JPH07309662A - Sliding member - Google Patents

Sliding member

Info

Publication number
JPH07309662A
JPH07309662A JP6098669A JP9866994A JPH07309662A JP H07309662 A JPH07309662 A JP H07309662A JP 6098669 A JP6098669 A JP 6098669A JP 9866994 A JP9866994 A JP 9866994A JP H07309662 A JPH07309662 A JP H07309662A
Authority
JP
Japan
Prior art keywords
carbon
weight
sliding member
silicon carbide
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6098669A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ito
浩之 伊藤
Hajime Izawa
一 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP6098669A priority Critical patent/JPH07309662A/en
Publication of JPH07309662A publication Critical patent/JPH07309662A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a nonlubricated sliding member not requiring the use of a lubricant such as a solid or fluid lubricant, excellent in wear resistance and self-lubricity and having satisfactory sliding characteristics. CONSTITUTION:A composite material consisting of carbon and silicon carbide, especially 20-50wt.% carbon and 80-50wt.% silicon carbide and having a structure in which they form a continuous phase is used as a bearing material and an aluminum oxide-zirconium oxide composite body, a cemented carbide or cast iron is used as a shaft material to obtain the objective sliding member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性及び自己潤滑
性に優れ、シール材及びベアリング材等に好適に用いら
れる摺動部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding member which is excellent in wear resistance and self-lubricating property and is suitable for use as a sealing material, a bearing material and the like.

【0002】[0002]

【従来の技術】従来、無潤滑ベアリングには、金属又
は、金属と有機物を複合化させた材料が用いられてきた
が、これらの金属、又は金属と有機物の複合体のベアリ
ング等の摺動部材は、硬度が低いことから耐摩耗性に問
題があった。
2. Description of the Related Art Conventionally, a metal or a composite material of a metal and an organic material has been used for a non-lubricated bearing. A sliding member such as a bearing of the metal or a composite of the metal and the organic material has been used. Had a problem in wear resistance due to its low hardness.

【0003】一方、セラミックスは高硬度、高強度、耐
摩耗性、耐蝕性に優れ、その優れた特性に関心が高ま
り、金属、又は金属と有機物の複合体の代替材料とし
て、シール材、摺動部材に利用が図られるようになって
いる。
On the other hand, ceramics are excellent in high hardness, high strength, wear resistance, and corrosion resistance, and their excellent characteristics are attracting attention. As a substitute material for metal or a composite of metal and organic material, a sealing material or a sliding material is used. It is designed to be used as a member.

【0004】しかし、セラミックスは、それ自体、潤滑
性能が乏しいものが多く、特に相手材料や雰囲気により
摩耗特性が著しく変化し、そのまま摺動部材として利用
した場合には、摩耗係数が非常に高くなり、摺動相手材
を摩耗させたり傷つけ、またセラミックス自体に摩耗や
クラックを生じ易いという欠点がある。
[0004] However, many ceramics themselves have poor lubrication performance, and the wear characteristics change remarkably depending on the mating material and the atmosphere, and when they are used as they are as sliding members, the wear coefficient becomes extremely high. However, there is a drawback that the sliding mating material is worn or damaged, and the ceramic itself is apt to be worn or cracked.

【0005】上記問題を解決すべく、これまで摩耗性、
潤滑性を高めるために種々の研究開発が行われている。
例えば特公平3−43229号公報には、反応焼結Si
Cの表層部の未反応部Siを化学的或いは電気的に溶出
させて微細な空洞部を形成し散在させたセラミックスを
母材とし、該空洞部に摺動特性の優れた固体潤滑剤を含
浸し固着させて固体潤滑層を形成させた摺動部材が開示
されている。
In order to solve the above-mentioned problems, wear resistance,
Various researches and developments have been carried out to improve lubricity.
For example, Japanese Examined Patent Publication (Kokoku) No. 3-43229 discloses reaction sintered Si.
The base material is ceramics in which unreacted Si in the surface layer of C is chemically or electrically eluted to form fine cavities and scattered, and the cavities are impregnated with a solid lubricant having excellent sliding characteristics. There is disclosed a sliding member in which a solid lubricating layer is formed by being fixed to each other.

【0006】また、特開平5−43360号公報には固
体潤滑剤粉末が含有されたセラミックス多孔質体の開放
気孔中に潤滑油が含浸されている摺動部材が、更には特
開平4−293998号公報には、炭化珪素および/ま
たは窒化珪素を骨材とし、固体潤滑剤として炭素が内部
よりも表層部に多く分散存在するとともに潤滑油を含浸
する摺動部材が開示されている。
Further, JP-A-5-43360 discloses a sliding member in which open pores of a ceramic porous body containing a solid lubricant powder are impregnated with lubricating oil, and further, JP-A-4-293998. The publication discloses a sliding member in which silicon carbide and / or silicon nitride is used as an aggregate, carbon as a solid lubricant is dispersed more in the surface layer portion than in the inside, and impregnated with lubricating oil.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来の摺動部
材は、その耐摩耗性を高めるために二硫化モリブデン、
テフロン及び炭素等の固体潤滑剤又はオイル、グリース
等の流動性潤滑剤の使用を必要とするものである。
However, in the conventional sliding member, in order to improve its wear resistance, molybdenum disulfide,
It requires the use of solid lubricants such as Teflon and carbon or fluid lubricants such as oil and grease.

【0008】特に、固体潤滑剤は量が多くなると骨材と
してのセラミックスの強度が低下するためクラックが生
じ易く、摺動特性に問題が生じる。
In particular, when the amount of the solid lubricant is large, the strength of the ceramics as an aggregate is lowered, so that cracks are easily generated and a problem occurs in the sliding characteristics.

【0009】また、潤滑剤の使用にあたり、潤滑剤自体
の分散を均一に行う必要があり、摺動部材の使用に伴い
潤滑剤が消耗、飛散し、常時一定期間経過後は潤滑剤を
添加しなければならず、定期的なメンテナンスが必要で
ある。
In addition, in using the lubricant, it is necessary to uniformly disperse the lubricant itself, and the lubricant is consumed and scattered with the use of the sliding member, and the lubricant is always added after a certain period of time. Must be done and regular maintenance is required.

【0010】従って、本発明の課題は、固体潤滑剤及び
流動性潤滑剤等の潤滑剤を使用する必要がない耐摩耗性
及び自己潤滑性に優れた摺動特性の良好な無潤滑の摺動
部材を提供するにある。
Therefore, an object of the present invention is to provide a non-lubricated slide having excellent sliding characteristics, which is excellent in wear resistance and self-lubricating, without using a lubricant such as a solid lubricant and a fluid lubricant. In providing the member.

【0011】[0011]

【課題を解決するための手段及び作用】上記課題を解決
するために、本願第1発明にかかる摺動部材は炭素と炭
化ケイ素とからなり、両者が連続相を形成する組織構造
を有する複合材料を軸受材とすることを特徴とするもの
である。
In order to solve the above problems, the sliding member according to the first invention of the present application is composed of carbon and silicon carbide, and a composite material having a structural structure in which both form a continuous phase. Is used as the bearing material.

【0012】本願発明の摺動部材に用いられる炭素と炭
素ケイ素複合材料は、バインダーを用いることにより炭
素粒子を三次元網目状に連結させた後に炭化して得られ
る炭素成形体に、ケイ素を接触せしめて非酸化性雰囲気
下で加熱することにより、炭素成形体内部にまで溶融ケ
イ素分を浸透させて、成形体表面及び成形体内部にまで
均一に炭素及び炭化ケイ素の連続相を有する特異な構造
を有する複合材料である。
The carbon / carbon-silicon composite material used in the sliding member of the present invention is obtained by contacting silicon with a carbon molded body obtained by carbonizing carbon particles after they are connected in a three-dimensional network by using a binder. By heating at least in a non-oxidizing atmosphere, the molten silicon content is made to penetrate into the inside of the carbon molded body, and a unique structure having a continuous phase of carbon and silicon carbide evenly on the surface of the molded body and inside the molded body. Is a composite material having

【0013】上記複合材料中の炭素材料は特に限定され
るものでないが、炭素焼結体の格子定数cが6.9オン
グストローム以下、より好ましくは6.708〜6.9
オングストロームであり且つ密度が1.7g/cm3
下となり得る材料が好ましい。炭素材料の粒子径も、特
に限定されるものではないが、通常100〜200μm
程度とすることが好ましい。
The carbon material in the above composite material is not particularly limited, but the lattice constant c of the carbon sintered body is 6.9 angstroms or less, more preferably 6.708 to 6.9.
A material that is angstrom and has a density of 1.7 g / cm 3 or less is preferable. The particle size of the carbon material is not particularly limited, but is usually 100 to 200 μm.
It is preferable to set the degree.

【0014】ケイ素材料としては、金属ケイ素が好まし
く、粉末、粒子、塊状等の任意の形態で使用できる。
As the silicon material, metallic silicon is preferable, and it can be used in any form such as powder, particles, and lumps.

【0015】本願発明の炭素と炭化ケイ素から成り、両
者が連続相構造を有する複合材料からなる軸受け材の表
面粗さは、摩擦係数を小さくするためにも、小さい程好
ましいが、少なくとも0.1μmRz以下が好適であ
る。
The surface roughness of the bearing material of the present invention made of a composite material composed of carbon and silicon carbide, both of which have a continuous phase structure, is preferably as small as possible in order to reduce the friction coefficient, but at least 0.1 μmRz. The following are preferred:

【0016】本願発明の摺動部材は、炭素及び炭化ケイ
素が材料内部にまで各々均一に連続相を形成して三次元
的に複合化していることにより、炭化ケイ素の高い硬度
及び耐摩耗性並びに炭素の潤滑性を両方併せ持つ無潤滑
の優れた耐摩耗性を有するものであり、空気中のみなら
ず油中でも利用できるものである。
In the sliding member of the present invention, carbon and silicon carbide form a continuous phase even in the inside of the material and are three-dimensionally compounded, so that the high hardness and wear resistance of silicon carbide and It has excellent non-lubricating abrasion resistance that has both the lubricity of carbon and can be used not only in air but also in oil.

【0017】また、本願第1発明の好適な実施例は、炭
素と炭化ケイ素の両者が連続相を形成する組織構造を有
する複合材料が、炭素を20〜50重量%含有し、炭化
ケイ素を80〜50重量%含有することを特徴とするも
のである。炭素の含有量が20重量%より少ないと相手
材の摩耗が激しくなり、また50重量%より多いと炭素
−炭化ケイ素複合体の摩耗が激しくなり、いずれの場合
も摺動部材として好ましくない。
In a preferred embodiment of the first invention of the present application, a composite material having a structural structure in which both carbon and silicon carbide form a continuous phase contains 20 to 50% by weight of carbon and 80% of silicon carbide. It is characterized by containing ~ 50% by weight. If the carbon content is less than 20% by weight, wear of the mating material will be severe, and if it is more than 50% by weight, wear of the carbon-silicon carbide composite will be severe, and in any case, it is not preferable as a sliding member.

【0018】更に、本願第2発明にかかる摺動部材は、
炭素と炭化ケイ素とからなり、両者が連続相を形成する
組織構造を有する複合材料を軸受材とし、酸化アルミニ
ウムと酸化ジルコニウムの複合体を軸材とすることを特
徴とするものである。
Further, the sliding member according to the second invention of the present application,
It is characterized in that a composite material composed of carbon and silicon carbide and having a structural structure in which both form a continuous phase is used as a bearing material, and a composite of aluminum oxide and zirconium oxide is used as a shaft material.

【0019】このように、本願第2発明にかかる摺動部
材は、軸受材に本願第1発明の軸受材を用い、軸材に酸
化アルミニウムと酸化ジルコニウムの複合体を用いるも
のである。
As described above, in the sliding member according to the second invention of the present application, the bearing material of the first invention of the present application is used as the bearing material, and the composite of aluminum oxide and zirconium oxide is used as the shaft material.

【0020】通常、構造材料用酸化ジルコニウムは、安
定化剤として、酸化カルシウム、酸化マグネシウム、酸
化イットリウム、希土類酸化物等が添加され、室温準安
定相である正方晶酸化ジルコニウムを主成分としてい
る。正方晶酸化ジルコニウムに安定化剤として添加した
酸化物の添加量は、酸化ジルコニウムに対して酸化イッ
トリウム又は希土類酸化物で2〜5mol%、酸化カル
シウム及び酸化マグネシウムで8〜10mol%が好ま
しい。酸化イットリウム又は希土類酸化物で2mol%
未満、酸化カルシウム及び酸化マグネシウムで8mol
%未満の場合は、正方晶中に単斜晶が析出し始め、強
度、靭性共に大幅に低下する。一方、酸化イットリウム
又は希土類酸化物で5mol%を越える場合、酸化カル
シウム及び酸化マグネシウムで10mol%を越える場
合は、正方晶中に立方晶が析出し始め、強度、靭性共に
大幅に低下する。
Usually, zirconium oxide for structural materials contains, as a stabilizer, calcium oxide, magnesium oxide, yttrium oxide, rare earth oxides, etc., and contains tetragonal zirconium oxide which is a metastable phase at room temperature as a main component. The amount of oxide added to tetragonal zirconium oxide as a stabilizer is preferably 2 to 5 mol% of yttrium oxide or rare earth oxide and 8 to 10 mol% of calcium oxide and magnesium oxide with respect to zirconium oxide. 2 mol% of yttrium oxide or rare earth oxide
Less than, 8 mol with calcium oxide and magnesium oxide
If it is less than 0.1%, monoclinic crystals will start to precipitate in the tetragonal crystal, and both strength and toughness will be significantly reduced. On the other hand, when yttrium oxide or rare earth oxide exceeds 5 mol%, and when calcium oxide and magnesium oxide exceed 10 mol%, cubic crystals start to precipitate in the tetragonal crystal, and strength and toughness are significantly reduced.

【0021】正方晶酸化ジルコニウムは高強度、高靭性
であり、かつ摩擦係数が小さいことから、摺動材料とし
て期待されているにもかかわらず、200〜300℃雰
囲気で正方晶から単斜晶への相転移が起こり、摩擦が増
大することが問題となっている。これを防止するために
は酸化ジルコニウムと酸化アルミニウムとの複合化と正
方晶酸化ジルコニウムの結晶粒子径の微細化が有効であ
る。酸化ジルコニウムの粒子径は0.5μm以下、好ま
しくは、0.3μm以下が要求される。この酸化アルニ
ミウムと酸化ジルコニウムの複合体の表面粗さは、少な
くとも0.1μmRzが望ましい。
Tetragonal zirconium oxide has high strength, high toughness, and a small friction coefficient, so that it is expected to be used as a sliding material, but tetragonal to monoclinic in an atmosphere of 200 to 300 ° C. The problem is that the phase transition occurs and friction increases. In order to prevent this, it is effective to combine zirconium oxide and aluminum oxide and to reduce the crystal grain size of tetragonal zirconium oxide. The particle size of zirconium oxide is required to be 0.5 μm or less, preferably 0.3 μm or less. The surface roughness of the composite of aluminum oxide and zirconium oxide is preferably at least 0.1 μmRz.

【0022】また、本願第2発明にかかる摺動部材に課
せられる荷重は、高荷重でも低荷重でもよく、摺動速度
は高速でも低速でもよく、雰囲気は真空、空気、腐食性
ガス、水、海水、強酸又は強塩基性流体等でもよい。さ
らに温度は低温から400℃の間で用いることが可能で
ある。
The load imposed on the sliding member according to the second invention of the present application may be high load or low load, the sliding speed may be high speed or low speed, and the atmosphere may be vacuum, air, corrosive gas, water, It may be seawater, a strong acid or a strong basic fluid. Further, it is possible to use the temperature between low temperature and 400 ° C.

【0023】本願第2発明にかかる摺動部材は、炭素と
炭化ケイ素からなる連続組織構造を有する複合材料が軸
受材であり、酸化アルミニウムと酸化ジルコニウムの複
合体が軸材であるが、この両者の組み合わせであれば、
本願発明の目的である自己潤滑性を有し、耐摩耗性の優
れた摺動部材が得られるため、両者が逆の材料から成る
摺動部材、即ち酸化アルミニウムと酸化ジルコニウムの
複合体が軸受材で、炭素と炭化ケイ素からなる連続組織
構造を有する複合体が軸材である摺動部材も本願発明の
目的を達成することができる。
In the sliding member according to the second invention of the present application, a composite material having a continuous structure structure of carbon and silicon carbide is a bearing material, and a composite material of aluminum oxide and zirconium oxide is a shaft material. Is a combination of
Since the sliding member having the self-lubricating property and the excellent wear resistance, which is the object of the present invention, can be obtained, the sliding member composed of the opposite materials, that is, the composite of aluminum oxide and zirconium oxide is the bearing material. Then, the sliding member in which a composite having a continuous structure structure of carbon and silicon carbide is a shaft material can also achieve the object of the present invention.

【0024】更に、本願第2発明の好適な実施例は、炭
素と炭化ケイ素の両者が連続相を形成する組織構造を有
する複合材料が、炭素を20〜50重量%含有し、炭化
ケイ素を80〜50重量%含有することを特徴とするも
のである。
Further, in a preferred embodiment of the second invention of the present application, a composite material having a structural structure in which both carbon and silicon carbide form a continuous phase contains 20 to 50% by weight of carbon and 80% of silicon carbide. It is characterized by containing ~ 50% by weight.

【0025】更に、本願第2発明の他の好適な実施例
は、酸化アルミニウムが5〜70重量%で、酸化ジルコ
ニウムが95〜30重量%であることを特徴とするもの
である。
Further, another preferred embodiment of the second invention of the present application is characterized in that aluminum oxide is 5 to 70% by weight and zirconium oxide is 95 to 30% by weight.

【0026】酸化アルミニウムの添加量は、正方晶から
単斜晶への相転移を防止するためにも5重量%以上が好
ましく、摩耗係数と軸受部分の負荷、特に、発熱量の点
から、負荷の大きい場合は熱放散と耐摩耗性を向上させ
るために、酸化アルミニウムの増加が望ましい。しか
し、酸化アルミニウムを70重量%より多くすると、摩
擦係数が増加し、耐摩耗性が低下し、好ましくない。
The amount of aluminum oxide added is preferably 5% by weight or more in order to prevent the phase transition from tetragonal to monoclinic. From the viewpoint of wear coefficient and bearing load, particularly heat generation, In the case of a large value, an increase in aluminum oxide is desirable in order to improve heat dissipation and wear resistance. However, if the amount of aluminum oxide is more than 70% by weight, the coefficient of friction increases and the wear resistance decreases, which is not preferable.

【0027】本願第3発明にかかる摺動部材は、炭素と
炭化ケイ素とからなり、両者が連続相を形成する組織構
造を有する複合材料を軸受材とし、超硬合金を軸材とす
ることを特徴とするものである。
The sliding member according to the third aspect of the present invention uses a composite material composed of carbon and silicon carbide, having a structural structure in which both form a continuous phase, as a bearing material, and a cemented carbide as a shaft material. It is a feature.

【0028】このように本願第3発明にかかる摺動部材
は、軸受材に本願第1発明の軸受材を用い、軸材に高硬
度であり高い耐摩耗性を有する超硬合金を用いるもので
ある。軸材が超硬合金の場合には、荷重は低荷重で用い
るのが良く、摺動速度は高速でも低速でもよく、雰囲気
は空気又は水、温度は室温から400℃の間で用いるこ
とが可能である。
As described above, in the sliding member according to the third invention of the present application, the bearing material of the first invention of the present application is used for the bearing material, and the cemented carbide having high hardness and high wear resistance is used for the shaft material. is there. If the shaft material is cemented carbide, the load should be low, the sliding speed may be high or low, the atmosphere should be air or water, and the temperature should be between room temperature and 400 ° C. Is.

【0029】更に、本願第3発明の好適な実施例は、炭
素と炭化ケイ素の両者が連続相を形成する組織構造を有
する複合材料が、炭素を20〜50重量%含有し、炭化
ケイ素を80〜50重量%含有することを特徴とするも
のである。
Further, in a preferred embodiment of the third invention of the present application, a composite material having a structural structure in which both carbon and silicon carbide form a continuous phase contains 20 to 50% by weight of carbon and 80% of silicon carbide. It is characterized by containing ~ 50% by weight.

【0030】また、本願第3発明の他の好適な実施例
は、超硬合金が炭化タングステン−コバルト(WC−C
o)合金であることを特徴とする。超硬合金の種類とし
ては、炭化チタン−コバルト(WC−Co)系が好まし
く、微量成分としてNi,Ti,Ta,Mo等が0.5
重量%未満添加されていても問題はなく、工業的に生産
され、広く実用化されているものを用いることができ
る。WC−Coの組成としては、WCが95〜85重量
%に対し、Coが5〜15重量%のものが望ましい。ま
た、硬度(HRA)は86.5〜93.0のものが好適で
ある。表面粗さは、少なくとも0.1 μmRzとするのが
望ましい。
In another preferred embodiment of the third invention of the present application, the cemented carbide is tungsten carbide-cobalt (WC-C).
o) It is an alloy. As a kind of cemented carbide, titanium carbide-cobalt (WC-Co) system is preferable, and Ni, Ti, Ta, Mo, etc. are 0.5 as minor components.
There is no problem even if it is added in an amount of less than wt%, and those industrially produced and widely put into practical use can be used. The composition of WC-Co is preferably 95 to 85% by weight of WC and 5 to 15% by weight of Co. Further, the hardness (H RA ) is preferably 86.5 to 93.0. The surface roughness is preferably at least 0.1 μmRz.

【0031】本願第4発明にかかる摺動部材は、炭素と
炭化ケイ素とからなり、両者が連続相を形成する組織構
造を有する複合材料を軸受材とし、鋳鉄を軸材とするこ
とを特徴とするものである。
The sliding member according to the fourth invention of the present application is characterized in that a composite material made of carbon and silicon carbide, having a structural structure in which both form a continuous phase, is used as a bearing material, and cast iron is used as a shaft material. To do.

【0032】このように本願第4発明にかかる摺動部材
は、軸受材に本願第1発明の軸受材を用い、軸材に展性
及び延性に富む鋳鉄を用いるものである。軸材が鋳鉄の
場合には、荷重は高荷重でも低荷重でもよく、摺動速度
は低速、雰囲気は空気、温度は室温から200 ℃の間で用
いることが可能である。
As described above, in the sliding member according to the fourth invention of the present application, the bearing material of the first invention of the present application is used as the bearing material, and cast iron having excellent malleability and ductility is used as the shaft material. When the shaft material is cast iron, the load may be high or low, the sliding speed is low, the atmosphere is air, and the temperature can be between room temperature and 200 ° C.

【0033】更に、本願第4発明の好適な実施例は、炭
素と炭化ケイ素の両者が連続相を形成する組織構造を有
する複合材料が、炭素を20〜50重量%含有し、炭化
ケイ素を80〜50重量%含有することを特徴とするも
のである。
Further, in a preferred embodiment of the fourth invention of the present application, a composite material having a structural structure in which both carbon and silicon carbide form a continuous phase contains 20 to 50% by weight of carbon and 80% of silicon carbide. It is characterized by containing ~ 50% by weight.

【0034】本願発明の摺動部材の軸受材は、円筒状で
も、円盤状でもよく、軸は、円柱状でも、軸の先端が球
面状でもよい。また、摺動方法については、円筒状ある
いは円盤状の軸受の表面に対して、円柱状あるいは先端
が球面の軸が、回転往復運動する方法でもかまわない。
即ち、互いの部材が摺動できればその摺動方法に制限は
ない。
The bearing material of the sliding member of the present invention may be cylindrical or disc-shaped, and the shaft may be cylindrical or the tip of the shaft may be spherical. The sliding method may be a method in which a shaft having a cylindrical shape or a spherical tip is reciprocally rotated with respect to the surface of a cylindrical or disk-shaped bearing.
That is, there is no limitation on the sliding method as long as the members can slide.

【0035】[0035]

【実施例】本発明を図面を参照しながら以下の実施例に
より説明する。 実施例1 直径55mm、厚さ5mmの円盤状炭素の多孔質体の表
面に珪素を12.8g、16.7g、19.7gとして
各々載せ、アルゴン雰囲気中、1800℃で1時間反応
させた。得られた焼成物はそれぞれ炭化珪素を50,6
4,80重量%含有し、炭素を50,36,20重量%
含有するものである。その組成構造は、炭素と炭化珪素
が共に三次元的に分布したものであった。この複合体の
円盤の表面を各々平面研削により、0.05μm Rzに
仕上げたものを軸受材とした(これを試料A1,A2,
A3とする)。また、酸化アルミニウム粉末が5,2
0,40,60重量%に対し、3mol %の酸化イットリ
ウムを含有する酸化ジルコニウムを95,80,60,
40重量%各々混合し、長さ20mm、直径8mmの円
柱に成形し、1400〜1500℃で2時間焼成を行っ
た。得られた円筒状軸の酸化アルミニウムと酸化ジルコ
ニウムの複合体の上下面を各々平面研削により、0.0
5μm Rzに仕上げたものを軸材とした(これを試料B
1,B2,B3,B4とする)。これらの、摺動部材の
性能評価試験を、ピン・オン・ディスク型の摩擦摩耗試
験機により行った。装置の外観を図1に示す。摩擦摩耗
試験機の回転軸側の試料台3上に軸受け材試料2である
A1〜A3を、加圧軸側の試料台8に軸材試料9である
B1〜B4を設置した。この装置を、試料台3をインバ
ータ5で制御したモータ4で一定速度で回転させ、加圧
軸側の試料台8に取付けた軸材試料9を、荷重計1によ
り示された荷重でディスク型試料2に接触させた。この
ときの荷重及びトルクは電気的信号として、μ演算器6
に送られ、これにより、摩擦係数が計算され、その結果
が記録計7に出力される。摩擦摩耗試験の測定条件を表
1に、得られた結果を表2に示す。耐摩耗性は、試料A
及び試料Bの比摩擦量を測定することにより示した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the following embodiments with reference to the drawings. Example 1 12.8 g, 16.7 g, and 19.7 g of silicon were placed on the surface of a disk-shaped carbon porous body having a diameter of 55 mm and a thickness of 5 mm, respectively, and reacted at 1800 ° C. for 1 hour in an argon atmosphere. The obtained fired products contained 50 and 6 silicon carbide, respectively.
Contains 4,80% by weight, carbon 50,36,20% by weight
It is contained. The composition structure was such that both carbon and silicon carbide were three-dimensionally distributed. The surface of each disk of the composite was ground to 0.05 μm Rz to obtain a bearing material (samples A1, A2, and
A3). Also, aluminum oxide powder is 5,2
Zirconium oxide containing 3 mol% of yttrium oxide is 95,80,60,0,40,60% by weight,
40 wt% of each was mixed, molded into a cylinder having a length of 20 mm and a diameter of 8 mm, and fired at 1400 to 1500 ° C. for 2 hours. The upper and lower surfaces of the obtained aluminum oxide-zirconium oxide composite having a cylindrical shaft were subjected to surface grinding to obtain 0.0
The shaft material was finished to 5 μm Rz (this is sample B
1, B2, B3, B4). The performance evaluation test of these sliding members was performed by a pin-on-disk type friction and wear tester. The appearance of the device is shown in FIG. A1 to A3, which are bearing material samples 2, were installed on the sample table 3 on the rotating shaft side of the friction and wear tester, and B1 to B4, which are shaft material samples 9, were installed on the sample table 8 on the pressing shaft side. This device is rotated at a constant speed by a motor 4 which controls a sample table 3 with an inverter 5, and a shaft material sample 9 mounted on a sample table 8 on the pressure axis side is disc-shaped with a load indicated by a load meter 1. The sample 2 was contacted. The load and torque at this time are calculated as electrical signals by the μ calculator 6
The friction coefficient is calculated, and the result is output to the recorder 7. Table 1 shows the measurement conditions of the friction and wear test, and Table 2 shows the obtained results. Wear resistance is sample A
And the specific friction of Sample B are measured.

【0036】[0036]

【表1】 [Table 1]

【0037】また、油中(タービン油ISO VG6
8)での測定は、試料台3の上に、カップを固定し、そ
の中に油を入れ、上述と同様の方法で耐摩耗性を測定し
た。その結果も表2に併せて示す。
In oil (turbine oil ISO VG6
In the measurement in 8), a cup was fixed on the sample table 3, oil was put therein, and the abrasion resistance was measured by the same method as described above. The results are also shown in Table 2.

【0038】[0038]

【表2】 [Table 2]

【0039】なお、比摩擦量は単位見掛け接触面積、単
位見掛け接触圧力及び単位滑り距離あたりの摩耗量を意
味し、試料Aおよび試料Bの重量変化を下記式により測
定することで求めた。
The specific friction amount means the amount of wear per unit apparent contact area, unit apparent contact pressure and unit sliding distance, and was determined by measuring the weight change of Sample A and Sample B by the following formula.

【数1】比摩耗量 Ws=W/(p・S・l)=(mi
−mf )/(ρ・p・S・l) Ws:比摩耗量(mm3 /N・m) p:見かけの接触圧力(kgf /mm2 =N/mm2 ) S:接触面積(mm2 ) l:滑り距離(m) W:摩耗体積(mm3 ) 試料の密度 ρ(g/mm3 )=(mi −mf )/W mi :試験前の重量(g) mf :試験後の重量(g)
[Equation 1] Specific wear amount Ws = W / (p · S · l) = (m i
-M f ) / (ρ · p · S · l) Ws: Specific wear amount (mm 3 / N · m) p: Apparent contact pressure (kgf / mm 2 = N / mm 2 ) S: Contact area (mm 2) l: sliding distance (m) W: wear volume (mm 3) density of the sample ρ (g / mm 3) = (m i -m f) / W m i: weight before test (g) m f: Weight after test (g)

【0040】比較例1 珪素を10.4g、20.8gとして、各々炭化珪素を
40、90重量%含有し、炭素を60、10重量%含有
したもの(これを試料C1,C2とする)及び実施例1
で得られたもの(試料A1〜A3)を軸受材とし、酸化
アルミニウム粉末を0、80重量%、3mol %の酸化イ
ットリウムを含有する酸化ジルコニウムを100、20
重量%各々混合したもの(これを試料D1,D2とす
る)及び実施例1で得られたもの(試料B1〜B4)を
軸材とした以外は、実施例1と同様の条件、方法で摩擦
摩耗試験を行なった。その結果を表2に示す。
Comparative Example 1 Silicon was 10.4 g and 20.8 g and contained 40 and 90% by weight of silicon carbide and 60 and 10% by weight of carbon (referred to as samples C1 and C2), and Example 1
Using the materials (samples A1 to A3) obtained in 1. as a bearing material, zirconium oxide containing aluminum oxide powder in an amount of 0,80% by weight and 3 mol% of yttrium oxide is 100,20.
Friction was carried out under the same conditions and methods as in Example 1 except that the materials each mixed by weight% (referred to as Samples D1 and D2) and those obtained in Example 1 (Samples B1 to B4) were used as the shaft material. A wear test was performed. The results are shown in Table 2.

【0041】比較例2 市販の黒鉛摺動材用炭素(日立化成(株)製PD−11
P)を軸受け材(試料E)とし、実施例1(試料B1〜
B4)及び比較例1(試料D1,D2)で得られたもの
を軸材とした以外は、実施例1と同様の条件、方法で摩
擦摩耗試験を行なった。その結果を表2に示す。
Comparative Example 2 Commercially available carbon for graphite sliding material (PD-11 manufactured by Hitachi Chemical Co., Ltd.)
P) as the bearing material (Sample E),
B4) and Comparative Example 1 (Samples D1 and D2) were used as the shaft material, and a friction and wear test was conducted under the same conditions and methods as in Example 1. The results are shown in Table 2.

【0042】比摩耗量は、比較例1,2の場合より、実
施例1の本願発明による試料A、試料Bの方が1/10
0小さく、明らかに、本願発明にかかる摺動部材を組み
合わせた場合は、耐摩耗性に優れていることがわかる。
The specific wear amount is 1/10 in the samples A and B according to the present invention of Example 1 as compared with the cases of Comparative Examples 1 and 2.
It is small, and it is clear that the combination of the sliding members according to the present invention has excellent wear resistance.

【0043】実施例2 内径40mmφ、外径50mmφ、長さ50mmφの円
筒状の炭素−炭化珪素複合体を実施例1と同様の方法で
製造した。但し、当該複合体は、炭化ケイ素を64重量
%含有し、炭素を36重量%含有するものである。この
円筒状複合体の内面を表面粗さが0.1μmRzとなよ
うに研磨した。これを試料Fとする。この試料Fを金属
製のハウジング10内部に焼きばめにより固定したもの
を軸受け材17とした。また、組成が酸化アルミニウム
が40重量%に対し、3mol%の酸化イットリウムを
含有する酸化ジルコニウムが60重量%の複合体を、外
径39.96mm、内径20.0mm、長さ55mmの
円筒状に実施例1と同様の方法で作製し、円筒の側面を
表面粗さが0.1μmRzになように仕上げ軸材とし
た。これを試料Gとする。この円筒軸材18を図2に示
す金属性のシャフト11の片端に軸材18の中心線とシ
ャフト11の中心線が一直線上となるように設置した。
次いでシャフト11の中心線と中空円筒状軸受け材17
の中心線が一直線上となるようにシャフトを装置内に固
定した。この金属性シャフト11の途中にはプーリ12
がついており、タイミングベルト13により、モータ1
4のシャフト部に固定されているプーリ15につながっ
ている。プーリ12とプーリ15の直径の比は1:1で
あり、モータの回転速度がそのままシャフト11の回転
速度になっている。ハウジング10は外壁16に固定さ
れている。表3に示す条件下、この装置を用い、シャフ
ト11を回転させ、その走行距離に関する試料Fの内径
及び試料Gの外径を測定することにより、摩擦摩耗試験
を行った。
Example 2 A cylindrical carbon-silicon carbide composite body having an inner diameter of 40 mmφ, an outer diameter of 50 mmφ and a length of 50 mmφ was manufactured in the same manner as in Example 1. However, the composite contains 64% by weight of silicon carbide and 36% by weight of carbon. The inner surface of this cylindrical composite was polished to a surface roughness of 0.1 μm Rz. This is designated as Sample F. A bearing member 17 was obtained by fixing the sample F inside the metal housing 10 by shrink fitting. Further, a composite having a composition of 60% by weight of zirconium oxide containing 3 mol% of yttrium oxide with respect to 40% by weight of aluminum oxide is formed into a cylindrical shape having an outer diameter of 39.96 mm, an inner diameter of 20.0 mm and a length of 55 mm. It was manufactured by the same method as in Example 1, and the side surface of the cylinder was used as a finished shaft material so that the surface roughness was 0.1 μmRz. This is designated as Sample G. This cylindrical shaft member 18 was installed at one end of the metallic shaft 11 shown in FIG. 2 so that the center line of the shaft member 18 and the center line of the shaft 11 were aligned.
Next, the center line of the shaft 11 and the hollow cylindrical bearing member 17
The shaft was fixed in the device so that the center line of the was aligned. A pulley 12 is provided in the middle of the metallic shaft 11.
Is attached to the motor 1 by the timing belt 13.
4 is connected to a pulley 15 fixed to the shaft portion. The ratio of the diameters of the pulley 12 and the pulley 15 is 1: 1 and the rotation speed of the motor is the rotation speed of the shaft 11 as it is. The housing 10 is fixed to the outer wall 16. A friction wear test was conducted by rotating the shaft 11 using this device under the conditions shown in Table 3 and measuring the inner diameter of the sample F and the outer diameter of the sample G with respect to the travel distance thereof.

【0044】[0044]

【表3】 [Table 3]

【0045】その結果を、表4に示すThe results are shown in Table 4.

【0046】[0046]

【表4】 [Table 4]

【0047】試料F、試料Gの両方とも、摩耗による軸
径の変化はみられず、明らかに、本願発明にかかる摺動
部材を組み合わせた場合は、耐摩耗性に優れていること
がわかる。
In both Samples F and G, no change in shaft diameter due to wear was observed, and it is clear that the combination of the sliding members according to the present invention has excellent wear resistance.

【0048】実施例3 軸受材は実施例1と同様の方法で製造した(試料A1〜
A3)。軸材は、WC−Co系超硬合金であり、WC9
4重量%に対し、Coを6重量%混合させたもの、およ
び、WC85重量%に対し、Coを15重量%混合させ
たものを用いた(JIS記号G1、G3)。この超硬合
金を、長さ20m、直径8mmの円柱に成形し、円筒状
軸の上下面を平面研削により0.05μmRzに仕上げ
た。これを試料H1、H2とする。摩擦摩耗試験を実施
例1と同様の条件、方法で実施した。得られた結果を表
5に示す。また、摩擦摩耗試験を水中で同様に行い、そ
の結果も併せて表5に示す。
Example 3 A bearing material was manufactured in the same manner as in Example 1 (Samples A1 to A1).
A3). The shaft material is a WC-Co based cemented carbide, WC9
A mixture of 6% by weight of Co with 4% by weight and a mixture of 15% by weight of Co with 85% by weight of WC were used (JIS symbols G1 and G3). This cemented carbide was molded into a cylinder having a length of 20 m and a diameter of 8 mm, and the upper and lower surfaces of the cylindrical shaft were finished by surface grinding to 0.05 μm Rz. These are designated as samples H1 and H2. The friction and wear test was carried out under the same conditions and method as in Example 1. The results obtained are shown in Table 5. Further, the friction and wear test was similarly performed in water, and the results are also shown in Table 5.

【0049】[0049]

【表5】 [Table 5]

【0050】比較例3 軸受材は比較例1(試料C1,C2)で得られたものを
用い、軸材は実施例3(試料H1,H2)で得られたも
のを用いた以外は、実施例3と同様に摩擦摩耗試験を行
った。その結果を表5に示す。
Comparative Example 3 A bearing material was obtained in Comparative Example 1 (Samples C1 and C2), and a shaft material was obtained in Example 3 (Samples H1 and H2). A friction and wear test was conducted in the same manner as in Example 3. The results are shown in Table 5.

【0051】比較例4 市販の黒鉛摺動材用炭素(日立化成(株)製 PD−1
1P)を軸受け材(試料E)とし、実施例3(試料H
1,H2)で得られたものを軸材とした以外は、実施例
1と同様に摩擦摩耗試験を行った。その結果を表5に示
す。
Comparative Example 4 Commercially available carbon for graphite sliding material (PD-1 manufactured by Hitachi Chemical Co., Ltd.)
1P) as a bearing material (sample E), and the third embodiment (sample H)
A friction and wear test was conducted in the same manner as in Example 1 except that the shaft material was obtained from No. 1, H2). The results are shown in Table 5.

【0052】比摩耗量は、試料A1〜A3と試料Eを比
較すると、試料A1〜A3の方が試料Eに比べて、1/
1000小さい。上記の結果より、明らかに、本発明に
かかる摺動部材を組み合わせた場合は、耐摩耗性に優れ
ることがわかる。
When comparing the samples A1 to A3 with the sample E, the specific wear amount of the samples A1 to A3 is 1 / third of that of the sample E.
1000 small. From the above results, it is clear that when the sliding member according to the present invention is combined, the abrasion resistance is excellent.

【0053】実施例4 軸受材は、実施例1と同様の方法で製造した(試料A1
〜A3)。軸材はねずみ鋳鉄(JIS記号FC20)を
長さ20mm、直径8mmの円柱に加工し、得られた円
柱の上下面を平面研削により0.05μm Rzに仕上げ
た。これを試料Jとする。摩擦摩耗試験を実施例1と同
様の条件、方法で実施した。得られた結果を表6に示
す。
Example 4 A bearing material was manufactured in the same manner as in Example 1 (Sample A1).
~ A3). The shaft material was gray cast iron (JIS code FC20) processed into a cylinder having a length of 20 mm and a diameter of 8 mm, and the upper and lower surfaces of the obtained cylinder were surface-ground to finish to 0.05 μm Rz. This is designated as Sample J. The friction and wear test was carried out under the same conditions and method as in Example 1. The obtained results are shown in Table 6.

【0054】[0054]

【表6】 [Table 6]

【0055】比較例5 軸受材は比較例1(試料C1,C2)で製造したものを
用い、軸材は実施例4(試料J)で得られたものを用い
た以外は、実施例1と同様の条件、方法で摩擦摩耗試験
を行った。その結果を表6に示す。
COMPARATIVE EXAMPLE 5 The bearing material used in Comparative Example 1 (Samples C1 and C2) was used, and the shaft material obtained in Example 4 (Sample J) was used. A friction and wear test was conducted under the same conditions and method. The results are shown in Table 6.

【0056】比較例6 市販の黒鉛摺動材用炭素(日立化成(株)製PD−11
P)を軸受材(試料E)とし、実施例4で得られたもの
を軸材(試料J)とした以外は、実施例1と同様の条
件、方法で摩擦摩耗試験を行った。その結果を表6に示
す。
Comparative Example 6 Commercially available carbon for graphite sliding material (PD-11 manufactured by Hitachi Chemical Co., Ltd.)
A friction and wear test was conducted under the same conditions and method as in Example 1 except that P) was used as the bearing material (Sample E) and that obtained in Example 4 was used as the shaft material (Sample J). The results are shown in Table 6.

【0057】[0057]

【発明の効果】以上説明したことから明らかなように、
本願発明の摺動部材は、摺動部材自体が良好な潤滑性を
有するものであるため潤滑剤を用いることなく優れた自
己潤滑性と耐摩耗性を長期間に渡って維持することがで
きるという効果が得られる。
As is apparent from the above description,
Since the sliding member of the present invention has good lubricity, the sliding member itself can maintain excellent self-lubricating property and wear resistance for a long period of time without using a lubricant. The effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の摺動部材の耐摩耗性測定試験の装置
の概略断面図である。
FIG. 1 is a schematic sectional view of an apparatus for a wear resistance measurement test of a sliding member of the present invention.

【図2】本願発明の摺動部材の他の耐摩耗性測定試験の
装置の概略断面図である。
FIG. 2 is a schematic cross-sectional view of another wear resistance measuring test apparatus for a sliding member of the present invention.

【符号の説明】[Explanation of symbols]

1 荷重計 2,17 軸受け材試料 3,8 試料台 4,14 モータ 5 インバータ 6 演算器 7 記録計 9,18 軸材試料 10 ハウジング 11 シャフト 12,15 プーリ 13 ベルト 16 外壁 1 load meter 2,17 bearing material sample 3,8 sample stand 4,14 motor 5 inverter 6 calculator 7 recorder 9,18 shaft material sample 10 housing 11 shaft 12,15 pulley 13 belt 16 outer wall

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 炭素と炭化ケイ素とからなり、両者が連
続相を形成する組織構造を有する複合材料を軸受材とす
ることを特徴とする摺動部材。
1. A sliding member comprising a bearing material made of a composite material composed of carbon and silicon carbide and having a structure structure in which both of them form a continuous phase.
【請求項2】 炭素が20〜50重量%で、炭化ケイ素
が80〜50重量%であることを特徴とする請求項1記
載の摺動部材。
2. The sliding member according to claim 1, wherein carbon is 20 to 50% by weight and silicon carbide is 80 to 50% by weight.
【請求項3】 炭素と炭化ケイ素とからなり、両者が連
続相を形成する組織構造を有する複合材料を軸受材と
し、酸化アルミニウムと酸化ジルコニウムの複合体を軸
材とすることを特徴とする摺動部材。
3. A slide characterized in that a composite material composed of carbon and silicon carbide and having a structure structure in which both form a continuous phase is used as a bearing material, and a composite of aluminum oxide and zirconium oxide is used as a shaft material. Moving member.
【請求項4】 炭素が20〜50重量%で、炭化ケイ素
が80〜50重量%であることを特徴とする請求項3記
載の摺動部材。
4. The sliding member according to claim 3, wherein carbon is 20 to 50% by weight and silicon carbide is 80 to 50% by weight.
【請求項5】 酸化アルミニウムが5〜70重量%で、
酸化ジルコニウムが95〜30重量%であることを特徴
とする請求項3又は4記載の摺動部材。
5. Aluminum oxide of 5 to 70% by weight,
The sliding member according to claim 3 or 4, wherein the zirconium oxide is 95 to 30% by weight.
【請求項6】 炭素と炭化ケイ素とからなり、両者が連
続相を形成する組織構造を有する複合材料を軸受材と
し、超硬合金を軸材とすることを特徴とする摺動部材。
6. A sliding member comprising a bearing material of a composite material composed of carbon and silicon carbide and having a structure structure in which both of them form a continuous phase, and a cemented carbide alloy as a shaft material.
【請求項7】 炭素が20〜50重量%で、炭化ケイ素
が80〜50重量%であることを特徴とする請求項6記
載の摺動部材。
7. The sliding member according to claim 6, wherein carbon is 20 to 50% by weight and silicon carbide is 80 to 50% by weight.
【請求項8】 超硬合金が炭化タングステン−コバルト
合金であることを特徴とする請求項6又は7記載の摺動
部材。
8. The sliding member according to claim 6, wherein the cemented carbide is a tungsten carbide-cobalt alloy.
【請求項9】 炭素と炭化ケイ素とからなり、両者が連
続相を形成する組織構造を有する複合材料を軸受材と
し、鋳鉄を軸材とすることを特徴とする摺動部材。
9. A sliding member comprising a bearing material of a composite material composed of carbon and silicon carbide and having a structure structure in which both of them form a continuous phase, and cast iron as a shaft material.
【請求項10】 炭素が20〜50重量%で、炭化ケイ
素が50〜80重量%であることを特徴とする請求項9
記載の摺動部材。
10. The carbon content is 20 to 50% by weight and the silicon carbide content is 50 to 80% by weight.
The sliding member described.
JP6098669A 1994-05-12 1994-05-12 Sliding member Pending JPH07309662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6098669A JPH07309662A (en) 1994-05-12 1994-05-12 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6098669A JPH07309662A (en) 1994-05-12 1994-05-12 Sliding member

Publications (1)

Publication Number Publication Date
JPH07309662A true JPH07309662A (en) 1995-11-28

Family

ID=14225928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6098669A Pending JPH07309662A (en) 1994-05-12 1994-05-12 Sliding member

Country Status (1)

Country Link
JP (1) JPH07309662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6845985B2 (en) * 2000-11-13 2005-01-25 Firma Carl Freudenberg Rotating mechanical seal
JP2010063349A (en) * 2008-08-06 2010-03-18 Sharp Corp Driving device, image sensing device with the same, and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6845985B2 (en) * 2000-11-13 2005-01-25 Firma Carl Freudenberg Rotating mechanical seal
JP2010063349A (en) * 2008-08-06 2010-03-18 Sharp Corp Driving device, image sensing device with the same, and electronic equipment

Similar Documents

Publication Publication Date Title
US5866518A (en) Self-lubricating composite containing chromium oxide
WO1993020023A1 (en) Sliding member and production thereof
JPS5824496B2 (en) Lubricating sintered body containing silicon nitride
Liu et al. Self-Lubricating Si3N4-based composites toughened by in situ formation of silver
JP3350394B2 (en) Graphite composite silicon carbide sintered body, graphite composite silicon carbide sintered composite, and mechanical seal
EP0497345B1 (en) Composite ceramic sintered material, process for producing the same, and slider member using the same
Puchý et al. Preparation, friction, wear, and fracture of the Si3N4-Ag-GNPs composites prepared by SPS
Chen et al. Microstructure, mechanical properties and friction/wear behavior of hot-pressed Si3N4/BN ceramic composites
Wäsche et al. In situ formation of tribologically effective oxide interfaces in SiC‐based ceramics during dry oscillating sliding
JPH07309662A (en) Sliding member
JPS6136173A (en) High temperature solid lubricating ceramics
US5534044A (en) Self-lubricating aluminum metal-matrix composites
Westergård et al. Sliding wear and friction of Si3N4-SiC-based ceramic composites containing hexagonal boron nitride
JP2004002067A (en) Wear-resistant member and its production process
Schulz et al. Nano Si3N4 composites with improved tribological properties
US5034187A (en) Method of making carbide/fluoride/silver composites
Zhou et al. In situ preparation of a SiC–TiB2 composite and its wear fracture mechanism at high temperatures
Chen et al. Tribological Behaviors of Cu/AlMgB 14 Composite Under Deionized Water and Liquid Paraffin
Bilecik et al. Effect of TiN particle size on wear behavior of SiAlON-TiN composites
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JP2001049378A (en) Wear resistant cemented carbide sintered compact and its manufacture
JPH09264325A (en) Sliding member
JPH06192784A (en) Wear resistant sintered sliding member
JP3152872B2 (en) Sliding composite material
Wasche et al. High temperature tribological behaviour of particulate composites in the system SiC-TiC-TiB2 during dry oscillating sliding