JPH01143292A - Manufacture of printed wiring board - Google Patents

Manufacture of printed wiring board

Info

Publication number
JPH01143292A
JPH01143292A JP30071987A JP30071987A JPH01143292A JP H01143292 A JPH01143292 A JP H01143292A JP 30071987 A JP30071987 A JP 30071987A JP 30071987 A JP30071987 A JP 30071987A JP H01143292 A JPH01143292 A JP H01143292A
Authority
JP
Japan
Prior art keywords
conductive paste
hole
copper
electron beam
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30071987A
Other languages
Japanese (ja)
Inventor
Yoichi Haruta
要一 春田
Hiroshi Sakata
坂田 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30071987A priority Critical patent/JPH01143292A/en
Publication of JPH01143292A publication Critical patent/JPH01143292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

PURPOSE:To manufacture a highly precision printed wiring board having a smooth surface at a high speed, by filling only a through hole with conductive paint to connect wiring patterns on the both sides, by curing it by electron beam irradiation, and by applying plating thereon. CONSTITUTION:To fill a through hole 3 with conductive paste 4, a lamination board 2 having a copper foil 1 on the both sides is cut into a work size, a through hole 3 is provided at a specified position, and conductive paste 4 is applied to a through hole 3 with a roll cater while conductive paste attached on the copper foil is scraped with a squeegee. Successively, electron beam of 20 mega rad accelerated at 750V by using electron beam accelerating equipment is directed for a moment to cure conductive paste 4 completely. Then electric copper plating is applied to the surface of the conductive paste 4 filling the through hole 3 and the surface of the copper foil 1 to form a copper thin film 5. Etching resist 6 is formed by screen print on the surface of the copper thin film 5 and etched to acquire a desired wiring.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子機器に使用されるプリント配線板の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing printed wiring boards used in electronic equipment.

従来の技術 近年、電子機器は軽薄短少の言葉で象徴されるよう小型
軽量化、高密度実装化、省エネルギー化が増々進んでい
る。それら電子機器に使用されるプリント配線板に対す
るニーズも多様化し、多くの製造方法および技術が紹介
されている。その中で高密度化、軽量化、省電力化等に
適した導電ペーストで表裏導電回路を電気的に接続した
両面スルホールプリント配線板が大量に使用されている
BACKGROUND OF THE INVENTION In recent years, electronic devices have become increasingly smaller and lighter, more densely packaged, and more energy efficient, as symbolized by the words "light, thin, short, and small." Needs for printed wiring boards used in these electronic devices are diversifying, and many manufacturing methods and techniques have been introduced. Among these, double-sided through-hole printed wiring boards, in which front and back conductive circuits are electrically connected using conductive paste, are being used in large quantities because they are suitable for higher density, lighter weight, and lower power consumption.

以下、上述したような導電ペーストによる両面スルホー
ルプリント配線板の製造方法について説明する。
Hereinafter, a method for manufacturing a double-sided through-hole printed wiring board using the conductive paste as described above will be described.

第2図a〜fならびに第3図に示すように紙−フェノー
ル樹脂をベースとした両面鋼張積層板を・アークサイズ
に切断した後、所定の位置に銅はくパターン11を周知
のエツチング技術で積層板12の両面に形成し、上記表
裏の銅はくパターン11および積層板12を貫通するよ
うに貫通穴13を設ける。次に貫通穴13の周辺の表裏
の銅はくパターン11上および貫通穴13内にスクリー
ン印刷またはピンで熱硬化タイプの導電ペースト14を
塗布する。次いで、北記導亀ペースト4中の溶剤を敗り
除くため100″C以下の低温乾燥または自然放置乾燥
等、少なくとも数十分間を行う。次に160〜170”
Cの高品乾燥機で数十分間加熱し、導電ペースト14を
硬化させることにより、導電ペースト14による両面ス
ルホールプリント配線板が得られていた。
As shown in FIGS. 2a-f and 3, a paper-phenolic resin-based double-sided steel clad laminate is cut to arc size, and then a copper foil pattern 11 is formed at a predetermined position using a well-known etching technique. are formed on both sides of the laminate 12, and through holes 13 are provided so as to pass through the copper foil pattern 11 on the front and back sides and the laminate 12. Next, a thermosetting conductive paste 14 is applied on the front and back copper foil patterns 11 around the through hole 13 and inside the through hole 13 by screen printing or pins. Next, in order to remove the solvent in the Beki Douki Paste 4, drying at a low temperature of 100"C or less or leaving it to dry naturally for at least several minutes is performed. Next, the paste is dried at a temperature of 160 to 170" C.
A double-sided through-hole printed wiring board made of the conductive paste 14 was obtained by heating the conductive paste 14 for several tens of minutes in a high-quality dryer (C) to harden the conductive paste 14.

発明が解決しようとする問題点 しかしながら、上記のように、従来の導電ペースト14
は熱硬化樹脂をベースとし溶剤で粘度調整スる銀ペース
ト、銅ペースト、カーボンペースト等が使用されており
、導電ペースト14の塗布後急激に高温で硬化させると
導電ペースト14中の溶剤が気化し、第3図に示すよう
に導電ペースト14中に気泡15が発生し、硬化後導電
ペースト14中に気泡15が残った状態となり、表裏の
銅はくパターン11の眠気的接続の信頼性が著しく低下
するため、前述のように100’C以下の低温乾燥また
は自然放置による乾燥工程を必要としていた。しかしな
がら、完全に気泡を除去した状態にすることは困難であ
った。まだ、この乾燥工程は導電ペースト14が液状で
あるため積層板12を重ねることができず、積層板12
を間隔を置き大量に乾燥させるか、導電ペースト14と
接触しないような治具により順次乾燥させる必要があり
、前者の場合、積層板12を1枚1枚重ね合せないよう
に取り扱うための工数が大きく、後者の場合、順次乾燥
させるためのコンベアーとしては非常に長いものが必要
となり製造スペースが非常に大きくなる。
Problems to be Solved by the Invention However, as mentioned above, the conventional conductive paste 14
Silver paste, copper paste, carbon paste, etc., which are based on thermosetting resin and whose viscosity is adjusted with a solvent, are used.If the conductive paste 14 is rapidly hardened at high temperature after being applied, the solvent in the conductive paste 14 will vaporize. As shown in FIG. 3, air bubbles 15 are generated in the conductive paste 14, and after curing, the air bubbles 15 remain in the conductive paste 14, significantly reducing the reliability of the drowsy connection between the front and back copper foil patterns 11. Therefore, as mentioned above, a drying process by low-temperature drying at 100'C or less or by leaving to stand naturally was required. However, it was difficult to completely remove air bubbles. However, in this drying process, since the conductive paste 14 is liquid, the laminates 12 cannot be stacked on top of each other, and the laminates 12 cannot be stacked together.
It is necessary to dry a large amount of the conductive paste 12 at intervals, or to dry it sequentially using a jig that does not come into contact with the conductive paste 14. In the former case, it takes a lot of man-hours to handle the laminates 12 one by one so that they do not overlap. In the latter case, a very long conveyor is required for sequential drying, and the manufacturing space becomes very large.

さらに、完全硬化させるために160〜170°Cの高
温で数十分硬化させるための工数が大きく、しかも積層
板12の熱劣化をもたらし積層板12がもろくなるとい
う欠点を有していた7、さらに、導電ペースト14と銅
はくパターン11と電気的に確実に接続するだめには貫
通穴13に4屯ペースト14を塗布するとともに、銅は
くパターン11上にも4電ペースト14を塗布形成する
必要であった。そのためには貫通穴13周辺の銅はくパ
ターン11、いわゆるランド16は通常2.5〜3.0
′Im以上の寸法を敗る必要があった。最近のように高
密度化が増々進む中でこのランド径が大きいことが、導
電ペースト14を利用したプリント配線板の高密度化の
ための壁になっていた。
Furthermore, it requires a large number of man-hours to cure at a high temperature of 160 to 170 degrees Celsius for complete curing, and also has the drawback that it causes thermal deterioration of the laminate 12 and makes the laminate 12 brittle7. Furthermore, in order to ensure electrical connection between the conductive paste 14 and the copper foil pattern 11, the 4-ton paste 14 is applied to the through hole 13, and the 4-conductor paste 14 is also applied on the copper foil pattern 11. It was necessary to do so. For this purpose, the copper foil pattern 11 around the through hole 13, the so-called land 16, usually has a diameter of 2.5 to 3.
'Im or more dimensions were required. With the recent trend toward higher densification, the large land diameter has become a barrier to higher densification of printed wiring boards using conductive paste 14.

また、銀ペーストを利用したプリント配線板の場合には
、銀のマイグレーションが発生し易いから、貫通穴13
上及びランド16上の銀ペーストをマイグレーション防
止のために、例えばエポキシ樹脂を主成分とする保護被
1模18を形成する必要があった。そのため、製造工程
が多くなり、コストアンプとなっていた。
In addition, in the case of a printed wiring board using silver paste, silver migration is likely to occur, so the through holes 13
In order to prevent migration of the silver paste on the top and lands 16, it was necessary to form a protective covering 18 mainly composed of, for example, epoxy resin. As a result, the number of manufacturing steps increases, resulting in increased costs.

問題点を解決するだめの手段 上記のような問題点を解決するために本発明のプリント
配線板の製造方法は、両面に銅はくを有する絶縁基板に
貫通穴を設ける工程と、その貫通穴に導電ペーストを充
填する工程と、その導電ペーストを電子線照明で硬化さ
せる工程と、貫通穴の導電ペースト表面にめっきにより
銅薄膜を形成する工程と、絶縁基板上の銅はくの配線パ
ターンを形成する工程からなる。
Means for Solving the Problems In order to solve the above-mentioned problems, the printed wiring board manufacturing method of the present invention includes the steps of providing through holes in an insulating substrate having copper foil on both sides, and A process of filling the conductive paste into the conductive paste, a process of curing the conductive paste with electron beam illumination, a process of forming a copper thin film by plating on the surface of the conductive paste in the through hole, and a process of forming the wiring pattern of the copper foil on the insulating substrate. It consists of a process of forming.

作用 本発明によるプリント配線板の製造方法では、電子線照
射により導電ペーストの硬化を行うために非常に短時間
に硬化が完了し、従来例のように予備乾燥のための工数
が不要となり、生産性が高く、しかも気泡のない導電ペ
ーストの硬化および積層板の熱劣化のない信頼性の高い
プリント配線板が得られる。
Function: In the printed wiring board manufacturing method according to the present invention, since the conductive paste is cured by electron beam irradiation, curing is completed in a very short time, eliminating the need for pre-drying steps as in conventional methods, and reducing production costs. It is possible to obtain a highly reliable printed wiring board that has high properties and is free from bubbles and has no curing of the conductive paste and no thermal deterioration of the laminate.

さらに、本発明によれば、導電ペーストは貫通穴のみに
塗布し、その上にはめっき銅で絶縁基板上の銅はくと接
続するため、絶縁基板表面の平滑性が得られ、従来の量
産性に向いたスクリーン印刷・エツチング法あるいは高
密度パターン形成に適した、ホトレジスト・エツチング
法のいずれも使用することができる。
Furthermore, according to the present invention, the conductive paste is applied only to the through holes, and plated copper is applied on top of the conductive paste to connect it to the copper foil on the insulating substrate. Either a screen printing/etching method suitable for high density patterning or a photoresist etching method suitable for high density pattern formation can be used.

また、貫通穴に銀ペーストを塗布した場合には上記のめ
っき銅が銀マイグレーションを防止する保護被1漢とな
るため、従来例の保護被膜形成工程は不要となる。
Furthermore, when silver paste is applied to the through holes, the plated copper serves as a protective layer that prevents silver migration, so the conventional protective layer forming step is not necessary.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

本発明の特徴とするところは、貫通穴に電子線照射によ
り硬化する導電ペーストを充填する点にある1、 ここで、電子線照射により硬化可能な導電性ペーストと
しては分子の末端または側鎖にアクリル基、メタクリル
基などの官能基を含む重合性オリゴマーおよびモノマー
に銀、鋼、カーボン等の粉末を含有させたものが使用で
きる。
The feature of the present invention is that the through hole is filled with a conductive paste that can be cured by electron beam irradiation. Polymerizable oligomers and monomers containing functional groups such as acrylic and methacrylic groups containing powders of silver, steel, carbon, etc. can be used.

電子線照射により硬化し得るオリゴマーとしてはエポキ
シアクリレート、ウレタンアクリレート。
Epoxy acrylate and urethane acrylate are examples of oligomers that can be cured by electron beam irradiation.

ポリエステルアクリレート、ポリエーテルアクリレート
、スピロアセタールアクリレート等が使用できる。
Polyester acrylate, polyether acrylate, spiroacetal acrylate, etc. can be used.

マタ七ツマ−としては、スチレン、ジビニルベンゼン、
ビニルトルエン、ビニルピリジン、ビニルナフタレン、
アクリル酸エチル、メタクリル酸メチル等のアクリル酸
エステルまたはメタクリル酸エステル類、酢酸ビニル、
プロピオン酸ビニル。
Styrene, divinylbenzene,
vinyl toluene, vinyl pyridine, vinyl naphthalene,
Acrylic esters or methacrylic esters such as ethyl acrylate and methyl methacrylate, vinyl acetate,
Vinyl propionate.

ジアリルフタレート、ジアリルマレエート、N−ビニル
ピロリドン、N−ビニルイミダゾール、トリメチロール
プロパントリアクリレート、エチレングリコールジアク
リレート、トリエチレングリコールジアクリレート、ネ
オペンチルグリコールジアクリレートおよびプロピレン
グリコールジアジエチルアミノエチルアクリレート、ジ
エチルアミノエチルメタクリレート、 tart−ブチ
ルアミノエチルメタクリレート等のアミノアルコールエ
ステル、テトラヒドロフルフリルアクリレート。
Diallyl phthalate, diallyl maleate, N-vinylpyrrolidone, N-vinylimidazole, trimethylolpropane triacrylate, ethylene glycol diacrylate, triethylene glycol diacrylate, neopentyl glycol diacrylate and propylene glycol diadiethylaminoethyl acrylate, diethylaminoethyl methacrylate , amino alcohol esters such as tart-butylaminoethyl methacrylate, and tetrahydrofurfuryl acrylate.

テトラヒドロフルフリルメタクリレート等のテトラヒド
ロフルフリルアルコールエステル、メチルアクリレート
、メチルメタアクリレート、トリアリルイノシアスレー
ト、トリアクルシアヌレート。
Tetrahydrofurfuryl alcohol esters such as tetrahydrofurfuryl methacrylate, methyl acrylate, methyl methacrylate, triallylinocyanurate, triallyl inocyanurate.

トリアリルトリメリテートおよびテトラアリルピロメリ
テート等の1種または2種以上を組合せて使用される。
One or a combination of two or more of triallyl trimellitate and tetraallyl pyromellitate are used.

これら電子線照射により架橋し得るオリゴマーと重合し
得るモノマーの重量比はオリゴマー30〜90重量%で
モノマーが10〜70重量%が適当である。
The appropriate weight ratio of these oligomers that can be crosslinked by electron beam irradiation to the monomers that can be polymerized is 30 to 90% by weight of oligomers and 10 to 70% by weight of monomers.

1記オリゴマーとモノマーの池に熱重合インヒビターと
して、アントラキノン、p−ベンゾキノン、2.3−ジ
クロル−p−ベンゾキノン、2゜6−ジクロル−p−ベ
ンゾキノン等のキノン類。
Quinones such as anthraquinone, p-benzoquinone, 2,3-dichloro-p-benzoquinone, and 2°6-dichloro-p-benzoquinone are used as thermal polymerization inhibitors in the oligomer and monomer ponds.

ハイドロキノン、ハイドロキノンモノメチルエーテル、
 2− tartブチルカテコール、グアヤコール、レ
ゾルシン等のハイドロキノン類、フェノチアジン、セミ
チオルバジド、クペロン、安息香酸銅、ナフテン酸銅、
酪酸銅等を1種または2種以上組み合わせて使用される
hydroquinone, hydroquinone monomethyl ether,
2-tart butylcatechol, guaiacol, hydroquinones such as resorcinol, phenothiazine, semithiorbazide, cuperone, copper benzoate, copper naphthenate,
Copper butyrate etc. are used singly or in combination of two or more.

さらに、電子線硬化樹脂の粘度、チクソトロフィ性の調
整、接着性1機械的強度の確保のためにエアロシール、
シリカ、炭酸カルシウム、炭酸マグネンウム、炭酸バリ
ウム、クレー、タルク、マイカ、硫酸バリウム、イミダ
ゾール、チアゾール。
Furthermore, in order to adjust the viscosity and thixotrophic properties of the electron beam cured resin, and to ensure adhesiveness and mechanical strength, we used Aeroseal,
Silica, calcium carbonate, magnenium carbonate, barium carbonate, clay, talc, mica, barium sulfate, imidazole, thiazole.

ベンズイミダゾール、ベンズチアゾール、ベンズトリア
ゾール、ポリ酢酸ビニルポリメタクリル酸エステル等を
必要に応じて添加してもよい。
Benzimidazole, benzthiazole, benztriazole, polyvinyl acetate polymethacrylate, etc. may be added as necessary.

さらに、導電性ペーストとするために、粒度10μm以
下の銅粉、銀粉、カーボン粉等を30〜80重量係含有
するように上記電子線硬化型樹脂に混合させることによ
り、電子線硬化型導電性ペーストが得られる。
Furthermore, in order to make a conductive paste, by mixing copper powder, silver powder, carbon powder, etc. with a particle size of 10 μm or less with the electron beam curable resin to a content of 30 to 80% by weight, electron beam curable conductive paste can be obtained. A paste is obtained.

ここで、前述のようにして得られた導電性ペーストに適
当な線量の電子線を照射してやれば、電子線は銅粉、銀
粉、カーボン粉等すら透過し、樹脂そのものを硬化させ
ることができる。
Here, if the conductive paste obtained as described above is irradiated with an appropriate dose of electron beam, the electron beam can penetrate even copper powder, silver powder, carbon powder, etc., and can harden the resin itself.

次に本発明の集体的な実施例について第1図a〜fを用
いて説明する。
Next, an integrated embodiment of the present invention will be described using FIGS. 1a to 1f.

第1図aに示すように、両面に35μmの銅はく1を有
する紙−フェノールからなる積層板2で板厚0.811
1のもののをワークサイズに切断し、第1図すに示すよ
うに所定の位置にドリル加工またはパンチング加工によ
り貫通穴3を設けた。
As shown in FIG.
1 was cut to the work size, and as shown in FIG. 1, a through hole 3 was formed at a predetermined position by drilling or punching.

次に第1図Cに示すようにエポキシアクリレート(大阪
有機化学社製、[540)20部、テトラヒドロフルフ
リルメタクリレート20部、ハイドロキノン10部、0
.6〜10μmの銀粉76部からなる導電ペースト4を
貫通穴3にロールコータで塗布するとともに銅はぐ上に
付着した導電ペーストはスキージにてかき取ることによ
り、貫通穴3に4准ペースト4を充填した。
Next, as shown in FIG.
.. A conductive paste 4 consisting of 76 parts of silver powder of 6 to 10 μm is applied to the through hole 3 using a roll coater, and the conductive paste adhering to the copper strip is scraped off with a squeegee, thereby filling the through hole 3 with the paste 4. did.

引き続き、電子線加速装置を使用しysovで加速した
2oメガラドの電子線を瞬時照射した結果、導電ペース
ト4を完全に硬化させることができた。銅はく1の面に
導電ペーストの残査がある場合には研摩等で除去すれば
良い。
Subsequently, the conductive paste 4 was able to be completely cured as a result of instantaneous irradiation with an electron beam of 20 megarads accelerated at ysov using an electron beam accelerator. If there is any residual conductive paste on the surface of the copper foil 1, it can be removed by polishing or the like.

次に、第1図dに示すように貫通穴3に充填した導電ペ
ースト4の表面および銅はく1の表面に電気銅めっきを
施こし、6〜10μmの銅薄膜6を形成し、その表面に
第1図6に示すようにエツチングレジスト6をスクリー
ン印刷で形成し、エツチングを施こすことにより、第1
図rに示すように所定の配線パターンが得られた。
Next, as shown in FIG. 1d, the surface of the conductive paste 4 filled in the through hole 3 and the surface of the copper foil 1 are electrolytically plated to form a thin copper film 6 of 6 to 10 μm. As shown in FIG. 1, an etching resist 6 is formed by screen printing and etching is performed to form the first
A predetermined wiring pattern was obtained as shown in Figure r.

丑記のようにして得た導電ペースト4による両面スルー
ホールプリント配線板は電子線照射により硬化を行うた
め、1秒以下の瞬時に硬化されるので硬化工程の工数が
小さく、しかも積層板2の熱劣化も少ない。
Since the double-sided through-hole printed wiring board made of the conductive paste 4 obtained as described above is cured by electron beam irradiation, it is cured instantly in less than 1 second, so the number of man-hours for the curing process is small. There is also less thermal deterioration.

また、導電ペースト4は従来例のように有機溶剤を含ま
ないので第3図のような導電ペーストの凹みや、気泡が
発生しないから、導電ペースト4の端面が銅は〈1の面
とほぼ同一面となるから、工、フチングレジスト形成時
のスクリーン印刷を精度よく、しかも高速度で実施する
ことができる。
In addition, since the conductive paste 4 does not contain an organic solvent unlike the conventional example, there are no dents or bubbles in the conductive paste as shown in Fig. 3, so the end surface of the conductive paste 4 is almost the same as the surface of the copper surface in <1. Since it is a surface, screen printing during machining and edge resist formation can be performed with high precision and at high speed.

従来例では導電ペーストのスルーホールピッチは少なく
とも2.6腸は必要であったため、例えば基本格子2.
5MIhピッチの導電ペーストスルーホールの場合には
そのスルーホール間にもう一本の配線を通すことは困難
であった。しかしながら、本発明によれば、導電ペース
ト4は貫通穴3のみに塗布するため、表面の配線パター
ン形成の範囲は従来例のように貫通穴とランド径に限定
を受けることにはならず、貫通穴3にのみ限定を受ける
ため、配線の可能範囲が広くなる。したがって、本発明
によれば、従来困難であった、導電ペースト間の表面に
配線を例えば2.6鵡ピフチの場合でも1本。
In the conventional example, the through-hole pitch of the conductive paste was required to be at least 2.6 mm, so for example, the basic grid 2.6 mm was required.
In the case of conductive paste through holes with a pitch of 5 MIh, it was difficult to pass another wire between the through holes. However, according to the present invention, since the conductive paste 4 is applied only to the through hole 3, the range of wiring pattern formation on the surface is not limited to the diameter of the through hole and the land as in the conventional example; Since it is limited only to hole 3, the possible wiring range is widened. Therefore, according to the present invention, even in the case of 2.6 square centimeters, one wire can be placed on the surface between the conductive pastes, which was difficult in the past.

2本、3本と増やすことが可能である。It is possible to increase the number by two or three.

さらに、本発明によれば、貫通穴3に銀の導電ペースト
4を塗布してその上に銅薄膜6を形成しており、この銅
薄膜5が銀マイグレーションの防止をする保護被膜とな
るため、従来のように保護破膜を形成する工程が不要と
なる。
Furthermore, according to the present invention, a silver conductive paste 4 is applied to the through hole 3 and a copper thin film 6 is formed thereon, and this copper thin film 5 serves as a protective film to prevent silver migration. The conventional step of forming a protective membrane rupture is not necessary.

なお、本発明の製造方法を説明するに当り、第1図a 
−y rの順番で説明したが、エツチング工程e、fば
、貫通穴3を設ける工程すの前後に行っても良い。
In addition, in explaining the manufacturing method of the present invention, FIG.
Although the explanation has been made in the order of -y r, the etching steps e and f may be performed before or after the step of providing the through hole 3.

また、導電ペースト4上へのめつきは電気鋼めっきとし
たが、無電解銅めつさを施こしても良い。
Further, although the conductive paste 4 is plated with electric steel plating, electroless copper plating may be applied.

さらに、エツチングレジスト形成をスクリーン印刷で説
明したが、液状ホトレジスト、ドライフィルムを使用し
た、ホトレジストを使用しても良い。
Furthermore, although the etching resist formation has been described using screen printing, a liquid photoresist, a photoresist using a dry film, or a photoresist may also be used.

発明の効果 以上のように本発明は両面の配線パターンを接続する導
電ペイントを貫通穴のみに充填し、電子線照射により硬
化させ、その上にめっきした後表面が平滑性を有するか
ら高精度のプリント配線板を高速度に製造することが可
能となり、工業と利用価値は大なるものである。
Effects of the Invention As described above, in the present invention, only the through holes are filled with conductive paint that connects the wiring patterns on both sides, cured by electron beam irradiation, and plated on top of the conductive paint, so that the surface is smooth and has high precision. It has become possible to manufacture printed wiring boards at high speed, and it has great industrial and utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

リント配線板の製造方法を示す各工程の断面図、第3図
は従来例の欠点の一例を示す断面図である。 1・・・・・・銅はく、2・・・・・・積層板、3・・
・・・・貫通穴、4・・・・・・専心ペースト、6・・
・・・・めっき銅。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
0 第2図
FIG. 3 is a cross-sectional view of each step showing a method for manufacturing a lint wiring board, and FIG. 3 is a cross-sectional view showing an example of the drawbacks of the conventional example. 1...Copper foil, 2...Laminated board, 3...
...Through hole, 4...Special paste, 6...
...Plated copper. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
0 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  両面に銅はくを有する絶縁基板に貫通穴を設ける工程
と、その貫通穴に導電ペーストを充填する工程と、その
導電ペーストを電子線照射で硬化させる工程と、少なく
とも貫通穴の導電ペースト表面にめっきにより銅薄膜を
形成する工程と、絶縁基板上の銅はくの配線パターンを
選択形成する工程からなるプリント配線板の製造方法。
A step of providing a through hole in an insulating substrate having copper foil on both sides, a step of filling the through hole with a conductive paste, a step of curing the conductive paste with electron beam irradiation, and a step of at least applying the conductive paste to the surface of the through hole. A method for manufacturing a printed wiring board, which comprises a step of forming a copper thin film by plating and a step of selectively forming a copper foil wiring pattern on an insulating substrate.
JP30071987A 1987-11-27 1987-11-27 Manufacture of printed wiring board Pending JPH01143292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30071987A JPH01143292A (en) 1987-11-27 1987-11-27 Manufacture of printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30071987A JPH01143292A (en) 1987-11-27 1987-11-27 Manufacture of printed wiring board

Publications (1)

Publication Number Publication Date
JPH01143292A true JPH01143292A (en) 1989-06-05

Family

ID=17888278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30071987A Pending JPH01143292A (en) 1987-11-27 1987-11-27 Manufacture of printed wiring board

Country Status (1)

Country Link
JP (1) JPH01143292A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243142A (en) * 1990-08-03 1993-09-07 Hitachi Aic Inc. Printed wiring board and process for producing the same
US5319159A (en) * 1992-12-15 1994-06-07 Sony Corporation Double-sided printed wiring board and method of manufacture thereof
US5507403A (en) * 1994-01-21 1996-04-16 Hitachi, Ltd. Process for producing an electronic part and the electronic part produced by the process
EP0820217A1 (en) * 1996-07-18 1998-01-21 E.I. Du Pont De Nemours And Company Composition and process for filling vias
US6376049B1 (en) 1997-10-14 2002-04-23 Ibiden Co., Ltd. Multilayer printed wiring board and its manufacturing method, and resin composition for filling through-hole
JP2016063077A (en) * 2014-09-18 2016-04-25 大日本印刷株式会社 Conductive material through hole substrate and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130895A (en) * 1983-12-20 1985-07-12 松下電器産業株式会社 Method of producing printed circuit board
JPS62193197A (en) * 1986-02-19 1987-08-25 株式会社東芝 Manufacture of through-hole printed wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130895A (en) * 1983-12-20 1985-07-12 松下電器産業株式会社 Method of producing printed circuit board
JPS62193197A (en) * 1986-02-19 1987-08-25 株式会社東芝 Manufacture of through-hole printed wiring board

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243142A (en) * 1990-08-03 1993-09-07 Hitachi Aic Inc. Printed wiring board and process for producing the same
US5319159A (en) * 1992-12-15 1994-06-07 Sony Corporation Double-sided printed wiring board and method of manufacture thereof
US5507403A (en) * 1994-01-21 1996-04-16 Hitachi, Ltd. Process for producing an electronic part and the electronic part produced by the process
EP0820217A1 (en) * 1996-07-18 1998-01-21 E.I. Du Pont De Nemours And Company Composition and process for filling vias
US6376049B1 (en) 1997-10-14 2002-04-23 Ibiden Co., Ltd. Multilayer printed wiring board and its manufacturing method, and resin composition for filling through-hole
US6376052B1 (en) 1997-10-14 2002-04-23 Ibiden Co., Ltd. Multilayer printed wiring board and its production process, resin composition for filling through-hole
EP2015624A2 (en) 1997-10-14 2009-01-14 Ibiden Co., Ltd. Multilayer printed wiring board and its manufacturing method, and resin composition for filling through-hole
USRE40947E1 (en) 1997-10-14 2009-10-27 Ibiden Co., Ltd. Multilayer printed wiring board and its manufacturing method, and resin composition for filling through-hole
JP2016063077A (en) * 2014-09-18 2016-04-25 大日本印刷株式会社 Conductive material through hole substrate and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US3334395A (en) Method of making a metal printed circuit board
JPH0141274B2 (en)
JPH01143292A (en) Manufacture of printed wiring board
JP2003023248A (en) Multilayered flexible wiring circuit board and its manufacturing method
KR900013823A (en) Electric conductive layer formation method
JP2007150171A (en) Manufacturing method for wiring board
KR20010009975A (en) Method of producing a multi-layer printed-circuit board
JP3600317B2 (en) Multilayer printed wiring board and method of manufacturing the same
JPS60130895A (en) Method of producing printed circuit board
JPH08316642A (en) Multilayer printed wiring board with interstitial via hole
JP3051252B2 (en) Photoresist film laminating method
JP3120796B2 (en) Method of manufacturing contact probe for electrical inspection
JPS62277794A (en) Manufacture of inner layer circuit board
JPH10204263A (en) Photosensitive resin composition
JP3591818B2 (en) Manufacturing method of wiring board
EP0213336A1 (en) Method for making a flush surface laminate for a multilayer circuit board
JPH07283540A (en) Multilayered printed wiring board and its manufacture
KR101563161B1 (en) Method of manufacturing circuit board
JP3591817B2 (en) Manufacturing method of wiring board
CN116321778A (en) Method for forming multi-layer circuit board conductive structure
JP2000196234A (en) Multi-layer wiring board
JPH09331136A (en) Printed wiring board with conductive paste
JPH1041628A (en) Manufacturing method of multilayer printed wiring board
JPH1154919A (en) Multilayered printed wiring board and its manufacture
JPH0883962A (en) Copper-clad laminated board, manufacture of printed-wiring board and manufacture of multilayer printed-wiring board