patent applicant Toshibe Yamashina Toyo Tanso Co., Ltd. s1 Figure 2 Figure 3 Procedural amendment cap button May 1, 1988

Claims (8)

【特許請求の範囲】[Claims] (1)炭素材料を高減圧下で800℃以上の温度で加熱
した後、一旦冷却し、再び上記処理を少なくとも1回繰
返すことを特徴とするアウトガスの少ない炭素材料の製
造方法。
(1) A method for producing a carbon material with little outgassing, characterized by heating the carbon material at a temperature of 800° C. or higher under high vacuum, cooling it once, and repeating the above treatment at least once again.
(2)該炭素材料を少なく共3.0Torr以下の減圧
下に800℃以上の温度で処理することを特徴とするク
レーム1記載のアウトガスの少ない炭素材料の製造方法
(2) The method for producing a carbon material with little outgassing according to claim 1, characterized in that the carbon material is treated at a temperature of 800° C. or higher under a reduced pressure of at least 3.0 Torr or lower.
(3)温度が1000℃以上、減圧下が1Torr以下
であるクレーム1の記載のアウトガスの少ない炭素材料
の製造方法。
(3) The method for producing a carbon material with little outgassing according to claim 1, wherein the temperature is 1000° C. or higher and the reduced pressure is 1 Torr or lower.
(4)特許請求の範囲第1乃至3項のいずれかに謂う炭
素材料が炭素マトリックス中に炭素繊維が含有されてい
る炭素/炭素系複合材料であるアウトガスの少ない炭素
材料の製造方法。
(4) A method for producing a carbon material with little outgassing, wherein the carbon material according to any one of claims 1 to 3 is a carbon/carbon-based composite material in which carbon fibers are contained in a carbon matrix.
(5)特許請求の範囲第1乃至4項のいずれかに謂う炭
素材料が、その全灰分が10ppm以下に脱灰高純度化
されたものであることを特徴とするアウトガスの少ない
炭素材料の製造方法。
(5) Production of a carbon material with little outgassing, characterized in that the carbon material referred to in any one of claims 1 to 4 has been deashed and highly purified to have a total ash content of 10 ppm or less. Method.
(6)特許請求の範囲第1乃至5項のいずれかの方法で
製造された炭素材料から成る原子炉用第1壁構造材料。
(6) A first wall structural material for a nuclear reactor made of a carbon material produced by the method according to any one of claims 1 to 5.
(7)特許請求の範囲第1乃至5項のいずれかの方法で
製造された炭素材料を主成分として成る、減圧下、50
0℃以上の温度で使用される半導体製造装置用構造材料
(7) Under reduced pressure, consisting of a carbon material produced by the method according to any one of claims 1 to 5 as a main component,
Structural material for semiconductor manufacturing equipment used at temperatures above 0°C.
(8)特許請求の範囲第1乃至5項のいずれかの方法で
製造された炭素材料を主成分としてなる減圧下、500
℃以上の温度で使用される反応装置の内部構造材料。
(8) Under reduced pressure, the carbon material produced by the method according to any one of claims 1 to 5 is used as a main component.
Internal structural materials of reactors used at temperatures above ℃.
JP62304306A 1987-11-30 1987-11-30 Production of little outgassing carbonaceous material and carbonaceous structural material using same Pending JPH01145376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304306A JPH01145376A (en) 1987-11-30 1987-11-30 Production of little outgassing carbonaceous material and carbonaceous structural material using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304306A JPH01145376A (en) 1987-11-30 1987-11-30 Production of little outgassing carbonaceous material and carbonaceous structural material using same

Publications (1)

Publication Number Publication Date
JPH01145376A true JPH01145376A (en) 1989-06-07

Family

ID=17931442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304306A Pending JPH01145376A (en) 1987-11-30 1987-11-30 Production of little outgassing carbonaceous material and carbonaceous structural material using same

Country Status (1)

Country Link
JP (1) JPH01145376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812239A1 (en) * 1995-02-27 1997-12-17 Hitco Technologies Inc. High purity composite useful as furnace components
JP2010248072A (en) * 2000-12-18 2010-11-04 Toyo Tanso Kk Low nitrogen concentration graphite material and storage method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812239A1 (en) * 1995-02-27 1997-12-17 Hitco Technologies Inc. High purity composite useful as furnace components
EP0812239A4 (en) * 1995-02-27 1998-10-28 Hitco Technologies Inc High purity composite useful as furnace components
JP2010248072A (en) * 2000-12-18 2010-11-04 Toyo Tanso Kk Low nitrogen concentration graphite material and storage method of the same

Similar Documents

Publication Publication Date Title
US7611686B2 (en) Materials purification by treatment with hydrogen-based plasma
Fecko et al. The formation and oxidation of BC3, a new graphitelike material
Holland The cleaning of glass in a glow discharge
JPH062637B2 (en) Single crystal pulling device
JPH01145376A (en) Production of little outgassing carbonaceous material and carbonaceous structural material using same
JP2591967B2 (en) Processed carbonaceous felt product and method for producing the same
JPH0678193B2 (en) Carbon fiber reinforced carbon composite material excellent in thermal shock resistance and method for producing the same
US6315871B1 (en) Method for forming diamonds from carbonaceous material
Musket et al. Proton irradiation of thin films of C60 molecules
US20100273326A1 (en) Method for purifying unsaturated fluorocarbon compound, method for forming fluorocarbon film, and method for producing semiconductor device
Willemsen Crystal growth of pure and impurity-doped lead chloride single crystals from the melt
JPH01145312A (en) Production of carbon material having small amount of out gas and carbon structural material using said carbon material obtained by said production
EP0544038A1 (en) Super heat-resistant silicon carbide fibers and process for producing the same
JP3307417B2 (en) Low outgas carbon material and method for producing the same
Veprek et al. On the chemical erosion of a carbon first wall proposed for Tokamak devices for controlled nuclear fusion
KR900004489B1 (en) Process for producing aluminium nitride powder
WO1991004954A1 (en) Carbon fiber-reinforced composite carbon material having excellent thermal shock resistance and production thereof
Richter et al. Field emission studies of iron
JPH0648716A (en) Method for removing defect of diamond
Rovida et al. LEED study of the (111) surface of β‐rhombohedral boron
RU1768508C (en) Method of graphite bromination
JPH0797263A (en) Graphite vessel and its production
Cullis et al. The structure and mechanism of formation of pyrolytic carbon and cyanogen
Gretz Isolation of Ultrahigh Vacuum Systems from Oil Diffusion Pumps
RU2261944C1 (en) Carbon material and a method for preparation thereof