JPH02114243A - Optical control device and its manufacture - Google Patents

Optical control device and its manufacture

Info

Publication number
JPH02114243A
JPH02114243A JP26915788A JP26915788A JPH02114243A JP H02114243 A JPH02114243 A JP H02114243A JP 26915788 A JP26915788 A JP 26915788A JP 26915788 A JP26915788 A JP 26915788A JP H02114243 A JPH02114243 A JP H02114243A
Authority
JP
Japan
Prior art keywords
control device
transparent
optical
electrodes
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26915788A
Other languages
Japanese (ja)
Inventor
Mitsukazu Kondo
充和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26915788A priority Critical patent/JPH02114243A/en
Publication of JPH02114243A publication Critical patent/JPH02114243A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the stability of an optical control device and, at the same time, to easily manufacture the device by forming a transparent semiconductor film having a refractive index which is about the same as that of transparent electrodes and specific resistance which is smaller than that of a crystalline base plate of an inductive material, but higher than a specific multiple of that of the electrodes around the electrodes. CONSTITUTION:A transparent semiconductor film 16 having a refractive index which is about the same as that of transparent electrodes 15 and specific resistance which is smaller than that of a base plate, but higher than the 10<5> of that of the electrodes 15 is provided around the electrodes 15 so as to uniformize electric charges locally accumulated on the base plate and eliminate unstable operations. Since the specific resistance of the film 16 is sufficiently large as compared with that of the electrodes 15, electric fields of sufficiently large magnitudes can be impressed upon optical waveguides 2 and 3 in the vicinity of the electrodes 15. Therefore, the stability of this optical control device can be improved and device can be manufactured easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光波の変調、光路切換え等を行なう光制御デバ
イスに関し、特に基板中に設けた光導波路を用いて制御
を行なう導波形の光制御デバイスに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an optical control device that modulates light waves, switches optical paths, etc., and particularly relates to waveguide-type optical control that performs control using an optical waveguide provided in a substrate. Regarding devices.

(従来の技術) 光通信システムの実用化が進むにつれ、さらに大容量や
多機能をもつ高度のシステムが求められている。より高
速の光信号の発生や光伝送路の切換え、交換等の新たな
機能の付加が必要とされている。現在の実用システムで
は光信号は直接半導体レーザや発光ダイオードの注入電
流を変調することによって得られている。ところが、直
接変調には、緩和振動等の効果のため数GHz以上の高
速変調が難しいこと、波長変動が発生ずるためコヒーレ
ント光伝送方式には適用が難しいこと等の欠点がある。
(Prior Art) As the practical use of optical communication systems progresses, advanced systems with even higher capacity and multiple functions are required. There is a need to add new functions such as generation of faster optical signals and switching and exchanging optical transmission lines. In current practical systems, optical signals are obtained by directly modulating the injection current of semiconductor lasers or light emitting diodes. However, direct modulation has drawbacks such as difficulty in high-speed modulation of several GHz or more due to effects such as relaxation oscillation, and difficulty in applying it to coherent optical transmission systems due to wavelength fluctuations.

これを解決する手段としては、外部光変調器を使用する
方法があり、特に基板中に形成した光導波路により構成
した導波形の光変調器は、小形、高効率、高速という特
徴がある。一方、光伝送路の切IQえやネットワークの
交換低能を得る手段としては光スイッチが使用される。
As a means to solve this problem, there is a method of using an external optical modulator. In particular, a waveguide-type optical modulator constituted by an optical waveguide formed in a substrate is characterized by its small size, high efficiency, and high speed. On the other hand, an optical switch is used as a means for obtaining switching IQ of an optical transmission line and switching performance of a network.

現在実用されている光スィッチは、プリズム、ミラーフ
ァイバー等を機械的に移動させるものである。
Optical switches currently in practical use mechanically move prisms, mirror fibers, and the like.

この形式の光スィッチには、低速であること、信顆性が
不十分、形状が大きくマトリクス化に不適等の欠点があ
る。これを解決する手段として開発が進められているも
のはやはり光導波路を用いた導波形の光スィッチであり
、高速、多素子の集積化が可能、高信頼等の特長がある
。特にニオブ酸リチウム(L i Nb0i )結晶等
の強誘電体材料を用いたものは、光吸収が小さく低損失
であること、大きな電気光学効果を有しているから、高
効率である等の特長があり、従来からも方向性結合形光
変調器またはスイッチ、全反射形光スイッチ等の種々の
方式の光制御素子が報告されている。
This type of optical switch has drawbacks such as low speed, insufficient reliability, large size, and unsuitability for matrix formation. A waveguide type optical switch using an optical waveguide is currently being developed as a means to solve this problem, and has features such as high speed, ability to integrate multiple elements, and high reliability. In particular, those using ferroelectric materials such as lithium niobate (L i Nb0i ) crystals have features such as low light absorption and low loss, and high efficiency because they have a large electro-optical effect. Various types of light control elements such as directional coupling type optical modulators or switches and total reflection type optical switches have been reported.

このような導波形の光制御素子が実際の光通信システム
に適用する場合、低損失、高速性等の基本的性能と同時
に特に、動作の安定性が実用上不可欠である。
When such a waveguide-type optical control element is applied to an actual optical communication system, basic performance such as low loss and high speed, as well as particularly operational stability, are practically essential.

(発明が解決しようとする課題) しかし、従来の導波形の光制御デバイスでは、安定性に
関しては十分な特性は得られていない。
(Problems to be Solved by the Invention) However, with conventional waveguide type optical control devices, sufficient characteristics regarding stability have not been obtained.

第3図に従来の光制御デバイスの一例として方向性結合
型光スィッチを示づ一0木E;II (a >はその平
面図1本図(b)はその断面図である。第3図<a)に
おいてZ軸に垂直に切り出したニオブ酸リチウム結晶基
板1の上にチタンを拡散して屈折率を基板よりも大きく
して形成した帯状の光導波i?82及び3が形成されて
おり、光導波路2及び3は基板の中火部で互いに数μm
71程度まで近接し、方向性結合器4を構成している。
Figure 3 shows a directional coupling type optical switch as an example of a conventional optical control device. In <a), a band-shaped optical waveguide i? is formed by diffusing titanium onto a lithium niobate crystal substrate 1 cut perpendicularly to the Z axis to make the refractive index larger than that of the substrate. 82 and 3 are formed, and the optical waveguides 2 and 3 are several μm apart from each other in the intermediate part of the substrate.
71, forming the directional coupler 4.

また、方向性結合器4を構成する光導波路上には電(炉
による光吸収を防ぐためのへンフr膜6を介して制御型
、衝5が形成されている。第3図(b)は方向性結合器
4の部分を光導波路2,3に垂直な面で切断して示す断
面図である。
In addition, on the optical waveguide constituting the directional coupler 4, a control type optical fiber 5 is formed via an electromagnetic film 6 to prevent light absorption by the furnace.FIG. 3(b) 2 is a cross-sectional view showing a portion of the directional coupler 4 cut along a plane perpendicular to the optical waveguides 2 and 3. FIG.

第3図において、光導波路2に入射した入射光7は方向
性結合器4の部分を伝搬するに従って近接した光導波路
3へ徐々に光エネルギーが移り、方向性結合器4を通過
後は光導波路3にほぼ100%エネルギーか移って出射
光8となる。一方、制御な極5に電圧を印加した場合、
電気光学効果により電極下の光導波路の屈折率が変化し
、光導波路2と3を伝搬する導波モードの間に位相速I
σの不整合が生じ、両者の間の結合状態は変化する。
In FIG. 3, as the incident light 7 that has entered the optical waveguide 2 propagates through the directional coupler 4, the optical energy gradually transfers to the adjacent optical waveguide 3, and after passing through the directional coupler 4, the optical waveguide Almost 100% of the energy is transferred to the light beam 3 and becomes the emitted light beam 8. On the other hand, when a voltage is applied to the control pole 5,
The refractive index of the optical waveguide under the electrode changes due to the electro-optic effect, and the phase velocity I between the waveguide modes propagating through the optical waveguides 2 and 3 increases.
A mismatch of σ occurs, and the bonding state between the two changes.

印加電圧を上昇するに従って光導波F#I2から3への
光エネルギーの移行量は減少し、ある電圧値Vsでは、
入射光7は方向性結合器4を通過後に光エネルギーの1
00%が光導波路2にもどってしまう状態となる。すな
わち、制御電極5への印加電圧の有無により入射光7は
光導波路2からの出射光9スは光導波路3からの出射光
8となる。
As the applied voltage increases, the amount of optical energy transferred from optical waveguide F#I2 to F#I3 decreases, and at a certain voltage value Vs,
The incident light 7 has optical energy of 1 after passing through the directional coupler 4.
00% returns to the optical waveguide 2. That is, depending on whether or not a voltage is applied to the control electrode 5, the incident light 7 becomes the output light 9 from the optical waveguide 2, and the output light 8 from the optical waveguide 3.

しかし、第3図に示すような従来の光スィッチでは、温
度が変化した場合やDC電圧を印加した場合の特性の不
安定性が生じていた。特性の不安定性は、温度が変化し
た場合に焦電効果によって誘起される結晶中の局部的な
電界の不均一性や、DCE圧印圧印上り結晶中やバッフ
ァ層中の電荷が移動し結晶や膜の界面に局部的に蓄積さ
れて光波に作用する電界強度が変化することにより生ず
る。
However, in the conventional optical switch shown in FIG. 3, the characteristics become unstable when the temperature changes or when a DC voltage is applied. Instability of properties is caused by local electric field non-uniformity in the crystal induced by the pyroelectric effect when the temperature changes, or by movement of charges in the DCE coining crystal or buffer layer, causing crystal or film damage. This is caused by a change in the electric field strength that is locally accumulated at the interface of the light wave and acts on the light wave.

従来、バッファ層に起因する特性の不安定性を除く手段
として、バッファ層を設置しないで、電極を透明電極と
して直接基板上に設置する構成が報告されている。しか
し、この場合でもDC電界や焦電効果によって結晶表面
付近に誘起された電荷を介した不安定性は残ってしまう
Conventionally, as a means to eliminate instability in characteristics caused by the buffer layer, a structure has been reported in which the buffer layer is not provided and the electrode is directly provided as a transparent electrode on the substrate. However, even in this case, instability remains due to charges induced near the crystal surface by a DC electric field or pyroelectric effect.

本発明の目的は、上述の従来の光制御デバイスの欠点を
除き、安定性が高く、かつ製作の容易な光制御デバイス
及びその製造方法を提供することにある。
An object of the present invention is to provide a light control device that eliminates the drawbacks of the conventional light control devices described above, has high stability, and is easy to manufacture, and a method for manufacturing the same.

(課題を解決するための手段) 本発明による光制御デバイスは、電気光学効果を有する
誘電体結晶基板表面に形成された光導波路と、該光導波
路の近傍に設置された電極とを備えてなる光制御デバイ
スであって、前記電極が透明導電体でなり、屈折率が前
記透明導電体とほぼ同じであり、比抵抗が前記誘導体結
晶基板よりも小さく、かつ前記透明導電体の105倍以
上の値である透明半導体膜が前記電極の周囲に形成され
ていることを特徴とする。
(Means for Solving the Problems) An optical control device according to the present invention includes an optical waveguide formed on the surface of a dielectric crystal substrate having an electro-optic effect, and an electrode installed near the optical waveguide. A light control device, wherein the electrode is made of a transparent conductor, the refractive index is approximately the same as that of the transparent conductor, the specific resistance is smaller than the dielectric crystal substrate, and is 105 times or more that of the transparent conductor. The method is characterized in that a transparent semiconductor film, which is a transparent semiconductor film, is formed around the electrode.

また、本発明による光制御デバイスの製造方法は、電気
光学効果を有する誘電体結晶基板表面に光導波路を形成
した後、該基板表面上に透明導電体又は透明半導体膜を
コーティングし、その膜の電極パターンが形成されるべ
き領域、または電極パターンが形成されるべき領域以外
の領域のうちのいずれか一方の領域に不純物を導入する
工程を含むことを特徴とする。
In addition, the method for manufacturing an optical control device according to the present invention includes forming an optical waveguide on the surface of a dielectric crystal substrate having an electro-optic effect, and then coating the substrate surface with a transparent conductor or a transparent semiconductor film. The method is characterized by including a step of introducing an impurity into either a region where an electrode pattern is to be formed or a region other than the region where an electrode pattern is to be formed.

(作用) 本発明の光制御デバイスでは、透明電極の周囲に透明で
屈折率が透明電極とほぼ等しく、かつ比抵抗が基板より
も小さく、かつ透明電極よりも105倍以上大きい値を
もつ透明半導体膜を設置することにより基板上に局所的
に蓄積された電荷を均一化して動作の不安定性を除く、
この場合、本発明では透明半導体膜の比抵抗が透明′r
jh極の比抵抗に比べて十分大きいので、透明電極に印
加する電圧により透明電極付近の光導波路中に充分な大
きさの電界を印加することかできる。また、本発明の光
制御デバイスでは、透明電極と透明半導体膜の屈折率が
ほぼ等しいから、両者の下側に形成された光導波路中を
伝搬する光波の導波モードはほぼ等しくなり、導波光が
= Fiiエッヂ部分を通過する際の散乱損失が少なく
、光回路の設計が容易である。
(Function) In the light control device of the present invention, the transparent electrode is surrounded by a transparent semiconductor having a refractive index substantially equal to that of the transparent electrode, a resistivity smaller than that of the substrate, and a value 105 times or more larger than that of the transparent electrode. By installing a film, the charges locally accumulated on the substrate are uniformized and instability of operation is eliminated.
In this case, in the present invention, the specific resistance of the transparent semiconductor film is
Since it is sufficiently larger than the specific resistance of the jh pole, a sufficiently large electric field can be applied in the optical waveguide near the transparent electrode by applying a voltage to the transparent electrode. In addition, in the optical control device of the present invention, since the refractive index of the transparent electrode and the transparent semiconductor film are almost equal, the guiding modes of the light waves propagating in the optical waveguide formed under both are almost equal, and the guided light = There is less scattering loss when passing through the Fii edge portion, making it easy to design an optical circuit.

また本発明による光制御デバイスの製造方法によれば、
同一の材料膜の一部を不純物導入によって低抵抗化又は
高抵抗化することによって透明電極部と透明半導体膜の
部分を形成するので、同じ屈折率をもつ電極及び半導体
膜が容易に形成できる。
Further, according to the method for manufacturing a light control device according to the present invention,
Since the transparent electrode portion and the transparent semiconductor film portion are formed by lowering or increasing the resistance of a portion of the same material film by introducing impurities, the electrode and semiconductor film having the same refractive index can be easily formed.

(実施例) 第1図は本発明による光制御デバイスの一実施例である
方向性結合型光スィッチを示し、同図(a、)はその平
面図であり、同図(b)はその断面図である。第3図の
従来例と同様にニオブ酸リチウム結晶基板1の上にチタ
ンを900〜1100℃程度で数時間熱拡散して形成さ
れた深さ3〜10μm程度の光導波路2及び3が設置さ
れ、基板の中央部で両光導波路は互いに数μInまで近
接して方向性結合器4を構成している。さらに光導波路
上には透明電極15が形成され、その周囲に透明半導体
膜16がコーティングされている0本実施例では。
(Example) Fig. 1 shows a directional coupling type optical switch which is an embodiment of the optical control device according to the present invention. It is a diagram. Similar to the conventional example shown in FIG. 3, optical waveguides 2 and 3 with a depth of about 3 to 10 μm formed by thermally diffusing titanium at about 900 to 1100° C. for several hours are installed on a lithium niobate crystal substrate 1. In the center of the substrate, both optical waveguides are close to each other by several microns to form a directional coupler 4. Furthermore, in this embodiment, a transparent electrode 15 is formed on the optical waveguide, and a transparent semiconductor film 16 is coated around the transparent electrode 15.

透明型[!15はAρを1%程度ドープしたZnO膜か
らなり、また、透明半導体膜16は不純物の少ないZn
0pAからなっており、スパッタよって形成されている
。また、透明電極15の比抵抗は10−1〜10−3Ω
・cmであり、透明半導体膜16の比抵抗は104〜1
06Ω・cmである。透明電極15の幅、長さ、電極間
隔はそれぞれ、10〜20μ■口、1〜20mm、5〜
10μm、であり、厚さは0.1〜1.0μm程度であ
るため、2つの電極間の抵抗よりも電極内の抵抗の方が
十分小さくなり、印加電圧により光導波路中に十分な電
界が印加される。また、透明半導体膜16の比抵抗が高
いため印加電圧によるリーク電流は十分小さいが、ニオ
ブ酸リチウム結晶基板に比べると比抵抗が十分に小さい
から、結晶表面に誘起された空間電荷は均一化され、特
性の安定化がはかれる。
Transparent type [! 15 is a ZnO film doped with about 1% Aρ, and the transparent semiconductor film 16 is a ZnO film doped with about 1% of Aρ.
It has a current of 0 pA and is formed by sputtering. Further, the specific resistance of the transparent electrode 15 is 10-1 to 10-3Ω
・cm, and the specific resistance of the transparent semiconductor film 16 is 104 to 1
06Ω·cm. The width, length, and electrode spacing of the transparent electrode 15 are 10 to 20 μm, 1 to 20 mm, and 5 to 20 mm, respectively.
10 μm, and the thickness is about 0.1 to 1.0 μm, so the resistance within the electrode is much smaller than the resistance between the two electrodes, and the applied voltage creates a sufficient electric field in the optical waveguide. applied. In addition, since the transparent semiconductor film 16 has a high specific resistance, the leakage current due to the applied voltage is sufficiently small, but since the specific resistance is sufficiently small compared to the lithium niobate crystal substrate, the space charge induced on the crystal surface is not uniformized. , the characteristics are stabilized.

本実施例では、透明電極及び透明半導体膜材料としてZ
nOを用いたが、光導波路よりも屈折率の小さい他の酸
化物材料、例えばA ’) 20 s等や存樋材料番:
を用いることができる。
In this example, Z is used as the transparent electrode and transparent semiconductor film material.
Although nO was used, other oxide materials with a refractive index smaller than that of the optical waveguide, such as A') 20s, etc., and the material number:
can be used.

第2図は本発明による光制御デバイスの製造方法の一実
施例を示す。第1図の実施例と同様に光導波路が形成さ
れたニオブ酸リチウム結晶基板上に先ず一様に半導体で
あるZn0rf!A21がスパッタコーティングされる
(第2図(a))。その後第2図<b>に示すように制
御電極パターンの開口をもつマスク22が形成され、そ
の上から、イオン注入又は不Kl物拡散によって不純物
が導入される。
FIG. 2 shows an embodiment of the method for manufacturing a light control device according to the present invention. First, Zn0rf!, which is a semiconductor, is uniformly spread on a lithium niobate crystal substrate on which an optical waveguide is formed, as in the embodiment shown in FIG. A21 is sputter coated (FIG. 2(a)). Thereafter, as shown in FIG. 2<b>, a mask 22 having an opening for a control electrode pattern is formed, and impurities are introduced thereon by ion implantation or impurity diffusion.

上記マスクが除去され、第2図(C)に示す低い比抵抗
をもつ透明電極部23と透明半導体膜の部分24とが形
成される。本実施例ではZnO膜を用いたがAN20s
 、Sin、MgO,5nC)z等の他の酸化膜やフッ
化膜等の透明膜を用いることができる。
The mask is removed, and a transparent electrode portion 23 and a transparent semiconductor film portion 24 having low resistivity shown in FIG. 2(C) are formed. Although a ZnO film was used in this example, AN20s
, Sin, MgO, 5nC)z, or other oxide films or transparent films such as fluoride films can be used.

(発明の効果) 以上に述べたように本発明の光制御デバイスでは、安定
性か高く、かつ製作の容易な光制御デバイス及びその製
造方法が得られる。
(Effects of the Invention) As described above, the light control device of the present invention provides a light control device that is highly stable and easy to manufacture, and a method for manufacturing the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図<a)は本発明による光制御デバイスの一実施例
を示す平面図、第1図(b)はその実施例の断面図、第
2図は本発明による光制御デバイスの製造方法の一例を
示す図、第3図(a)は従来の光制御デバイスの一例を
示す平面図、第3図(b)はその従来の光制御デバイス
の断面図である。 図において、1はニオブ酸リチウム結晶基板、2.3は
光導波路、15は透明電極、16は透明半導体膜である
FIG. 1(a) is a plan view showing an embodiment of the light control device according to the present invention, FIG. 1(b) is a sectional view of the embodiment, and FIG. FIG. 3(a) is a plan view showing an example of a conventional light control device, and FIG. 3(b) is a sectional view of the conventional light control device. In the figure, 1 is a lithium niobate crystal substrate, 2.3 is an optical waveguide, 15 is a transparent electrode, and 16 is a transparent semiconductor film.

Claims (4)

【特許請求の範囲】[Claims] (1)電気光学効果を有する誘電体結晶基板表面に形成
された光導波路と、該光導波路の 近傍に設置された電極とを備えてなる光制 御デバイスにおいて、 前記電極が透明導電体でなり、 屈折率が前記透明導電体とほぼ同じであ り、比抵抗が前記誘電体結晶基板よりも小 さく、かつ前記透明導電体の10^5倍以上の値である
透明半導体膜が前記電極の周囲に 形成されていることを特徴とする光制御デ バイス。
(1) A light control device comprising an optical waveguide formed on the surface of a dielectric crystal substrate having an electro-optic effect and an electrode installed near the optical waveguide, wherein the electrode is made of a transparent conductor; A transparent semiconductor film having a refractive index substantially the same as that of the transparent conductor, a specific resistance smaller than that of the dielectric crystal substrate, and a value 10^5 times or more that of the transparent conductor is formed around the electrode. A light control device characterized by:
(2)透明導電体と透明半導体膜が同一材料で構成され
、かつ互いに不純物濃度が異なつ ていることを特徴とする請求項1記載の光 制御デバイス。
(2) The light control device according to claim 1, wherein the transparent conductor and the transparent semiconductor film are made of the same material and have different impurity concentrations.
(3)透明半導体膜がZnO膜であり、透明導電体が不
純物をドープされたZnO膜であ ることを特徴とする請求項1記載の光制御 デバイス。
(3) The optical control device according to claim 1, wherein the transparent semiconductor film is a ZnO film, and the transparent conductor is a ZnO film doped with impurities.
(4)電気、光学効果を有する誘電体結晶基板表面に光
導波路を形成した後、該基板表面上 に透明導電体又は透明半導体膜をコーティ ングし、その膜の電極パターンが形成され るべき領域、または電極パターンが形成さ れるべき領域以外の領域のうちのいずれか 一方の領域に、不純物を導入する工程を含 むことを特徴とする光制御デバイスの製造 方法。
(4) After forming an optical waveguide on the surface of a dielectric crystal substrate having electrical and optical effects, coating a transparent conductor or a transparent semiconductor film on the surface of the substrate, and a region of the film where an electrode pattern is to be formed; Alternatively, a method for manufacturing a light control device, comprising the step of introducing an impurity into one of the regions other than the region where the electrode pattern is to be formed.
JP26915788A 1988-10-25 1988-10-25 Optical control device and its manufacture Pending JPH02114243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26915788A JPH02114243A (en) 1988-10-25 1988-10-25 Optical control device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26915788A JPH02114243A (en) 1988-10-25 1988-10-25 Optical control device and its manufacture

Publications (1)

Publication Number Publication Date
JPH02114243A true JPH02114243A (en) 1990-04-26

Family

ID=17468469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26915788A Pending JPH02114243A (en) 1988-10-25 1988-10-25 Optical control device and its manufacture

Country Status (1)

Country Link
JP (1) JPH02114243A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409238A2 (en) * 1989-07-20 1991-01-23 Nec Corporation Optical control device
WO2004083953A1 (en) * 2003-03-19 2004-09-30 Nippon Telegraph And Telephone Corporation Optical switch, optical modulator and variable wavelength filter
JP2018045236A (en) * 2016-09-08 2018-03-22 グッドリッチ コーポレイション Apparatus and methods of electrically conductive optical semiconductor coating
JP2018049265A (en) * 2016-09-08 2018-03-29 グッドリッチ コーポレイション Apparatus and methods of electrically conductive optical semiconductor coating

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409238A2 (en) * 1989-07-20 1991-01-23 Nec Corporation Optical control device
EP0409238A3 (en) * 1989-07-20 1991-11-21 Nec Corporation Optical control device
WO2004083953A1 (en) * 2003-03-19 2004-09-30 Nippon Telegraph And Telephone Corporation Optical switch, optical modulator and variable wavelength filter
US7336854B2 (en) 2003-03-19 2008-02-26 Nippon Telegraph And Telephone Corporation Optical switch, optical modulator and wavelength variable filter
US7340116B2 (en) 2003-03-19 2008-03-04 Nippon Telegraph And Telephone Corporation Optical switch, optical modulator and wavelength variable filter
US7356227B2 (en) 2003-03-19 2008-04-08 Nippon Telegraph And Telephone Corporation Optical switch, optical modulator and wavelength variable filter
CN100410796C (en) * 2003-03-19 2008-08-13 日本电信电话株式会社 Optical switch, optical modulator and variable wavelength filter
US7492975B2 (en) 2003-03-19 2009-02-17 Nippon Telegraph And Telephone Corporation Optical switch, optical modulator and wavelength variable filter
JP2018045236A (en) * 2016-09-08 2018-03-22 グッドリッチ コーポレイション Apparatus and methods of electrically conductive optical semiconductor coating
JP2018049265A (en) * 2016-09-08 2018-03-29 グッドリッチ コーポレイション Apparatus and methods of electrically conductive optical semiconductor coating

Similar Documents

Publication Publication Date Title
JP2873203B2 (en) Waveguide type optical device
JPH02114243A (en) Optical control device and its manufacture
JP2940141B2 (en) Waveguide type optical control device
JPH07120631A (en) Optical waveguide type part
JP2868046B2 (en) Light modulator
JPH0566428A (en) Optical control device
JP2800297B2 (en) Light control device
JP2998373B2 (en) Light control circuit
JP2993192B2 (en) Light control circuit
JP3139009B2 (en) Light switch
JP2720654B2 (en) Light control device
JP3106710B2 (en) Light control device
JPH01252929A (en) Optical control device
JPS6370827A (en) Production of optical control device
JP2643927B2 (en) Manufacturing method of optical branching / optical coupling circuit
JPS62258419A (en) Optical control device
JPH06347839A (en) Optical control device
JP2606552B2 (en) Light control device
JP2912039B2 (en) Light control device
JP2671586B2 (en) Light control device
JPS60182424A (en) Optical control circuit
JPH0795173B2 (en) Light control device
JP2836174B2 (en) Light control device
JP3134298B2 (en) Method for manufacturing light control device
JPS60182425A (en) Manufacture of optical control system