JPH01123643A - Method for selecting superconductive powder - Google Patents

Method for selecting superconductive powder

Info

Publication number
JPH01123643A
JPH01123643A JP62281205A JP28120587A JPH01123643A JP H01123643 A JPH01123643 A JP H01123643A JP 62281205 A JP62281205 A JP 62281205A JP 28120587 A JP28120587 A JP 28120587A JP H01123643 A JPH01123643 A JP H01123643A
Authority
JP
Japan
Prior art keywords
superconducting
powder
mesh
superconductive
superconducting powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62281205A
Other languages
Japanese (ja)
Inventor
Kenzo Ishibashi
謙三 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62281205A priority Critical patent/JPH01123643A/en
Publication of JPH01123643A publication Critical patent/JPH01123643A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/021Separation using Meissner effect, i.e. deflection of superconductive particles in a magnetic field

Abstract

PURPOSE:To select pure superconductive powder by passing the superconductive powder contg. ceramic non-superconductive powder through a superconductive mesh. CONSTITUTION:When the mixture 2 of ceramic non-superconductive powder and superconductive powder is fed onto the superconductive mesh 1, the superconductive powder 4 is passed through the mesh 1 and dropped. Conversely, the non-superconductive powder 3 is repelled by Meissner effect exhibited by the superconductive mesh 1, and levitated without passing through the mesh 1. Accordingly, when the superconductive mesh 1 is inclined and the mixed powder 2 is continuously supplied, only the superconductive powder 4 can be continuously selected and collected through a chute 6b.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セフミックス系の超電導粉体中に含まれた非
超電導粉体を取り除く、超電導粉体の選別方法である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a method for sorting superconducting powder, which removes non-superconducting powder contained in Cefmix-based superconducting powder.

従来の技術 従来の超電導材料としてはpbやNbなどのような金属
系のものがあった。最近発見されたYBaC!uo。
BACKGROUND OF THE INVENTION Conventional superconducting materials include metal-based materials such as PB and Nb. Recently discovered YBaC! Uo.

LaBaCuOやEuBaCuOなどのセラミクス系の
超電導材料は、その臨界温度が常温を上回るという報告
もちゃ、さまざまな応用が期待されている。
Ceramic superconducting materials such as LaBaCuO and EuBaCuO are expected to have a variety of applications, as it has been reported that their critical temperatures exceed room temperature.

特にこの種の超電導材料の粉体は、−次的な原料として
大きな需要が見込まれる。具体的な粉体の製法としては
、焼結したバルク材を粉砕して適当な粉体としたことが
考えられる。
In particular, this type of superconducting material powder is expected to be in great demand as a secondary raw material. As a specific method for producing powder, it is conceivable that a sintered bulk material is pulverized to obtain a suitable powder.

発明が解決しようとした問題点 しかしながら、セラミックス系の超電導材料では焼結後
のバlレク材は必ずしもすべてが超電導とはならず、一
部に非超電導材料も含まれているので、上記のような製
法では純砕な超電導粉体が得られないという問題点を有
していた。
Problems that the invention sought to solve However, in the case of ceramic-based superconducting materials, not all of the bulk material after sintering becomes superconducting, and some non-superconducting materials are also included. This manufacturing method has the problem that pure superconducting powder cannot be obtained.

本発明はかかる点に鑑み、超電導と非超電導とが混合し
た粉体から超電導粉体だけを選別して取り出す超電導粉
体の選別方法である。
In view of this, the present invention is a method for sorting superconducting powder, in which only superconducting powder is selected and extracted from a mixture of superconducting and non-superconducting powder.

問題点を解決するだめの手段 本発明は、超電導メツシュを使って、セラミクス系の超
電導粉体とその一部に含まれる非超電導粉体とを選別す
る超電導粉体の選別方法である。
Means for Solving the Problems The present invention is a superconducting powder sorting method that uses a superconducting mesh to separate ceramic-based superconducting powder from non-superconducting powder contained therein.

作  用 本発明は前記した方法により、本質的に弱磁性を示す非
超電導のセラミクス粉体が、超電導メツシュの示すマイ
ナス効果によって反発され、超電導の粉体だけが超電導
メツシュを通り、結果的に純砕な超電導粉体を選別でき
る。
According to the method described above, the non-superconducting ceramic powder, which is essentially weakly magnetic, is repelled by the negative effect of the superconducting mesh, and only the superconducting powder passes through the superconducting mesh, resulting in a pure state. Capable of sorting coarse superconducting powder.

実施例 第1図は本発明の第1の実施例における超電導粉体の選
別方法の原理図である。第1図において、1は超電導材
料で作った超電導メツシュ、2はセラミクス系の非超電
導粉体と超電導粉体の混合粉体である。これを超電導メ
ツシュ1上に投入すると、超電導粉体4はそのまま落下
してしまう。これに対して非超電導粉体3は超電導メツ
シュ1を通らず浮上する。すなわち、非超電導のセラミ
クス粉体そのものの持つ弱磁性に対して、超電導メツシ
ュ1がマイナス効果を表わし、非超電導粉体3に反作用
を及ぼす。この力が重力にうち勝って非超電導粉体3を
浮上させる。
Embodiment FIG. 1 is a principle diagram of a method for sorting superconducting powder in a first embodiment of the present invention. In FIG. 1, 1 is a superconducting mesh made of a superconducting material, and 2 is a mixed powder of ceramic-based non-superconducting powder and superconducting powder. When this is thrown onto the superconducting mesh 1, the superconducting powder 4 falls as it is. On the other hand, the non-superconducting powder 3 does not pass through the superconducting mesh 1 and floats. In other words, the superconducting mesh 1 has a negative effect on the weak magnetism of the non-superconducting ceramic powder itself, and has a negative effect on the non-superconducting powder 3. This force overcomes gravity and causes the non-superconducting powder 3 to float.

以上のように本実施例による方法によれば、超電導を示
す粉体だけを選別して得られる。
As described above, according to the method of this embodiment, only powder exhibiting superconductivity can be selected and obtained.

なお、本実施例では特に周囲温度を規定していないが、
周囲温度は、超電導メツシュあるいは超電導粉体の臨界
温度のいずれか小さい値より低ければよい。たとえば、
臨界温度がともに90’にであれば、この選別を液体窒
素中で実施すればよい。
Note that although the ambient temperature is not particularly specified in this example,
The ambient temperature need only be lower than the smaller of the critical temperature of the superconducting mesh or the superconducting powder. for example,
If both critical temperatures are 90', this selection may be performed in liquid nitrogen.

第2図は、本発明の第2の実施例における超電導粉体の
選別方法の原理図である。同図において超電導粉体、非
超電導粉体、およびその混合粉体そして超電導メツシュ
の番号は、第1図のものと同じとした。第1の実施例と
異なる点は、連続的に選別できる点である。すなわち、
投入口6に混合体2を投入すると、傾斜させた超電導メ
ツシュ上に混合体2が連続して供給できる。。非超電導
粉体3は超電導メツシュの反作用によって浮上しながら
受は口6aを通って集められる。一方、超電導体4は超
電導メツシュ1をくぐり抜けて受は口6bを通して集め
ることができる。
FIG. 2 is a principle diagram of a method for sorting superconducting powder in a second embodiment of the present invention. In the same figure, the numbers of superconducting powder, non-superconducting powder, mixed powder thereof, and superconducting mesh are the same as those in FIG. 1. The difference from the first embodiment is that continuous selection is possible. That is,
When the mixture 2 is introduced into the input port 6, the mixture 2 can be continuously supplied onto the inclined superconducting mesh. . The non-superconducting powder 3 floats up due to the reaction of the superconducting mesh and is collected through the opening 6a. On the other hand, the superconductor 4 passes through the superconducting mesh 1 and can be collected through the opening 6b.

以上のように本実施例によれば、超電導粉体を連続的に
選別、収集できる。
As described above, according to this embodiment, superconducting powder can be continuously sorted and collected.

第3図は、本発明の第3の実施例における超電導粉体の
選別方法を示す原理図である。この実施例は、混合粉体
2に入っている非超電導粉体3と、臨界温度の低い低温
超電導粉体4aと、臨界温度の高い高温超電導粉体4b
とをそれぞれ選別する方法である。第1および第2の実
施例と同じ原理を用いて選別する。まず、混合粉体2を
投入口6に投入する。混合粉体2は、超電導メツシュ1
a上に流す。ここは、低温雰囲気TLすなわち低温とし
ておき、非超電導粉体3だけを受は口6aから取り出す
。低温超電導粉体4aと高温超電導粉体4bは超電導メ
ツシュ1aの穴を通って超電導メツシュ1b上に落下す
る。超電導メツシュ1b上は高温雰囲気THとしである
ので、低温超電導体4aは超電導状態を示さず、非超電
導粉体と同じふるまいをして、受は口6bに落ちる。高
温超電導粉体4bは受は口6Cから得られる。
FIG. 3 is a principle diagram showing a method for sorting superconducting powder in a third embodiment of the present invention. This embodiment consists of a non-superconducting powder 3 contained in a mixed powder 2, a low-temperature superconducting powder 4a with a low critical temperature, and a high-temperature superconducting powder 4b with a high critical temperature.
This is a method of selecting each. Sorting is performed using the same principle as in the first and second embodiments. First, the mixed powder 2 is charged into the input port 6. Mixed powder 2 is superconducting mesh 1
Flow onto a. Here, a low temperature atmosphere TL is maintained, that is, a low temperature, and only the non-superconducting powder 3 is taken out from the receiving port 6a. The low temperature superconducting powder 4a and the high temperature superconducting powder 4b pass through the holes in the superconducting mesh 1a and fall onto the superconducting mesh 1b. Since there is a high temperature atmosphere TH above the superconducting mesh 1b, the low temperature superconductor 4a does not exhibit a superconducting state and behaves the same as a non-superconducting powder, and the receiver falls into the opening 6b. The high temperature superconducting powder 4b is obtained from the receiving port 6C.

以上のように本実施例によれば、超電導粉体を臨界温度
ごとに選別できる。なお、本実施例では臨界温度を高温
と低温との2つだけに分けたが、超電導メツシュを何層
にも配して雰囲気の温度を細かく分類することによって
、臨界温度を細分化した超電導粉体が得られる。
As described above, according to this embodiment, superconducting powder can be sorted by critical temperature. In this example, the critical temperature was divided into only two, high temperature and low temperature. You get a body.

第4図は、本発明の第4の実施例における超電導粉体の
選別方法を示す原理図である。第1〜第3の実施例では
、非超電導粉体の分離に、非超電導粉体の示す弱磁性と
超電導メツシュのマイナス果で生れる浮上刃と、超電導
粉体の重力との差を利用していたので、重力が浮上刃を
上回わる場合には超電導粉体に非超電導粉体が混ざるこ
とがありうる。本実施例は、この重力を排除する選別方
法である。第4図において、7は電磁石で、鉛直方向に
配置(重力の方向)し、磁界を超電導メツシュ1にほぼ
垂直にかける。8と9は遮へい板で、たとえばガラスの
ような非磁性体を用いる。
FIG. 4 is a principle diagram showing a method for sorting superconducting powder in a fourth embodiment of the present invention. In the first to third embodiments, the difference between the weak magnetism of the non-superconducting powder and the levitation blade produced by the negative effect of the superconducting mesh and the gravity of the superconducting powder is used to separate the non-superconducting powder. Therefore, if the gravity exceeds the floating blade, non-superconducting powder may be mixed with superconducting powder. This embodiment is a sorting method that eliminates this gravity. In FIG. 4, an electromagnet 7 is arranged vertically (in the direction of gravity) and applies a magnetic field almost perpendicularly to the superconducting mesh 1. 8 and 9 are shielding plates made of a non-magnetic material such as glass.

ここで混合粉体2を遮へい板8と超電導メツシュ1の間
に投入すると、非超電導粉体3は電磁石に引き寄せられ
て、遮へい板に沿って受は口6aに落ちる。一方、超電
導粉体4は電磁石70発生する磁界に対して反発する(
マイスナ効果)。こうして超電導粉体4は超電導メツシ
ュ1を通り遮へい板9に沿って受は口6bに落ちる。
When the mixed powder 2 is placed between the shielding plate 8 and the superconducting mesh 1, the non-superconducting powder 3 is attracted by the electromagnet and falls along the shielding plate into the opening 6a. On the other hand, the superconducting powder 4 repels the magnetic field generated by the electromagnet 70 (
Meisuna effect). In this way, the superconducting powder 4 passes through the superconducting mesh 1 and falls along the shielding plate 9 into the opening 6b.

なおこの選別方式では、超電導メツシュ1は、混合粉体
中に含まれる。可能性のある不純物11すなわち非超電
導部を含む超電導体を通さないように働く。このような
不純物10はその非超電導部分の割合が少ないと電磁石
7の反発力の方が強くなり、超電導メツシュ1側に動く
が、非超電導部分が少しでもあると超電導メッ7ュ1の
マイスナ効果によって遮へい板9側には通り抜けられな
い。
In this sorting method, the superconducting mesh 1 is contained in the mixed powder. It acts to prevent the passage of possible impurities 11, ie superconductors containing non-superconducting parts. If such an impurity 10 has a small proportion of its non-superconducting portion, the repulsive force of the electromagnet 7 will be stronger and it will move toward the superconducting mesh 1, but if there is even a small amount of non-superconducting portion, the Meissner effect of the superconducting mesh 7 will occur. Therefore, it cannot pass through to the shielding plate 9 side.

以上のように本実施例によれば、全体が超電導を示す粉
体だけを選別して得ることができる。
As described above, according to this embodiment, only powder exhibiting superconductivity as a whole can be selected and obtained.

なお、粉体の一粒の中に多少の非超電導部分があっても
よければ、超電導メツシュを取り除くことができる。こ
の場合は落下距離や電磁石7の磁界の強さを変えること
によって、−粉の中で超電導部分の割合が異なる粉体を
分類して採集することもできる。
Note that the superconducting mesh can be removed if it is acceptable for some non-superconducting portions to exist in one grain of powder. In this case, by changing the falling distance and the strength of the magnetic field of the electromagnet 7, it is also possible to classify and collect powders with different proportions of superconducting parts among the powders.

発明の詳細 な説明したように、本発明によれば、セラミクス系で非
超電導を含む超電導粉体から純砕あるいは部分的に超電
導を示す粉体を選別して収集することができる、
As described in detail, according to the present invention, pure crushed or partially superconducting powder can be selected and collected from ceramic-based superconducting powder including non-superconducting powder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における第1の実施例の原理を示す原理
図、第2図は本発明における第2の実施例の原理図、第
3図は本発明における第3の実施例の原理図、第4図は
本発明における第4の実施例の原理図である。 1・・・・・・超電導メツシュ、2・・・・・・混合粉
体、3・・・・・・非超電導粉体、4・・・・・・超電
導粉体、7・・・・・・電磁石。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 82図 第 311A 第4図
Fig. 1 is a principle diagram showing the principle of the first embodiment of the present invention, Fig. 2 is a principle diagram of the second embodiment of the present invention, and Fig. 3 is a principle diagram of the third embodiment of the present invention. , FIG. 4 is a principle diagram of a fourth embodiment of the present invention. 1... Superconducting mesh, 2... Mixed powder, 3... Non-superconducting powder, 4... Superconducting powder, 7... ·electromagnet. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 82 Figure 311A Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)超電導メッシュを使って、セラミックス系の超電
導粉体とその一部に含まれる非超電導粉体とを選別する
ことを特徴とした超電導粉体の選別方法。
(1) A method for sorting superconducting powder, which uses a superconducting mesh to separate ceramic-based superconducting powder from non-superconducting powder contained therein.
(2)超電導メッシュに対してほぼ垂直方向に磁界をか
ける磁界発生器を前記超電導メッシュと併用することを
特徴とした特許請求の範囲第1項記載の超電導粉体の選
別方法。
(2) The method for sorting superconducting powder according to claim 1, characterized in that a magnetic field generator that applies a magnetic field in a substantially perpendicular direction to the superconducting mesh is used together with the superconducting mesh.
JP62281205A 1987-11-06 1987-11-06 Method for selecting superconductive powder Pending JPH01123643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62281205A JPH01123643A (en) 1987-11-06 1987-11-06 Method for selecting superconductive powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281205A JPH01123643A (en) 1987-11-06 1987-11-06 Method for selecting superconductive powder

Publications (1)

Publication Number Publication Date
JPH01123643A true JPH01123643A (en) 1989-05-16

Family

ID=17635820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281205A Pending JPH01123643A (en) 1987-11-06 1987-11-06 Method for selecting superconductive powder

Country Status (1)

Country Link
JP (1) JPH01123643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026681A (en) * 1989-03-21 1991-06-25 International Superconductor Corp. Diamagnetic colloid pumps
US5049540A (en) * 1987-11-05 1991-09-17 Idaho Research Foundation Method and means for separating and classifying superconductive particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049540A (en) * 1987-11-05 1991-09-17 Idaho Research Foundation Method and means for separating and classifying superconductive particles
US5026681A (en) * 1989-03-21 1991-06-25 International Superconductor Corp. Diamagnetic colloid pumps

Similar Documents

Publication Publication Date Title
Clogston Upper limit for the critical field in hard superconductors
Anderson et al. Superconductivity theories narrow down
Tokiwa-Yamamoto et al. Composition, crystal structure and superconducting properties of Hg Ba Cu O and Hg Ba Ca Cu O superconductors
EP0660423A2 (en) Superconductor and method of producing same
US4828685A (en) Method and apparatus for the enhancement of superconductive materials
JPH01123643A (en) Method for selecting superconductive powder
JPH0312940B2 (en)
US6281171B1 (en) MG-doped high-temperature superconductor having the superconducting anisotropy and method for producing the superconductor
EP0320083B1 (en) Purification apparatus for superconductor fine particles
EP0564279B1 (en) Rare earth superconducting body and process for production thereof
Nies et al. Glass-bonded composites containing superconducting YBa2Cu3O9− y for levitation and magnetic shielding applications
EP0317643B1 (en) Method of producing oxide superconductor
JPH01119352A (en) Method for separating superconductor
JPH01258753A (en) Method and device for selecting superconducting particles
US5378682A (en) Dense superconducting bodies with preferred orientation
JPH01304060A (en) Separation method and device for superconductive powder
JPH01210044A (en) Apparatus for separating superconductive powder
JPH0446883B2 (en)
Rao High-temperature ceramic oxide superconductors
JPH01194951A (en) Method for separating superconductive substance
Oba et al. Magnetic Separation of High-T c Superconducting Particles
JPH01107856A (en) Separation and recovery of superconductive material
JP2966119B2 (en) Manufacturing method of oxide superconductor
Fleury Superconductivity above the temperature of liquid nitrogen
Lee Magnetic Properties of YBCO Superconducting Bulk