JP2805339B2 - High density phase boron nitride based sintered body and composite sintered body - Google Patents

High density phase boron nitride based sintered body and composite sintered body

Info

Publication number
JP2805339B2
JP2805339B2 JP1153215A JP15321589A JP2805339B2 JP 2805339 B2 JP2805339 B2 JP 2805339B2 JP 1153215 A JP1153215 A JP 1153215A JP 15321589 A JP15321589 A JP 15321589A JP 2805339 B2 JP2805339 B2 JP 2805339B2
Authority
JP
Japan
Prior art keywords
sintered body
boron nitride
phase
binder phase
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1153215A
Other languages
Japanese (ja)
Other versions
JPH0320437A (en
Inventor
義之 内海
菱 山家
Original Assignee
東芝タンガロイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝タンガロイ株式会社 filed Critical 東芝タンガロイ株式会社
Priority to JP1153215A priority Critical patent/JP2805339B2/en
Publication of JPH0320437A publication Critical patent/JPH0320437A/en
Application granted granted Critical
Publication of JP2805339B2 publication Critical patent/JP2805339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ドリル,エンドミル,フライス工具又は施
削工具などに用いる施削工具用材料もしくはスリッタ
ー,ダイスなどに用いる耐摩耗工具用材料として適する
高密度相窒化ホウ素基焼結体及びその焼結体を超硬合金
の基材の表面に接合してなる複合焼結体に関するもので
ある。
The present invention is suitable as a material for a cutting tool used for a drill, an end mill, a milling tool, a cutting tool, or the like, or a material for a wear-resistant tool used for a slitter, a die, or the like. The present invention relates to a high-density phase boron nitride-based sintered body and a composite sintered body obtained by joining the sintered body to the surface of a cemented carbide base material.

(従来の技術) 立方晶窒化ホウ素やウルツ鉱型窒化ホウ素のような高
密度相窒化ホウ素は、ダイヤモンドに次いで高硬度であ
り、しかも鉄と親和性が高いダイヤモンドと異なり、鉄
との親和性が低いという工具材料としてのすぐれた長所
を有している。このことから高密度相窒化ホウ素に結合
相を加えて焼結した高密度相窒化ホウ素基焼結体は、鉄
系材料、特に従来の工具材料では加工が困難とされてい
る高硬度鋼や耐熱合金などの難削材料を切削加工するた
めの工具材料として注目されている。
(Prior art) High-density phase boron nitride, such as cubic boron nitride or wurtzite boron nitride, has the second highest hardness next to diamond and has a high affinity for iron, unlike diamond, which has a high affinity for iron. It has the advantage of being a low tool material. For this reason, high-density phase boron nitride-based sintered bodies that have been sintered by adding a binder phase to high-density phase boron nitride can be used for high-hardness steel or heat-resistant steel, which is difficult to process with conventional tool materials, especially conventional tool materials. It is attracting attention as a tool material for cutting difficult-to-cut materials such as alloys.

この高密度相窒化ホウ素基焼結体の諸特性は、この焼
結体中に含有している結合相の種類により強く影響を受
ける傾向にある。この高密度相窒化ホウ素基焼結体にお
ける結合相に関しての提案が多数されており、その代表
的なものに特開昭56−9279号公報及び特開昭55−113859
号公報がある。また、高密度相窒化ホウ素基焼結体は、
高価であることから超硬合金の基材の表面に必要最小限
度の所定形状でなる高密度相窒化ホウ素基焼結体を接合
した複合焼結体として用いられる場合が一般的である。
この複合焼結体に関しての提案の代表的なものに、特開
昭62−260005号公報がある。
Various characteristics of the high-density phase boron nitride-based sintered body tend to be strongly affected by the type of the binder phase contained in the sintered body. There have been many proposals regarding the binder phase in this high-density phase boron nitride-based sintered body, representative examples of which are JP-A-56-9279 and JP-A-55-113859.
There is an official gazette. In addition, the high-density phase boron nitride-based sintered body
Since it is expensive, it is generally used as a composite sintered body in which a high-density phase boron nitride-based sintered body having a predetermined minimum required shape is joined to the surface of a cemented carbide base material.
A representative proposal for this composite sintered body is disclosed in Japanese Patent Application Laid-Open No. 62-260005.

(発明が解決しようとする問題点) 特開昭56−9279号公報には、高密度相窒化ホウ素粉末
30〜80vol%と、残部の結合相がW粉末及びWC粉末の1
種以上3〜10wt%Al粉末及びTiとAlとの金属間化合物粉
末の1種以上5〜20wt%TiNx(Xは原子比で0.9以下)
粉末残部の割合で混合、焼結して、結合相中のW又はW
の硼化物結晶の大部分が1μm以下の微細粒子よりなる
切削工具用焼結体が開示されている。この同公報の切削
工具用焼結体は、Coなどの鉄族金属の結合相で結合して
なる従来の高密度相窒化ホウ素基焼結体の有している問
題、例えば軟化による耐摩耗性の低下や被削剤金属との
溶着のし易さという問題を解決したすぐれたものである
けれども、耐摩耗性及び耐欠損性がまだ満足されず、特
に高密度相窒化ホウ素の含有量の多い焼結体にして、こ
れを超硬合金の基材に接合してなる複合焼結体にする場
合には接合強度が低く、欠損し易いという問題がある。
(Problems to be solved by the invention) JP-A-56-9279 discloses a high-density phase boron nitride powder.
30-80 vol%, the remaining binder phase is one of W powder and WC powder
At least one kind of 3 to 10 wt% Al powder and at least one kind of intermetallic compound powder of Ti and Al 5 to 20 wt% TiN x (X is 0.9 or less in atomic ratio)
Mixing and sintering in the proportion of the remaining powder, W or W in the binder phase
A sintered body for a cutting tool is disclosed in which most of the boride crystals are composed of fine particles of 1 μm or less. The sintered body for a cutting tool disclosed in this publication has the problems of the conventional high-density phase boron nitride based sintered body formed by bonding with a binder phase of an iron group metal such as Co, for example, wear resistance due to softening. Although it is an excellent solution to the problem of lowering the hardness and easiness of welding with the work material metal, the wear resistance and fracture resistance are not yet satisfied, especially the content of high-density phase boron nitride is large. When a sintered body is formed into a composite sintered body obtained by joining the sintered body to a cemented carbide base material, there is a problem that the joining strength is low and the chip is easily broken.

特開昭55−113859号公報には、高密度相窒化ホウ素30
〜80vol%と残り結合相とからなり、該結合相が窒化
チタンもしくは窒化チタン30wt%以上〜100wt%未満
と、0wt%を超え、70wt%以下の窒化チタン以外の周期
律表4a,5a,6a族金属の窒化物,炭化物,炭窒化物,硼化
物の1種又は2種以上、さらにAlとTiもしくはTi以外
の周期律表4a,5a,6a族金属の間に生じる金属間化合物、
AlとSi,Cu,Mg,Ni,Mn,Znの間に生じる合金、Alの窒化
物、Alの硼化物の1種又は2種以上、とからなり、
結合相中のAlの含有量が収量で10%を超え、40%未満で
あり、且つ結合相の結合粒子の大部分が1μm以下の微
細粒子よりなる切削工具用焼結体が開示されている。こ
の同公報の切削工具用焼結体は、窒化チタンとAlを含む
化合物を主体とした結合相を用いることにより、従来の
焼結体に比べて耐摩耗性及び靭性のすぐれたものである
けれども、AlとTiのような金属間化合物の存在した焼結
体であるために、特に耐摩耗性に劣るという問題があ
る。
JP-A-51-113859 discloses a high-density phase boron nitride 30.
Periodic tables 4a, 5a, 6a except titanium nitride or titanium nitride having a content of more than 30% by weight and less than 100% by weight, and more than 0% by weight and 70% by weight or less. One or more of group nitrides, carbides, carbonitrides, borides, and intermetallic compounds formed between Al and Ti or a group 4a, 5a, or 6a metal other than Ti in the periodic table;
An alloy formed between Al and Si, Cu, Mg, Ni, Mn, Zn, one or two or more of Al nitride, Al boride,
A sintered body for a cutting tool in which the content of Al in the binder phase exceeds 10% and less than 40% in yield and most of the binder particles of the binder phase are fine particles of 1 μm or less is disclosed. . Although the sintered body for a cutting tool of this publication uses a binder phase mainly composed of a compound containing titanium nitride and Al, it has excellent wear resistance and toughness as compared with a conventional sintered body. Since the sintered body has an intermetallic compound such as Al and Ti, there is a problem that the wear resistance is particularly poor.

特開昭62−260005号公報には、平均粒径が10μm以下
の高密度相窒化ホウ素を80vol%を超え95vol%以下含有
し、残部の結合相がTi,Zr,Hfの炭化物,窒化物,炭窒化
物の1種もしくは混合物あるいは相互固溶体化合物及び
Alの化合物より成り、結合相中のAlの含有量が5〜30wt
%であって、且つ結合相の結合粒子の大部分が1μm以
下の微細粒子よりなり、さらに該結合相中にCu及び鉄族
金属元素を1〜20wt%、両者の比率で1/2〜5含有する
焼結体と高密度相窒化ホウ素の含有率が70vol%未満で
残部がTi,Zr,Hfの炭化物,窒化物,炭窒化物の1種もし
くはこれらの混合物又は相互固溶体を主体としたものと
これにAl又はSiを0.1wt%以上含有する厚み2mm以下の中
間接合相を介して、超硬合金基材に接合した工具用複合
焼結体が開示されている。この同公報の複合焼結体は、
高密度相窒化ホウ素を多量に含有してなる焼結体を超硬
合金の基材の表面に直接接合する場合に、接合強度が低
いという問題に対して、焼結体と基材との間に高密度相
窒化ホウ素の含有量の少い焼結体を中間接合相として介
在させることにより解決したすぐれたものであるけれど
も、焼結体自体の耐摩耗性が劣るという問題がある。
JP-A-62-260005 discloses that high-density phase boron nitride having an average particle size of 10 μm or less contains more than 80 vol% and 95 vol% or less, and the remaining binder phase is made of carbides, nitrides, Ti, Zr and Hf. One or a mixture of carbonitrides or a mutual solid solution compound;
Consists of an Al compound, and the content of Al in the binder phase is 5 to 30 wt.
% And most of the binder particles in the binder phase are fine particles of 1 μm or less, and further contain 1 to 20 wt% of Cu and iron group metal elements in the binder phase, and a ratio of 1/2 to 5 Containing sintered body and high-density phase boron nitride content of less than 70 vol%, with the balance being one or more of carbides, nitrides, carbonitrides of Ti, Zr, and Hf or a mixture or mutual solid solution of these And a composite sintered body for a tool joined to a cemented carbide base material through an intermediate joining phase having a thickness of 2 mm or less containing 0.1 wt% or more of Al or Si. The composite sintered body of this publication is
When directly bonding a sintered body containing a large amount of high-density phase boron nitride to the surface of a cemented carbide base material, the problem of low bonding strength However, it is an excellent solution by interposing a sintered body having a low content of high-density phase boron nitride as an intermediate bonding phase, but has a problem that the sintered body itself has poor wear resistance.

本発明は、上述のような問題点を解決したもので、具
体的には、高密度相窒化ホウ素とこの高密度相窒化ホウ
素に最適な結合相とを組合わせることにより耐摩耗性及
び耐欠損性を顕著に向上させた高密度相窒化ホウ素基焼
結体及びその焼結体を超硬合金の基材の表面に接合して
なる複合焼結体の提供を目的とするものである。
The present invention has solved the above-described problems. Specifically, the present invention combines a high-density phase boron nitride and a binder phase optimal for the high-density phase boron nitride to thereby provide wear resistance and fracture resistance. It is an object of the present invention to provide a high-density phase boron nitride-based sintered body having significantly improved properties and a composite sintered body obtained by joining the sintered body to the surface of a cemented carbide base material.

(問題点を解決するための手段) 本発明者らは、従来の高密度相窒化ホウ素基焼結体を
切削工具用部材として用いて浸炭焼入れ鋼を切削すると
短寿命で満足できるものでないということから、高密度
相窒化ホウ素基焼結体の工具寿命向上を図るための検討
を行っていた所、 第1に工具の寿命は、焼結体中の高密度相窒化ホウ素
の硬質相の含有量及び粒径により影響が及ぼされるけれ
ども、焼結体中の結合相を選定し、それを組合わせる方
が工具寿命へはるかに大きな影響を及ぼすこと、特に焼
結時において、反応焼結を行わせることにより焼結体中
の結合相を組合わせることが工具寿命への効果及び工具
寿命への安定化に影響を及ぼすという知見を得たもので
ある。
(Means for Solving the Problems) The present inventors have found that cutting a carburized and quenched steel using a conventional high-density phase boron nitride-based sintered body as a cutting tool member is not satisfactory with a short life. In order to improve the tool life of the high-density phase boron nitride based sintered body, the tool life was first determined by the content of the hard phase of the high-density phase boron nitride in the sintered body. Although it is influenced by the particle size, the choice of the binder phase in the sintered body and the combination thereof have a much greater effect on the tool life. Thus, it has been found that the combination of the binder phase in the sintered body affects the effect on the tool life and the stabilization on the tool life.

第2に工具寿命を向上させるための最適な結合相とし
ては、周期律表4a族金属の炭窒化物と周期律表6a族、特
にW,Moの炭化物とW,Moの金属とを含有している場合が耐
摩耗性及び耐欠損性の両方をバランスよく向上させ、高
密度相窒化ホウ素基焼結体の寿命を向上させ得るという
知見を得たものである。この第1及び第2の知見に基づ
いて本発明を完成するに至ったものである。
Secondly, the optimum binder phase for improving the tool life includes a carbonitride of a metal of Group 4a of the periodic table and a group 6a of the periodic table, particularly a carbide of W and Mo and a metal of W and Mo. It has been found that in the case of the above, both the wear resistance and the fracture resistance can be improved in a well-balanced manner, and the life of the high-density phase boron nitride-based sintered body can be improved. The present invention has been completed based on the first and second findings.

すなわち、本発明の高密度相窒化ホウ素基焼結体は、
立方晶窒化ホウ素及び/又はウルツ鉱型窒化ホウ素の硬
質相20〜90wt%と、残りが結合相と不可避不純物とから
なる焼結体であって、該結合相がTi,Zr,Hfの炭化物,窒
化物及びこれらの相互固溶体の中の少なくとも1種の第
1結合相5〜75wt%と、W,Moの炭化物及びこれらの相互
固溶体の中の少なくとも1種の第2結合相0.5〜5wt%
と、Ti,Zr,Hf,W,Mo,Alのホウ化物及びこれらの相互固溶
体の中の少なくとも1種の第3結合相1〜10wt%と、Al
の窒化物,Al,Zr,Hfの酸化物及びこれらの相互固溶体の
中の少なくとも1種の第4結合相1〜40wt%と、W,Mo及
びこれらの合金の中の少なくとも1種の第5結合相0.5
〜5wt%(以上、焼結体全体に対する比率)とでなるこ
とを特徴とするものである。
That is, the high-density phase boron nitride-based sintered body of the present invention,
A sintered body comprising 20 to 90 wt% of a hard phase of cubic boron nitride and / or wurtzite-type boron nitride, and the balance being a binder phase and unavoidable impurities, wherein the binder phase is a carbide of Ti, Zr, Hf; 5 to 75% by weight of at least one first binder phase in nitrides and their mutual solid solution, and 0.5 to 5% by weight of at least one second binder phase in carbides of W and Mo and these mutual solid solutions
At least one third binder phase in a boride of Ti, Zr, Hf, W, Mo, Al and a mutual solid solution thereof;
At least one fourth binder phase in the nitride, Al, Zr, Hf oxide and their mutual solid solution in an amount of 1 to 40 wt%, and at least one fifth binder in the W, Mo and alloys thereof. Bound phase 0.5
-5% by weight (the above ratio relative to the entire sintered body).

本発明の高密度相窒化ホウ素基焼結体における硬質相
は、平均粒径が10μm以下と従来から用いられている粒
径のものでも、その効果を発揮することができるけれど
も、製造管理上の問題及びその焼結体の効果を安定に発
揮させるために、特に平均粒径5μm以下であることが
好ましいものである。この硬質相が90wt%を超えて多く
なると緻密な焼結体を得るのが困難になり、逆に20wt%
未満になると耐欠損性の低下となる。このために、硬質
相量は20〜90wt%と定めたものである。
The hard phase in the high-density phase boron nitride-based sintered body of the present invention has an average particle diameter of 10 μm or less, which is conventionally used, although the effect can be exerted. In order to stably exhibit the problem and the effect of the sintered body, it is particularly preferable that the average particle size is 5 μm or less. If this hard phase exceeds 90 wt%, it becomes difficult to obtain a dense sintered body, and conversely, 20 wt%
If it is less than this, the fracture resistance will be reduced. For this reason, the amount of the hard phase is determined to be 20 to 90 wt%.

本発明の高密度相窒化ホウ素基焼結体における結合相
は、反応焼結により形成される5種類の結合相からな
り、特に硬質相を形成するために用いる立方晶窒化ホウ
素(CBN)粉末やウルツ鉱型窒化ホウ素(WBN)粉末と他
の出発物質との反応焼結及び他の出発物質相互間の反応
焼結によって、形成されるために、5種類の結合相から
なっているものである。この5種類の結合相の内、第1
結合相が5wt%未満になると耐熱性及び耐溶着性が低下
し、逆に75wt%を超えて多くなると相対的に他の結合相
が少なく、硬質相が多くなって耐欠損性の低下となる。
第2結合相が0.5wt%未満になると耐熱性の低下とな
り、逆に5wt%を超えて多くなると多量のWやMoのホウ
化物の析出により、耐欠損性の低下となる。第3係合相
が1wt%未満になると高温時の耐摩耗性の低下となり、
逆に10wt%を超えて多くなると耐欠損性の低下となる。
第4結合相が1wt%未満になると耐酸化性の低下とな
り、逆に40wt%を超えて多くなると耐欠損性の低下とな
る。第5結合相が0.5wt%未満になると高温時の強度の
低下となり、5wt%を超えて多くなると耐摩耗性の低下
となる。これらの5種類の結合相の含有量、特に後述す
るような複合の反応焼結によって形成される結合相を微
量にバランスよく調整することにより、焼結体の諸特性
がバランスよくすぐれたものになっている。
The binder phase in the high-density phase boron nitride-based sintered body of the present invention is composed of five types of binder phases formed by reaction sintering, particularly cubic boron nitride (CBN) powder used for forming a hard phase. It consists of five types of binder phases to be formed by reaction sintering of wurtzite boron nitride (WBN) powder with other starting materials and reaction sintering between other starting materials. . Of these five types of bonded phases, the first
When the binder phase is less than 5 wt%, heat resistance and welding resistance decrease, and when the binder phase exceeds 75 wt%, on the other hand, the other binder phases are relatively few and the hard phase increases, resulting in a decrease in fracture resistance. .
When the amount of the second binder phase is less than 0.5% by weight, the heat resistance decreases. On the other hand, when the amount exceeds 5% by weight, a large amount of boride of W or Mo precipitates, resulting in a decrease in fracture resistance. If the third engagement phase is less than 1 wt%, the wear resistance at high temperatures decreases,
Conversely, if the content exceeds 10% by weight, the fracture resistance decreases.
When the content of the fourth binder phase is less than 1 wt%, the oxidation resistance decreases, and when the content exceeds 40 wt%, the fracture resistance decreases. If the fifth binder phase is less than 0.5% by weight, the strength at high temperatures is reduced, and if it exceeds 5% by weight, the wear resistance is reduced. By finely adjusting the content of these five types of binder phases, particularly the binder phase formed by complex reaction sintering as described later, in a well-balanced manner, the properties of the sintered body are well balanced. Has become.

本発明の高密度相窒化ホウ素基焼結体は、従来の焼結
体と同様に高圧高温焼結によって得ることができるけれ
ども、特に、結合相を形成するための出発物質相互間の
複合の反応、及びこの結合相を形成するための出発物質
と硬質相を形成するための出発物質との反応により本発
明の焼結体を作製するのが製造上及び得られる焼結体の
諸特性上好ましいことである。
Although the high-density phase boron nitride-based sintered body of the present invention can be obtained by high-pressure and high-temperature sintering similarly to a conventional sintered body, in particular, a composite reaction between starting materials to form a binder phase is performed. The production of the sintered body of the present invention by the reaction between the starting material for forming the binder phase and the starting material for forming the hard phase is preferable in terms of production and various properties of the obtained sintered body. That is.

この本発明の高密度相窒化ホウ素基焼結体を従来の焼
結体と同様に、例えばWC−Co系超硬合金の基材の表面に
接合した複合焼結体として用いることは強度及び経済上
から好ましいことである。この焼結体と超硬合金とを接
合する場合は、従来と同様に例えばAg鑞を介在して接合
する方法、又は高圧高温焼結時に焼結体と超硬合金を直
接接合する方法でもよいけれども、後者の場合には、特
に本発明の焼結体中に含有している第2結合相と第5結
合相が超硬合金の基材との密着性を高めるので好ましい
ことである。また、本発明の高密度相窒化ホウ素基焼結
体の内、特に高密度相窒化ホウ素の含有量の多い組成成
分でなる場合は、焼結体と基材との間に、高密度相窒化
ホウ素の含有量の少ない焼結体を中間層として介在させ
ることが好ましいことである。この中間層は、基材の成
分と高密度相窒化ホウ素基焼結体の成分との両方の共通
成分、すなわち、例えば炭化タングステンを含有してい
ることが特に好ましく、さらに好ましいのは1wt%以下
の微量のCo及び/又はNiをも含有してなる場合である。
この中間層の厚さは、焼結体と基材との接合に寄与する
ための厚さであればよく、製造の容易性を加味して例え
ば10〜100μm程度の厚さで充分である。
Using the high-density phase boron nitride-based sintered body of the present invention as a conventional sintered body, for example, as a composite sintered body bonded to the surface of a WC-Co-based hard metal It is preferable from above. When joining the sintered body and the cemented carbide, a method of joining with, for example, an Ag solder as in the past, or a method of directly joining the sintered body and the cemented carbide during high-pressure high-temperature sintering may be used. However, in the latter case, it is particularly preferable that the second binder phase and the fifth binder phase contained in the sintered body of the present invention increase the adhesion to the cemented carbide base material. Further, among the high-density phase boron nitride-based sintered bodies of the present invention, particularly, when the high-density phase boron nitride-based It is preferable that a sintered body having a low boron content is interposed as an intermediate layer. This intermediate layer particularly preferably contains a common component of both the component of the base material and the component of the high-density phase boron nitride-based sintered body, that is, for example, tungsten carbide, and more preferably 1 wt% or less. Of Co and / or Ni.
The thickness of the intermediate layer may be a thickness that contributes to the bonding between the sintered body and the base material, and a thickness of, for example, about 10 to 100 μm is sufficient in consideration of the ease of production.

(作用) 本発明の高密度相窒化ホウ素基焼結体は、第1焼結相
が耐熱性及び耐溶着性を高める作用をし、第2結合相が
第1結合相の耐熱性を高めるための促進作用となり、第
3結合相が高温における耐摩耗性及び耐欠損性を高める
作用をし、第4結合相が耐酸化性及び耐溶着性を高める
作用をし、第5結合相が高温での強度を高める作用をし
ているものである。また、本発明の高密度相窒化ホウ素
基焼結体を超硬合金の基材に接合して複合焼結体にする
場合は、第2結合相と第5結合相の両方が基材との接合
強度を高める作用をしているものである。
(Function) In the high-density phase boron nitride-based sintered body of the present invention, the first sintered phase acts to enhance heat resistance and welding resistance, and the second binder phase enhances the heat resistance of the first binder phase. The third binder phase acts to enhance wear resistance and fracture resistance at high temperatures, the fourth binder phase acts to increase oxidation resistance and welding resistance, and the fifth binder phase acts at high temperatures. It has the effect of increasing the strength. When the high-density phase boron nitride-based sintered body of the present invention is joined to a cemented carbide base material to form a composite sintered body, both of the second and fifth bonding phases are in contact with the base material. It works to increase the bonding strength.

(実施例) 平均粒径2μmのCBN粒と、平均粒径1μm以下のTi
C,Ti(C,N),TiN,HfC,ZrN,WC,Mo2Cの各種市販の粉末
と、他にAlとTi,TiN,AlNを組合わせて作製したTiAl,TiA
l3,Ti2AlN,TiAlNの金属間化合物を出発物質として用い
て配合し、この配合粉末とボールとヘキサンとをポリア
セタールで内張りしたステンレス製容器に入れて混合粉
砕後、乾燥及び篩別して混合粉末を得た。この混合粉末
を形押し成形後、1×10-4Toor,800℃の条件で真空熱処
理し、次いで超高圧高温装置にセットし、圧力6GPa,温
度1600℃,保持時間15分の条件で焼結し、CBN焼結体を
作製した。こうして得たCBN焼結体をX線回折,X線マイ
クロアナリシスにより調べて、各試料の焼結体組成を第
1表に示した。
(Example) CBN particles having an average particle size of 2 μm and Ti having an average particle size of 1 μm or less
Various commercially available powders of C, Ti (C, N), TiN, HfC, ZrN, WC, Mo 2 C, and TiAl, TiA produced by combining Al with Ti, TiN, AlN
l 3 , Ti 2 AlN, blended using the intermetallic compound of TiAlN as a starting material, put this blended powder and balls and hexane in a stainless steel container lined with polyacetal, mix and pulverize, then dry and sieved, mixed powder I got This mixed powder is embossed, vacuum heat-treated at 1 × 10 -4 Toor, 800 ° C, then set in an ultra-high-pressure high-temperature apparatus, and sintered under the conditions of pressure 6GPa, temperature 1600 ° C, and holding time 15 minutes. Then, a CBN sintered body was produced. The CBN sintered body thus obtained was examined by X-ray diffraction and X-ray microanalysis. The composition of the sintered body of each sample is shown in Table 1.

第1表に示した本発明品1〜6と本発明を外れた比較
品1〜6の他に、市販のCBN焼結体を比較品7,8(比較品
7は、50wt%CBN−30wt%TiN−10wt%AlN−5wt%TiB2
5wt%WC,比較品8は、85wt%CBN−10wt%AlN−5wt%Co
組成)として加えて、下記(A)及び(B)の条件でも
って切削試験を行い、その結果を第2表に併記した。こ
の第2表の切削試験に用いた各試料は、WC−10%Co超硬
合金を基材に直接接合してなる複合焼結体の構造にして
試験を行い、この内、本発明品1〜3は基材と焼結体と
の間に、それぞれ60wt%CBN−30wt%TiC−9.5wt%WC−
0.5wt%Co,50wt%CBN−40wt%TiC−9.5wt%WC−0.5wt%
Co,40wt%CBN−50wt%TiC−9.5wt%WC−0.5wt%Coの中
間層を介在して複合焼結体とした。
In addition to the products 1 to 6 of the present invention shown in Table 1 and the comparative products 1 to 6 deviating from the present invention, commercially available CBN sintered bodies were compared with comparative products 7 and 8 (Comparative product 7 was 50 wt% CBN-30 wt. % TiN-10wt% AlN-5wt % TiB 2 -
5wt% WC, Comparative product 8 is 85wt% CBN-10wt% AlN-5wt% Co
In addition, a cutting test was performed under the following conditions (A) and (B), and the results are shown in Table 2. Each of the samples used in the cutting test in Table 2 was subjected to a test with a structure of a composite sintered body in which a WC-10% Co cemented carbide was directly bonded to a base material. No. 3 is 60wt% CBN-30wt% TiC-9.5wt% WC-
0.5wt% Co, 50wt% CBN-40wt% TiC-9.5wt% WC-0.5wt%
A composite sintered body was formed with an intermediate layer of Co, 40 wt% CBN-50 wt% TiC-9.5 wt% WC-0.5 wt% Co interposed.

(A)切削試験条件(耐摩耗性) 被削材 SCM 415浸炭材(HRC 59〜61)の外周乾式切削 切削速 100m/min 切込み量 0.25mm 送り 0.1mm/rev チップ形状 SNGN 120408 ホルダー CSBNR 2020 評価 平均逃げ面摩耗量 VB=0.2mmになる迄の切削時
間 (B)切削試験条件(耐欠損性) 被削材 SCM 435浸炭材(HRC 59〜61)直径50φmmの外
周に幅8mm,深さ5mmの90゜の角溝を長手方向に等間隔に
2本入れたもので外周断続切削 切削速度 100m/min 切込み量 0.25mm 送り 10分迄は0.15mm/rev,10分後は0.175mm/rev チップ形状 TNGN 160408[0.1×(−25゜)×0.02Rホ
ーニング] ホルダー CTGNR 2020 評 価 欠損する迄の時間(各試料10回行い、その平均
値で表示) (発明の効果) 以上の結果から、本発明の高密度相窒化ホウ素基焼結
体は、本発明から外れた組成成分の焼結体及び市販の焼
結体でなる、それぞれの比較の高密度相窒化ホウ素基焼
結体に比べて耐摩耗性の切削試験において、約2〜8
倍、耐欠損性の切削試験において、約2.5〜9倍も向上
するという顕著な効果がある。
(A) Cutting test conditions (abrasion resistance) Workpiece SCM 415 carburized steel (H R C 59 to 61) the outer periphery dry cutting Cutting speed 100 m / min Depth of cut 0.25mm Feed 0.1 mm / rev chip shape SNGN 120408 Holder CSBNR of 2020 Rating average flank wear V B = become 0.2mm up the cutting time (B) cutting test conditions (chipping resistance) workpiece SCM 435 carburized steel (H R C 59 to 61) the width on the outer periphery of the diameter 50φmm Two 90 mm square grooves of 8 mm and 5 mm depth are inserted at equal intervals in the longitudinal direction.Intermittent cutting on the outer periphery Cutting speed 100 m / min Cutting depth 0.25 mm Feed 0.15 mm / rev up to 10 minutes, after 10 minutes 0.175mm / rev Tip shape TNGN 160408 [0.1 × (−25mm) × 0.02R honing] Holder CTGNR 2020 Evaluation Time to break (performed 10 times for each sample and display the average value) (Effects of the Invention) From the above results, the high-density phase boron nitride-based sintered body of the present invention is composed of a sintered body having a composition outside the scope of the present invention and a commercially available sintered body. In the cutting test for abrasion resistance compared to the phase boron nitride based sintered body, about 2-8
There is a remarkable effect of improving about 2.5 to 9 times in the cutting test of the double and fracture resistance.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】立方晶窒化ホウ素及び/又はウルツ鉱型窒
化ホウ素の硬質相20〜90wt%と、残り結合相と不可避不
純物とからなる焼結体において、該結合相がTi,Zr,Hfの
炭化物,窒化物及びこれらの相互固溶体の中の少なくと
も1種の第1結合相5〜75wt%と、W,Moの炭化物及びこ
れらの相互固溶体の中の少なくとも1種の第2結合相0.
5〜5wt%と、Ti,Zr,Hf,W,Mo,Alのホウ化物及びこれらの
相互固溶体の中の少なくとも1種の第3結合相1〜10wt
%と、Alの窒化物,Al,Zr,Hfの酸化物及びこれらの相互
固溶体の中の少なくとも1種の第4結合相1〜40wt%
と、W,Mo及びこれらの合金の中の少なくとも1種の第5
結合相0.5〜5wt%(以上、焼結体全体に対する比率)と
でなることを特徴とする高密度相窒化ホウ素基焼結体。
1. A sintered body comprising 20 to 90% by weight of a hard phase of cubic boron nitride and / or wurtzite-type boron nitride, a remaining binder phase and unavoidable impurities, wherein the binder phase is composed of Ti, Zr, Hf. 5 to 75% by weight of at least one first binder phase in carbides, nitrides and their mutual solid solutions, and at least one second binder phase in W, Mo carbides and their mutual solid solutions.
5 to 5% by weight of at least one third binder phase in borides of Ti, Zr, Hf, W, Mo, Al and their mutual solid solutions;
% Of at least one fourth binder phase in nitrides of Al, oxides of Al, Zr, Hf and their mutual solid solutions.
And at least one fifth of W, Mo and their alloys
A high-density phase boron nitride-based sintered body characterized in that the binder phase is 0.5 to 5 wt% (the ratio is based on the whole sintered body).
【請求項2】特許請求の範囲第1項記載の高密度相窒化
ホウ素基焼結体を超硬合金の基材の表面に接合してなる
ことを特徴とする複合焼結体。
2. A composite sintered body obtained by bonding the high-density phase boron nitride-based sintered body according to claim 1 to the surface of a cemented carbide base material.
【請求項3】上記高密度相窒化ホウ素基焼結体と上記基
材との間に該高密度相窒化ホウ素基焼結体に比べて高密
度相窒化ホウ素の含有量の少ない窒化ホウ素基焼結体を
中間層としてて介在させてなることを特徴とする複合焼
結体。
3. A boron nitride-based sintered body having a low content of high-density phase boron nitride between said high-density phase boron nitride-based sintered body and said base material, as compared with said high-density phase boron nitride-based sintered body. A composite sintered body characterized in that a sintered body is interposed as an intermediate layer.
JP1153215A 1989-06-15 1989-06-15 High density phase boron nitride based sintered body and composite sintered body Expired - Lifetime JP2805339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1153215A JP2805339B2 (en) 1989-06-15 1989-06-15 High density phase boron nitride based sintered body and composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153215A JP2805339B2 (en) 1989-06-15 1989-06-15 High density phase boron nitride based sintered body and composite sintered body

Publications (2)

Publication Number Publication Date
JPH0320437A JPH0320437A (en) 1991-01-29
JP2805339B2 true JP2805339B2 (en) 1998-09-30

Family

ID=15557566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153215A Expired - Lifetime JP2805339B2 (en) 1989-06-15 1989-06-15 High density phase boron nitride based sintered body and composite sintered body

Country Status (1)

Country Link
JP (1) JP2805339B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130309468A1 (en) * 2011-02-04 2013-11-21 Tungaloy Corporation Cbn sintered body tool and coated cbn sintered body tool
US9950962B2 (en) * 2013-10-22 2018-04-24 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body

Also Published As

Publication number Publication date
JPH0320437A (en) 1991-01-29

Similar Documents

Publication Publication Date Title
EP2297371B1 (en) Cubic boron nitride compact
JPH0621312B2 (en) Sintered body for high hardness tool and manufacturing method thereof
EP0386338B1 (en) Hard sintered body for tools
US5092920A (en) Sintered body for high-accuracy working tools
JP4065666B2 (en) High crater resistance High strength sintered body
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
JPS63145726A (en) Production of cubic boron nitride-base ultra-high pressure sintereo material for cutting tool
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JP5499717B2 (en) Sintered body and cutting tool using the sintered body
JPS644988B2 (en)
JP2502364B2 (en) High hardness sintered body for tools
JPS644989B2 (en)
JPH0742170B2 (en) Cubic boron nitride based sintered body
JPH075384B2 (en) Cubic boron nitride based sintered body
JP2502362B2 (en) High hardness sintered body for tools
JP2808725B2 (en) Sintered body for high hardness tools
JP2002029845A (en) Super-hard sintered compact
JPH03131573A (en) Sintered boron nitrode base having high-density phase and composite sintered material produced by using the same
JPS6335591B2 (en)
JPS6056783B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPH075382B2 (en) Cubic boron nitride-containing sintered body
JP2502363B2 (en) High hardness sintered body for tools
JPH0830239B2 (en) Sintered body for high hardness tool and manufacturing method thereof
JPS58113349A (en) Cubic system boron nitride-base material to be sintered under superhigh pressure for wear resistant cutting tool
JPS6330983B2 (en)