JPH01134002A - Vane - Google Patents

Vane

Info

Publication number
JPH01134002A
JPH01134002A JP29114887A JP29114887A JPH01134002A JP H01134002 A JPH01134002 A JP H01134002A JP 29114887 A JP29114887 A JP 29114887A JP 29114887 A JP29114887 A JP 29114887A JP H01134002 A JPH01134002 A JP H01134002A
Authority
JP
Japan
Prior art keywords
vane
silicon carbide
carbon
silicon
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29114887A
Other languages
Japanese (ja)
Other versions
JPH0615808B2 (en
Inventor
Nobuhiro Obara
小原 庸博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP62291148A priority Critical patent/JPH0615808B2/en
Publication of JPH01134002A publication Critical patent/JPH01134002A/en
Publication of JPH0615808B2 publication Critical patent/JPH0615808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders

Abstract

PURPOSE:To improve abrasion resistance of a vane by inverting a part or the front part of the vane whose base material consists of a carbon material into silicon carbide, in the vane used for a rotary pump, a rotary engine, etc. CONSTITUTION:In the case of applying this invention on a vane serving as an apex seal for a rotary engine, a vane 1 whose base material consists of a carbon material is machined and sealed in the same graphite container with the mixed compact of silicon powder and silicon dioxide powder without touching it. And a surface layer is inverted into silicon carbide by being heated to some temperature, e.g. 1,800 deg.C and being held at this temperature for about 120min. A layer 2 which is inverted into silicon carbide is formed with parts 4 which are inverted into silicon carbide, unreacted carbon parts 5 and fine blowholes 6. Then, the vane 1 is impregnated with aluminum through the fine blowholes 6 of the vane 1 so that the vane of a final product, which has such structure as the fine blowholes 6 are filled with aluminum 7, can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ベーンに関し、詳しくはロータリーポンプ、
ロータリー圧msのローターの溝に配置されるシール用
のベーンやロータリーエンジン用アペックスシールとし
てのベーン等に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a vane, and more specifically to a rotary pump,
The present invention relates to a vane for a seal placed in a groove of a rotor with a rotary pressure of ms, a vane as an apex seal for a rotary engine, and the like.

(従来の技術) 炭素材料は潤滑性があり無給油で摺動部のシールを形成
することができるため例えば、冷暖房空調機や冷蔵庫の
インバーター用のロータリー圧縮機やロータリーポンプ
のベーンとして、特に油汚染をきらうベーンに用いられ
ている。
(Prior art) Carbon materials have lubricating properties and can form seals on sliding parts without lubrication, so they are used, for example, as vanes for rotary compressors and rotary pumps for inverters in air-conditioning and air conditioners and refrigerators. Used in vanes that do not want to be contaminated.

また高速回転部分をシールするベーンは高強度を必要と
するのでバビット・メタルやアルミニウムなどの金属を
含浸させた炭素材料などを基材として用いられている。
In addition, vanes that seal high-speed rotating parts require high strength, so carbon materials impregnated with metals such as Babbitt metal and aluminum are used as base materials.

具体例としてはロータリーエンジンのアペックスシール
があり、炭素材料にアルミニウムを含浸させた複合材料
が用いられている。
A specific example is the apex seal of a rotary engine, which uses a composite material made of carbon material impregnated with aluminum.

又、特公昭51−35648号公報に開示されているよ
うに、カーボン繊維をポリイミドまたはフェノール樹脂
で固定形成せしめたロータリーエンジン・アペックスシ
ールも提案されている。
Furthermore, as disclosed in Japanese Patent Publication No. 51-35648, a rotary engine apex seal in which carbon fibers are fixedly formed with polyimide or phenol resin has also been proposed.

(発明が解決しようとする問題点) しかしながら、従来の炭素材料あるいは金属含浸炭素材
料、カーボン繊維より成る炭素材料などから作られたベ
ーンは耐摩耗性が不十分であった。
(Problems to be Solved by the Invention) However, conventional vanes made of carbon materials, metal-impregnated carbon materials, carbon materials made of carbon fibers, etc. have insufficient wear resistance.

又、炭素−アルミニウム複合材中のアルミニウムと炭素
基材が摺動面近傍の高温部分で反応を起こして変質し、
その結果、異常摩耗を起こすことかあった。
In addition, the aluminum and carbon base material in the carbon-aluminum composite material react with each other in the high temperature area near the sliding surface, resulting in deterioration.
As a result, abnormal wear may occur.

本発明はこのような問題点を解決し、高温下で高強度、
耐摩耗性に優れたベーンを提供することを目的とする。
The present invention solves these problems and provides high strength and
The purpose is to provide a vane with excellent wear resistance.

(問題点を解決するための手段) すなわち1本発明は炭素材料を基材とするベーンにおい
て、その一部又は全部を炭化珪素に転化して成るベーン
を要旨とするものである。
(Means for Solving the Problems) That is, one aspect of the present invention is a vane whose base material is a carbon material, in which part or all of the material is converted to silicon carbide.

ベーンの基材となる炭素材料は一般の炭素焼結成形品、
樹脂成形品、カーボン繊維、カーボンシート、カーボン
フィルム等があげられるが炭素焼結成形品の場合、原料
として各種コークス及びカーボンブラック類、黒鉛粉等
をフィラーとし、コールタールピッチや石油ピッチなど
のピッチ類、あるいはフェノール樹脂やフラン樹脂等の
合成樹脂類をバインダー又は含浸剤として混線、成形し
焼成、必要に応じて黒鉛化することによって得られる。
The carbon material that becomes the base material of the vane is a general carbon sintered molded product,
Examples include resin molded products, carbon fibers, carbon sheets, carbon films, etc. In the case of carbon sintered molded products, fillers include various types of coke, carbon black, graphite powder, etc., and pitches such as coal tar pitch and petroleum pitch. or synthetic resins such as phenol resins and furan resins as a binder or impregnating agent, mixed wires, molded, fired, and graphitized if necessary.

ベーンの使用条件により、液潤滑の十分な場合は、耐摩
耗性の点から焼成温度を1300°C以下にして炭素質
に富んだ炭素材を使用する。−方、乾燥摩擦に近い状態
で使う場合には焼成、黒鉛化するか、原料の黒鉛粉の配
合割合を多くして黒鉛結晶の発達した炭素材料を基材と
して使用する。
Depending on the usage conditions of the vane, if liquid lubrication is sufficient, the firing temperature is set to 1300° C. or lower and a carbonaceous material rich in carbonaceous material is used from the viewpoint of wear resistance. - On the other hand, if the material is to be used in conditions close to dry friction, it should be fired and graphitized, or a carbon material with developed graphite crystals should be used as the base material by increasing the blending ratio of graphite powder as a raw material.

得られた炭素材料は各種ベーン形状に機械加工する。The obtained carbon material is machined into various vane shapes.

このようにして加工したベーンの一部又は全部を炭化珪
素に、特に耐摩耗性に優れたβ型炭化珪素に転化させる
方法としては珪素蒸気又は各種珪素化合物と反応させる
コンバージョン法、コンバージョン法のガス発生源と同
じ充填剤といっしょに被処理物を埋め込んで加熱処理す
るパックセメンチージョンを応用した方法がある。最も
好ましい方法として一酸化珪素ガスとベーンな次式のよ
うに反応させることにより、ベーンの形状を保持したま
ま処理できるコンバージョン法があげられる。
Methods for converting part or all of the vanes processed in this way into silicon carbide, particularly β-type silicon carbide with excellent wear resistance, include a conversion method in which the vane is reacted with silicon vapor or various silicon compounds, and a conversion method in which gas is converted into silicon carbide. There is a method using pack cementation, in which the object to be treated is embedded together with the same filler as the source and then heated. The most preferred method is a conversion method in which the vane shape is maintained while the process is performed by reacting with silicon monoxide gas as shown in the following equation.

SiO(g)+2C=SiC+CO(g)この珪化反応
は1300℃〜2300℃の温度範囲で加熱することに
より進行する。ここで−酸化珪素ガスを発生させるには
、ガス発生源として珪素粉と二酸化珪素粉の混合体、又
は炭化珪素粉と二酸化珪素粉の混合体、あるいは炭素粉
と二酸化珪素粉の混合体、その他各種珪素化合物を12
00°C〜2300℃に加熱することにより行うことか
できる。
SiO(g)+2C=SiC+CO(g) This silicification reaction proceeds by heating in a temperature range of 1300°C to 2300°C. Here, in order to generate silicon oxide gas, a mixture of silicon powder and silicon dioxide powder, a mixture of silicon carbide powder and silicon dioxide powder, a mixture of carbon powder and silicon dioxide powder, etc. 12 various silicon compounds
This can be carried out by heating to 00°C to 2300°C.

ベーンの一部又は全部を炭化珪素に転化させるには一酸
化珪素ガスの発生源と接触しないように同一黒鉛容器に
載置し、−酸化珪素ガス発生源からベーンの表面へ一酸
化珪素ガスを導入してベーンの微細気孔を通して、−酸
化珪素ガスを拡散させて珪化反応を行わせる。
To convert part or all of the vane into silicon carbide, place it in the same graphite container so as not to come into contact with the source of silicon monoxide gas, and - direct silicon monoxide gas from the source of silicon oxide gas to the surface of the vane. The silicon oxide gas is introduced and diffused through the fine pores of the vane to cause a silicification reaction.

ベーンの希望する部分だけを炭化珪素層に転化させるに
は、希望する部分以外は黒鉛板等を当ててマスクさせる
ことによって、−酸化珪素ガスとの接触を断つことによ
り行うことができる。
In order to convert only the desired portion of the vane into a silicon carbide layer, the non-desired portion can be masked with a graphite plate or the like to cut off contact with the silicon oxide gas.

ベーンと一酸化珪素とを反応させてベーン表面層を炭化
珪素に転化させるとき、処理温度を1300℃〜230
0℃の範囲で選択することによってベーン表面層の珪化
層の中に未反応炭素を残留させ、用途に応じて炭化珪素
層の割合である珪化率をいろいろ変えたものをつくるこ
とができる。又、処理温度のほかに処理時間を調節する
ことによってもベーン表面の珪化層の厚さをコントロー
ルすることがてきる。珪化層の厚さはベーンの限界摩耗
量及び処理コストの点からO,1mm〜3.5mmが好
ましい。その他、−酸化珪素の濃度を調節することによ
って珪化率、珪化層の厚さをコントロールすることがで
きる。
When converting the vane surface layer into silicon carbide by reacting the vane with silicon monoxide, the treatment temperature is 1300°C to 230°C.
By selecting a temperature in the range of 0°C, unreacted carbon remains in the silicified layer of the vane surface layer, and it is possible to produce products with various silicification ratios, which are the proportions of the silicon carbide layer, depending on the purpose. Further, the thickness of the silicified layer on the vane surface can be controlled by adjusting the treatment time as well as the treatment temperature. The thickness of the silicified layer is preferably 0.1 mm to 3.5 mm from the viewpoint of the limit wear amount of the vane and the processing cost. In addition, the silicification rate and the thickness of the silicide layer can be controlled by adjusting the concentration of silicon oxide.

ベーンの表面層を炭化珪素に転化した珪化層の中には未
反応炭素を少なくとも10%以上は残留させておくこと
か望ましい。このことによって炭化珪素成分固有の耐摩
耗性付与効果に炭素成分固有の熱伝導性と摺動特性が加
わり、長時間の使用寿命か保証されるからである。
It is desirable that at least 10% or more of unreacted carbon remains in the silicified layer obtained by converting the surface layer of the vane into silicon carbide. This is because the thermal conductivity and sliding properties inherent to the carbon component are added to the wear resistance imparting effect inherent to the silicon carbide component, thereby ensuring a long service life.

ベーンの基材となる炭素材料はその製造方法のちがいに
よって異方性のものと等方性のものがある。異方性基材
はその原料粉を成形するのに一軸加圧のプレス機を用い
、等方性基材は静水圧加圧のラバープレス機を用いる。
The carbon material that serves as the base material for the vanes can be either anisotropic or isotropic depending on the manufacturing method. For anisotropic base materials, a press machine with uniaxial pressure is used to mold the raw material powder, and for isotropic base materials, a rubber press machine with hydrostatic pressure is used.

本発明のベーンでは機械的性質、熱的性質等の諸特性が
どの方向でもほぼ一定であり特に高強度である等方性基
材を用いる方か好ましい。これは効率的な材料取りが出
来ることとベーンの強度が増すこと、及び等方性基材の
熱膨張係数が各方向で一定なので、一部を炭化珪素に転
化した二層構造をとっても異方性基材で発生する局部的
内部応力が発生しないので設計か簡単になるからである
In the vane of the present invention, it is preferable to use an isotropic base material, which has properties such as mechanical properties and thermal properties that are substantially constant in all directions, and which has particularly high strength. This is because it allows efficient material extraction, increases the strength of the vane, and because the coefficient of thermal expansion of an isotropic base material is constant in each direction, even if it has a two-layer structure in which a part of it is converted to silicon carbide, it is still an anisotropic base material. This is because the design becomes simpler because no local internal stress occurs.

ベーンの基材となる炭素材料がカーボン繊維の場合はベ
ーンの形状に成形されたカーボン繊M1g&形体を炭素
焼結成形体の場合と同じようにその一部又は全部を炭化
珪素に転化する。このほかにもカーボン繊維雄の一部又
は全部をあらかじめ前記の方法て炭化珪素に転化してお
き、そのカーボン繊維を用いて一定形状に成形してベー
ンを作成してもよい。
When the carbon material serving as the base material of the vane is carbon fiber, part or all of the carbon fiber M1g & shaped body formed into the shape of the vane is converted into silicon carbide in the same manner as in the case of the carbon sintered body. Alternatively, a vane may be created by converting some or all of the male carbon fibers into silicon carbide in advance by the method described above, and molding the carbon fibers into a certain shape.

このようにして得られた炭素材料を基材とするベーンの
内部構造は炭化珪素に転化する前のi2素材料の微細気
孔と同じ構造であり、珪化反応によって炭化珪素に転化
しても変化しないことは反応の形態からも、又実際の測
定の結果からもわかっている。従って、必要に応してへ
ビットメタルやアルミニウム等の金属をこの微細気孔を
とおして従来の方法で含浸することができる。
The internal structure of the vane based on the carbon material obtained in this way is the same as the micropores of the i2 material before it is converted into silicon carbide, and does not change even if it is converted into silicon carbide by the silicification reaction. This is known from the form of the reaction and from the results of actual measurements. Therefore, if necessary, metals such as heavy metal and aluminum can be impregnated through the fine pores by conventional methods.

(発明の作用) 本発明ては炭素材料を基材とするベーンの表面層に一酸
化珪素ガスを浸透拡散させ、ベーン自体と反応させて炭
化珪素に転化させることが特徴となっており、CVD法
やPVD法、あるいは、メツキ、溶射、塗布のような方
法を使って炭素基材の上に各種物質を沈積被膜化したも
のとは根本的に違っている。
(Operation of the invention) The present invention is characterized by permeating and diffusing silicon monoxide gas into the surface layer of a vane made of a carbon material, reacting with the vane itself, and converting it into silicon carbide. It is fundamentally different from those in which various substances are deposited on a carbon base material using a method such as a method, a PVD method, plating, thermal spraying, or coating.

つまり、CVD法やPVD法、あるいはメツキ、溶射、
塗布などによって得られた炭素基材表面は各種の沈積被
膜物質と炭素基材表面がファン・デル・ワールスカ等に
よる物理的接着のみで結合しており、このような炭素材
料を基材とするベーンを用いた場合、高温高圧下での縁
り返し使用ては沈積波!!物質か熱膨張差や剪断応力等
が原因となって剥離を起こし、耐摩耗性を早期に損う。
In other words, CVD method, PVD method, plating, thermal spraying,
The carbon substrate surface obtained by coating etc. is bonded to various deposited coating substances only by physical adhesion by van der Waalska et al. If you use it, it will cause sedimentation waves if you use the edges under high temperature and high pressure! ! Materials may peel off due to differences in thermal expansion or shear stress, resulting in early loss of wear resistance.

しかし、本発明のベーンの表面層は素材が最も安定で化
学的に腐食されない耐酸化性と耐摩耗性に優れた炭化珪
素が主成分であり、ベーンの表層目体か一酸化珪素と反
応して炭化珪素に変化したものであるから境界は完全な
連続の組織となっており、高温高圧下での繰り返し使用
によって珪化層か剥離することはなく同時に、炭化珪素
固有の耐摩耗性付与効果と炭素基材の摺動特性によって
長期にわたって耐摩耗性を確保する。
However, the main component of the surface layer of the vane of the present invention is silicon carbide, which is the most stable material and has excellent oxidation and wear resistance and is not chemically corroded. Since the silicon carbide is converted into silicon carbide, the boundary has a completely continuous structure, and the silicified layer does not peel off even after repeated use under high temperature and pressure. The sliding properties of the carbon base material ensure long-term wear resistance.

一方、CVD法やPVD法、あるいはメツキ、溶射、塗
布などによって得られた沈積被膜は微細気孔が非常に少
ないため、必要に応じて行なわれる後工程の金属含浸を
十分に行なうことかてきない。
On the other hand, deposited films obtained by the CVD method, PVD method, plating, thermal spraying, coating, etc. have very few micropores, so that it is difficult to sufficiently perform metal impregnation in the post-process, if necessary.

又、金属含浸をCVD法やPVD法などの表面処理工程
の前に行なうことも可能であるか、その後に行なう表面
処理工程での処理温度が700°C〜1300°Cの範
囲に入るものか多く、この処理温度によって金属か溶は
出たり炭素基材と含浸された金属との間に化学反応か起
こり炭Z X材が変質したり、場合によってはクラック
の入ることかある。
Also, is it possible to perform metal impregnation before a surface treatment process such as CVD or PVD, or is the treatment temperature in the subsequent surface treatment process within the range of 700°C to 1300°C? In many cases, depending on the treatment temperature, the metal may be dissolved or a chemical reaction may occur between the carbon base material and the impregnated metal, resulting in alteration of the carbon ZX material or, in some cases, cracks.

しかし、本発明のベーンの内部構造は表面層が炭化珪素
を主成分とする構造になっているにもかかわらず炭化珪
素に転化する前の炭素材料の微細気孔と同じ構造になっ
ているので、金属含浸は従来通りの方法で十分に行なえ
る。
However, the internal structure of the vane of the present invention has the same structure as the micropores of the carbon material before it is converted to silicon carbide, even though the surface layer has a structure mainly composed of silicon carbide. Metal impregnation can be carried out satisfactorily by conventional methods.

又、炭化珪素は各種金属特にアルミニウムに対しては極
めて安定性に富んだ物質であるのて、ベーンの摺動面近
傍ての変質、異常摩耗を防止する。
Furthermore, since silicon carbide is a substance that is extremely stable against various metals, especially aluminum, it prevents deterioration and abnormal wear near the sliding surface of the vane.

次に、本発明を実施例によって具体的に説明する。Next, the present invention will be specifically explained using examples.

(実施例) 実施例1 コークスと人造黒鉛粉をフィラーとして、コールタール
ピッチをバインダーとして、これらの配合物を加熱混練
して得られた混練物を粉砕後、ラバープレスで成形して
1000°Cて焼成し、ショアー硬度90、曲げ強度1
100kg/cm″の等方性炭素材料を得た。
(Example) Example 1 A mixture of coke and artificial graphite powder as a filler and coal tar pitch as a binder was heated and kneaded. The resulting kneaded product was crushed, then molded with a rubber press and heated at 1000°C. Shore hardness: 90, bending strength: 1
An isotropic carbon material of 100 kg/cm'' was obtained.

この炭素材料を用いて第1図に示すようなロータリーエ
ンジン用アペックスシールの形状に機械加工したベーン
(1)を作製した。
Using this carbon material, a vane (1) machined into the shape of an apex seal for a rotary engine as shown in FIG. 1 was produced.

このベーン(1)を珪素粉と二酸化珪素粉の混合成形体
1.5kg (モル比1:l)と接触しないように同一
黒鉛容器に入れ密閉し、1800°Cで加熱し、この温
度で120分間保持して、表面層を炭化珪素に転化した
This vane (1) was placed in the same graphite container and sealed so as not to come into contact with 1.5 kg of a mixed molded product of silicon powder and silicon dioxide powder (molar ratio 1:l), heated at 1800°C, and heated to 120°C at this temperature. It was held for a minute to convert the surface layer to silicon carbide.

この処理の結果、第2図の断面図に示すようにベーン(
1)の表面層が約2.6mmの厚さで未反応炭素15%
を含んだβ型炭化珪素に転化した層(2)を持ったベー
ン(1)を作製した。
As a result of this process, the vane (
1) The surface layer is approximately 2.6 mm thick and contains 15% unreacted carbon.
A vane (1) having a layer (2) converted to β-type silicon carbide containing β-type silicon carbide was produced.

炭化珪素に転化した層(2)は第3図の模式図に示した
ように1表面から約2.6mmの厚さで炭化珪素に転化
した部分(4)と未反応炭素部分(5)及び微細気孔(
6)より構成されている。
As shown in the schematic diagram of FIG. 3, the layer (2) converted to silicon carbide has a thickness of about 2.6 mm from one surface and includes a portion (4) converted to silicon carbide, an unreacted carbon portion (5), and Micropores (
6).

以上にようにして得られた表面層を炭化珪素に転化した
炭素材料より成るベーンのショアー硬度は95、曲げ強
度は1870kg/crrr’であった。
The vane made of the carbon material obtained by converting the surface layer into silicon carbide as described above had a Shore hardness of 95 and a bending strength of 1870 kg/crrr'.

次にこのベーンの微細気孔を通してアルミニウムを含浸
し、第4図の模式図に示すような微細気孔をアルミニウ
ム(7)で充填した構造を持った最終製品のベーンを得
た。最終製品のショアー硬度は95、曲げ強度は310
0kg/crr!′であった。
Next, aluminum was impregnated through the fine pores of this vane to obtain a final product vane having a structure in which the fine pores were filled with aluminum (7) as shown in the schematic diagram of FIG. The final product has a shore hardness of 95 and a bending strength of 310.
0kg/crr! 'Met.

このベーンを600°Cの空気雰囲気中に置き、100
時間後の酸化消耗率を測定した結果1表面層を炭化珪素
に転化していない従来のベーンの酸化消耗率の約l/1
2てあった。
This vane was placed in an air atmosphere at 600°C and
The results of measuring the oxidation consumption rate after 1 hour were approximately 1/1 of the oxidation consumption rate of a conventional vane whose surface layer was not converted to silicon carbide.
There were two.

又、表面層を炭化珪素に転化していない従来のベーンで
は炭素材料とアルミニウムが反応して変質し、表面の一
部にヘアークラックか入つたのに対し本発明のベーンて
は異常は認められなかった。
In addition, in contrast to conventional vanes whose surface layer was not converted to silicon carbide, the carbon material and aluminum reacted and deteriorated, resulting in hair cracks on a part of the surface, no abnormalities were observed in the vanes of the present invention. Ta.

又、このベーンを相手材ステンレス鋼の回転体に、圧力
588Nで接して摩耗率を測定した結果、表面層を炭化
珪素に転化していない従来のベーンの摩耗率の約1/3
であった。
In addition, as a result of measuring the wear rate by contacting this vane with a stainless steel rotating body under a pressure of 588N, the wear rate was approximately 1/3 that of a conventional vane whose surface layer was not converted to silicon carbide.
Met.

実施例2 実施例1と同じ等方性炭素材料を用いて、同じロータリ
ーエンジン用アペックスシールの形状に機械加工したベ
ーン(1)を作製した。
Example 2 Using the same isotropic carbon material as in Example 1, a vane (1) machined into the same shape as the apex seal for a rotary engine was produced.

このベーンを炭素粉と二酸化珪素粉の混合粉1kg (
モル比3:l)といっしょに黒鉛製容器内に充填し、1
800℃で加熱し、この温度で120分間保持した。
1 kg of mixed powder of carbon powder and silicon dioxide powder (
molar ratio of 3:l) into a graphite container, and
It was heated to 800°C and held at this temperature for 120 minutes.

この処理の結果、表面から約3.3.mmの厚さで未反
応炭素を22%含んだβ型炭化珪素に転化したベーンを
得た。
As a result of this treatment, approximately 3.3 mm from the surface. A vane having a thickness of mm and containing 22% of unreacted carbon and converted into β-type silicon carbide was obtained.

次にこのベーンに実施例1と同じ方法でアルミニウムを
含浸してショアー硬度90、曲げ強度3210kg/c
m″の最終製品のベーンな得た。
Next, this vane was impregnated with aluminum in the same manner as in Example 1 to obtain a Shore hardness of 90 and a bending strength of 3210 kg/c.
A final product of m'' was obtained.

このベーンを600℃の空気雰囲気中に置き。This vane was placed in an air atmosphere at 600°C.

100時間後の酸化消耗率を測定した結果、表面層を炭
化珪素に転化していない従来のベーンの酸化消耗率の約
1/l 5てあった。
As a result of measuring the oxidative consumption rate after 100 hours, the oxidative consumption rate was approximately 1/15 of that of a conventional vane whose surface layer was not converted to silicon carbide.

又、表面層を炭化珪素に転化していない従来のベーンて
は炭素材料とアルミニウムが反応し゛〔変質し、表面の
一部にヘアークラックか入ったのに対し本発明のベーン
ては異常は認められなかった。
In addition, in conventional vanes whose surface layer was not converted to silicon carbide, the carbon material and aluminum reacted and changed, resulting in hair cracks on part of the surface, whereas in the vanes of the present invention, no abnormality was observed. I couldn't.

又、このベーンを相手材ステンレス鋼の回転体に、圧力
588Nで接して摩耗率を測定した結果、表面層を炭化
珪素に転化していない従来のベーンの摩耗率の約1/4
てあった。
In addition, the wear rate of this vane was measured by contacting it with a rotating body made of stainless steel at a pressure of 588N, and the wear rate was approximately 1/4 of that of a conventional vane whose surface layer was not converted to silicon carbide.
There was.

実施例3 実施例1と同し等方性炭素材料を用いて冷暖房空調機に
用いるロータリー圧縮機のベーンの形状に機械加工し、
実施例1と同様の方法で表面層の一部を炭化珪素に転化
して、アルミニウム含浸を行ない最終製品を作成した。
Example 3 The same isotropic carbon material as in Example 1 was machined into the shape of a rotary compressor vane used in a heating and cooling air conditioner,
In the same manner as in Example 1, a part of the surface layer was converted to silicon carbide and impregnated with aluminum to produce a final product.

このベーンをロータリー圧縮機に組み込んで摩耗量を測
定した結果1表面層を炭化珪素に転化していない従来の
ベーンの摩耗量の約1/4てあった。
When this vane was installed in a rotary compressor and the amount of wear was measured, it was found to be approximately 1/4 of the amount of wear of a conventional vane in which one surface layer was not converted to silicon carbide.

(発明の効果) 以上説明したように、本発明のベーンは、その−・部又
は全部を炭化珪素に転化させているため、炭化珪素固有
の耐摩耗性付与効果と炭素成分固有の熱伝導性と摺動特
性が加わりベーンの耐摩耗性が大幅に向上する。
(Effects of the Invention) As explained above, since the vane of the present invention has part or all of it converted to silicon carbide, it has the effect of imparting wear resistance inherent to silicon carbide and the thermal conductivity inherent to the carbon component. This adds sliding properties and greatly improves the vane's wear resistance.

又、本発明のベーンの炭化珪素に転化した層は炭素基材
自体を炭化珪素の炭素成分として使っているため炭素基
材と炭化珪素層の境界はiJ!続組織組織っており、 
!IIsや粉落ち等のトラブルは発生せず安定して使用
することかてきる。
Furthermore, since the layer converted to silicon carbide of the vane of the present invention uses the carbon base material itself as the carbon component of silicon carbide, the boundary between the carbon base material and the silicon carbide layer is iJ! We have a sequel organization,
! It can be used stably without any problems such as IIs or powder falling off.

一方、ベーンの摺動面などの高温になる部分て起こるア
ルミニウムと炭素基材の反応と、その結果生じる異常摩
耗は本発明のベーンの場合、アルミニウムと炭化珪素の
複合構造をとることによってχ全に解消され、同時に耐
酸化性か向上する。
On the other hand, in the case of the vane of the present invention, the composite structure of aluminum and silicon carbide prevents the reaction between aluminum and the carbon base material that occurs in high-temperature areas such as the sliding surface of the vane, and the resulting abnormal wear. and improves oxidation resistance at the same time.

さらに、本発明のベーンは炭化珪素によって強化される
ため従来のベーンに比べ高強度のものを得ることかてき
る。
Furthermore, since the vane of the present invention is reinforced with silicon carbide, it is possible to obtain higher strength than conventional vanes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るロータリーエンジン用アペックス
シールとしてのベーンの斜視図、第2図は第1図のA−
A’斯而面、第3図は金属含浸前の第2図A部を拡大し
た模式図、第4図はアルミニウムを含浸した後の第2図
A部を拡大した模式符   時   の   説   
明 1・・・ベーン、 2・・・未反応炭素を含んだβ型炭化珪素に転化した層
、 3・・・炭素基材、 4・・・β型炭化珪素に転化した部分、5・・・未反応
炭素部分、 6・・・微細気孔、 7・・・微細気孔に含浸されたアルミニウム。
FIG. 1 is a perspective view of a vane as an apex seal for a rotary engine according to the present invention, and FIG.
Figure 3 is an enlarged schematic diagram of part A in Figure 2 before metal impregnation, and Figure 4 is an enlarged schematic diagram of part A in Figure 2 after impregnation with aluminum.
1... Vane, 2... Layer converted to β-type silicon carbide containing unreacted carbon, 3... Carbon base material, 4... Portion converted to β-type silicon carbide, 5... - Unreacted carbon portion, 6... Fine pores, 7... Aluminum impregnated in the fine pores.

Claims (1)

【特許請求の範囲】[Claims]  炭素材料を基材とするベーンにおいて、その一部又は
全部を炭化珪素に転化して成るベーン。
A vane whose base material is a carbon material, in which part or all of the material is converted to silicon carbide.
JP62291148A 1987-11-18 1987-11-18 Vane Expired - Lifetime JPH0615808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291148A JPH0615808B2 (en) 1987-11-18 1987-11-18 Vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291148A JPH0615808B2 (en) 1987-11-18 1987-11-18 Vane

Publications (2)

Publication Number Publication Date
JPH01134002A true JPH01134002A (en) 1989-05-26
JPH0615808B2 JPH0615808B2 (en) 1994-03-02

Family

ID=17765066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291148A Expired - Lifetime JPH0615808B2 (en) 1987-11-18 1987-11-18 Vane

Country Status (1)

Country Link
JP (1) JPH0615808B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144302A (en) * 2002-10-24 2004-05-20 Borgwarner Inc Wet type friction material comprising pitch carbon fiber
US7749562B1 (en) 2004-07-26 2010-07-06 Borgwarner Inc. Porous friction material comprising nanoparticles of friction modifying material
US8021744B2 (en) 2004-06-18 2011-09-20 Borgwarner Inc. Fully fibrous structure friction material
US8397889B2 (en) 2008-03-12 2013-03-19 Borgwarner Inc. Frictional device comprising at least one friction plate
JP2014504691A (en) * 2010-12-31 2014-02-24 ロドリゲズ,ヴィクトル ガルシア Rotary heat engine
JP2019143613A (en) * 2018-02-16 2019-08-29 好包 生武 Lubrication device at reciprocating part of vane of vane engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877192A (en) * 1981-10-30 1983-05-10 Hitachi Chem Co Ltd Blade member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877192A (en) * 1981-10-30 1983-05-10 Hitachi Chem Co Ltd Blade member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144302A (en) * 2002-10-24 2004-05-20 Borgwarner Inc Wet type friction material comprising pitch carbon fiber
US8021744B2 (en) 2004-06-18 2011-09-20 Borgwarner Inc. Fully fibrous structure friction material
US7749562B1 (en) 2004-07-26 2010-07-06 Borgwarner Inc. Porous friction material comprising nanoparticles of friction modifying material
US8397889B2 (en) 2008-03-12 2013-03-19 Borgwarner Inc. Frictional device comprising at least one friction plate
JP2014504691A (en) * 2010-12-31 2014-02-24 ロドリゲズ,ヴィクトル ガルシア Rotary heat engine
JP2019143613A (en) * 2018-02-16 2019-08-29 好包 生武 Lubrication device at reciprocating part of vane of vane engine

Also Published As

Publication number Publication date
JPH0615808B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
EP0520520B1 (en) Ceramic composite and process for production thereof
JP2007326999A (en) Friction material
US5538649A (en) Carbon composite mateiral for tribological applications
JPH01134002A (en) Vane
US4093578A (en) Self-lubricating antifriction material
US5214010A (en) Alumina-carbon compositions and slidegate plates made therefrom
JPS61111966A (en) Graphite-metal boride base sliding member
JPH0238365A (en) Complex sliding member of high-temperature-reisistant and high-strength graphite base
CN108644233A (en) A kind of full working scope high abrasion sliding bearing and preparation method thereof
KR20080049669A (en) Isotropic carbon material and manufacturing method thereof
JP2851717B2 (en) Sliding member
GB2220448A (en) Rotor blade
JPH07133163A (en) Production of carbon sliding member
JPH01126445A (en) Friction disk
JPH0781587B2 (en) Carbon-based sliding material
JPS62210275A (en) Vane pump
JP2543093B2 (en) Sliding parts for seals
JPS637572B2 (en)
JP2801785B2 (en) Manufacturing method of ceramic composite sintered body
JPH0246633B2 (en)
JPH07309662A (en) Sliding member
JPH0375281A (en) Porous electroconductive ceramics sliding material
JPS6058188B2 (en) Highly wear-resistant sliding parts
JPS6325273A (en) Manufacture of silicon carbide-carbonaceous composite formed body
JPH05201762A (en) Composite carbon material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080302

Year of fee payment: 14