JP2636258B2 - Manufacturing method of superconducting material - Google Patents

Manufacturing method of superconducting material

Info

Publication number
JP2636258B2
JP2636258B2 JP62226884A JP22688487A JP2636258B2 JP 2636258 B2 JP2636258 B2 JP 2636258B2 JP 62226884 A JP62226884 A JP 62226884A JP 22688487 A JP22688487 A JP 22688487A JP 2636258 B2 JP2636258 B2 JP 2636258B2
Authority
JP
Japan
Prior art keywords
powder
magnetic field
superconductor
superconducting material
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62226884A
Other languages
Japanese (ja)
Other versions
JPS6469584A (en
Inventor
栄治 名取
健一 遠藤
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62226884A priority Critical patent/JP2636258B2/en
Publication of JPS6469584A publication Critical patent/JPS6469584A/en
Application granted granted Critical
Publication of JP2636258B2 publication Critical patent/JP2636258B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はジョセフソン素子、超電導モーター、超電導
マグネット等に用いる超電導材料の製造方法に関する。
The present invention relates to a method for manufacturing a superconducting material used for a Josephson element, a superconducting motor, a superconducting magnet, and the like.

〔従来の技術〕[Conventional technology]

従来、臨界温度の高い超電導材料にはZeitschrft f
r Pysik B,vol.64,p189−193とPhysical Review Letter
s,vol.58,No.9,p908−910に述べられている様にIBMのJ,
George BednorzとK.Alexander Mllerが発見したBa−L
a−Cu−O系セラミックとHouston大学のC.W.Chuらが発
見したBa−Y−Cu−O系セラミックがあり、これらは粉
末法或は共沈法により原料を調合した後還元雰囲気或は
酸素雰囲気中に於て焼成、次にプレス成形、次に焼結を
行い製造されていた。
Conventionally, Zeitschrft f
r Pysik B, vol. 64, p189-193 and Physical Review Letter
s, vol. 58, No. 9, p908-910, IBM J,
Ba-L discovered by George Bednorz and K. Alexander Mller
There are a-Cu-O-based ceramics and Ba-Y-Cu-O-based ceramics discovered by CWChu et al. of the University of Houston. , Followed by press molding and then sintering.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら従来の超電導材料の製造方法では結晶方
向の制御が出来ないため臨界電流密度はAppl.Phys.Let
t.Vol.50 No20 pllo4 1987とJapanese Journal of Ap
plied Physics Vol.26 No.5PPL863に述べられている様
に液体ヘリュウム(Ba−La−Cu−O系)或は液体窒素
(Ba−Y−Cu−O系)冷却で2000A/cm2以下と大変低い
ものであった。そのため応用範囲が非常に限られたもの
になっていた。
However, the critical current density is limited by Appl. Phys.
t.Vol.50 No20 pllo4 1987 and Japanese Journal of Ap
As described in plied Physics Vol.26 No.5PPL863, liquid helium (Ba-La-Cu-O system) or liquid nitrogen (Ba-Y-Cu-O system) cooling is as low as 2000 A / cm 2 or less. It was low. Therefore, the range of application was very limited.

本発明はこの様な問題を解決するものであり、その目
的とするところは臨界電流密度が高く応用範囲の限定の
少ない超電導材料を得んとするものである。
The present invention solves such a problem, and an object thereof is to obtain a superconducting material having a high critical current density and a limited application range.

〔問題点を解決するための手段〕[Means for solving the problem]

上記の問題を解決するため、本発明の超電導材料の製
造方法は、超電導体粉末に、配向磁場をその磁極が1回
以上、好ましくは複数回反転するように印加する工程
と、前記超電導体粉末を成形して成形物を得る工程と、
前記成形物を焼結する工程とを有する超電導材料の製造
方法であって、前記超電導体粉末の成形は、前記超電導
体粉末をその臨界温度以下の温度に維持しつつ、配向磁
場を印加しながら行うことを特徴とする。
In order to solve the above-mentioned problems, a method for producing a superconducting material according to the present invention includes a step of applying an orientation magnetic field to a superconductor powder such that its magnetic pole is inverted one or more times, preferably a plurality of times. Molding to obtain a molded product;
And sintering the molded article, wherein the molding of the superconductor powder is performed while applying an orientation magnetic field while maintaining the superconductor powder at a temperature equal to or lower than its critical temperature. It is characterized by performing.

〔実施例〕〔Example〕

以下実施例に従い本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to Examples.

実施例−1 最初にY(No3・6H2O,Ba(CH3COO)2,Cu(CH3CO
O)・H2Oを純水に入れ撹はん分散させる。Y、Ba、Cuの
割合は1:2:3である。次にこの液体をドライスプレー法
により乾燥させると同時に燃焼させ粉末を得る。次にこ
の粉末を900℃、酸素雰囲気中に於て8時間焼成する。
焼成後の冷却は、20℃〜50℃/H程度の除冷である。この
焼成後の粉末のX線回析分析を行ったところY2O3の様な
単純酸化物はほとんど検出されず均一な超電導体粉末で
あった。またこの超電導粉末の臨界温度は90Kであっ
た。次にこの粉末をトリクロロモノフルオロエタン(ダ
イフロン)の中に於てボールミルにより粉砕し超電導体
微粉末を得る。この時の粒径は約0.1〜2μmである。
Example -1 first Y (No 3) 3 · 6H 2 O, Ba (CH 3 COO) 2, Cu (CH 3 CO
O) ・ H 2 O is put into pure water and stirred and dispersed. The ratio of Y, Ba, and Cu is 1: 2: 3. Next, the liquid is dried by a dry spray method and simultaneously burned to obtain a powder. Next, this powder is fired at 900 ° C. in an oxygen atmosphere for 8 hours.
Cooling after firing is cooling at about 20 ° C. to 50 ° C./H. X-ray diffraction analysis of the fired powder showed that simple oxides such as Y 2 O 3 were hardly detected, and the powder was uniform. The critical temperature of this superconducting powder was 90K. Next, this powder is pulverized in a trichloromonofluoroethane (Diflon) by a ball mill to obtain a superconductor fine powder. The particle size at this time is about 0.1 to 2 μm.

次にこの粉末を液体窒素(77K)により冷却し且つ1.5
T(150000e)の磁場を印加した金型に封入する。この時
マイスナー効果により完全反磁性になっている超電導体
粉末は印加磁場により配向せしめられる。そのため封入
は粉末間で干渉しない程度の空間を必要とし、また印加
磁場は、その磁極を1回以上反転させてもよい77Kに於
ける臨界磁場より少なくする必要がある。(臨界磁場を
超えると磁気モーメントを有する粉末以外は配向しな
い。)次に、超電導体粉末の温度77Kと前記磁場とを維
持した状態で、プレス成形機により圧縮、成形した。そ
の後、得られた成形物を850℃、酸素雰囲気中に於て5
時間焼結、20℃/Hの速度で冷却し超電導材料を得る。
The powder is then cooled with liquid nitrogen (77K) and 1.5
It is sealed in a mold to which a magnetic field of T (150000e) is applied. At this time, the superconductor powder which is completely diamagnetic due to the Meissner effect is oriented by the applied magnetic field. For this reason, the encapsulation requires a space that does not cause interference between the powders, and the applied magnetic field needs to be smaller than the critical magnetic field at 77 K at which the magnetic pole may be inverted one or more times. (If the magnetic field exceeds the critical magnetic field, the powder other than the powder having a magnetic moment will not be oriented.) Next, while maintaining the temperature of the superconductor powder at 77 K and the magnetic field, the powder was compressed and molded by a press molding machine. Then, the obtained molded product was placed at 850 ° C. in an oxygen atmosphere for 5 minutes.
Time sintering and cooling at a rate of 20 ° C / H to obtain a superconducting material.

実施例−2 Dy(No3・6H2O,So(NO33,Ba(CH3COO)2,Cu(C
H3COO),H2Oを用いて実施例−1と同様の方法により超
電導体粉末を作る。この時のDy、Sc、Ba、Cuの割合は0.
8:0.2:2.3である。次にこの粉末に0.5wt%のステアリン
酸亜鉛を加え混合分散した後、この混合物を液体窒素の
(77K)により冷却し且つ1.5T(150000e)の磁場を印加
した金型に封入する。封入後、5回磁極を反転させた
後、超電導体粉末の温度77kと前記磁場とを維持した状
態でプレス成形機により圧縮、成形する。ここでステア
リン酸亜鉛を加えるのと磁極の反転を繰り返すのは粉末
の回転を良くし配向度を高くするためである。
Example -2 Dy (No 3) 3 · 6H 2 O, So (NO 3) 3, Ba (CH 3 COO) 2, Cu (C
Using H 3 COO) and H 2 O, a superconductor powder is prepared in the same manner as in Example-1. The ratio of Dy, Sc, Ba, Cu at this time is 0.
8: 0.2: 2.3. Next, 0.5 wt% of zinc stearate is added to the powder and mixed and dispersed. The mixture is cooled by liquid nitrogen (77 K) and sealed in a mold to which a magnetic field of 1.5 T (150,000 e) is applied. After encapsulation, the magnetic poles are inverted five times, and then compressed and molded by a press molding machine while maintaining the temperature of the superconductor powder at 77 k and the magnetic field. The reason why the addition of zinc stearate and the reversal of the magnetic pole are repeated is to improve the rotation of the powder and increase the degree of orientation.

次にこの成形物を850℃、真空中(2*10−2Torr)に
於て5時間焼結、520℃酸素雰囲気中に於て5時間アニ
ールし超電導材料を得る。焼結とアニール時の冷却速度
は20℃/Hである。ここで真空中に於て焼結を行うのは不
純物つまり滑材として用いたステアリン酸亜鉛の熱分解
物を取り除くためである。また真空中焼結では還元され
超電導特性が劣化するため酸素雰囲気中に於てアニール
する。実施例−1と実施例−2の超電導材料の臨界電流
密度と臨界温度を測定した結果をそれぞれ第1表と第2
表に成形時に磁場を印加しない従来例と共に示した。
(尚測定は液体窒素冷却、即ち77Kにおけるものであ
る。) 表より判るよう本発明の製造方法による超電導材料は
従来の製造方法による超電導材料より1桁以上、臨界電
流密度は高くなっている。中でも滑材、磁極の反転を用
いた実施例−2の向上は大きい。また僅かではあるが臨
界温度の向上もみられる。
Next, this molded product 850 ° C., 5 h sintered At a vacuum (2 * 10- 2 Torr), to obtain a 5 hour annealing superconducting material At a during 520 ° C. oxygen atmosphere. The cooling rate during sintering and annealing is 20 ° C / H. Here, the sintering in a vacuum is performed to remove impurities, that is, thermal decomposition products of zinc stearate used as a lubricant. Further, in the sintering in a vacuum, annealing is performed in an oxygen atmosphere because the superconducting characteristics are reduced by reduction. Tables 1 and 2 show the results of measuring the critical current density and the critical temperature of the superconducting materials of Example-1 and Example-2, respectively.
The table is shown together with a conventional example in which no magnetic field is applied during molding.
(Note that the measurements are liquid nitrogen cooled, ie at 77K.) As can be seen from the table, the superconducting material according to the manufacturing method of the present invention has a critical current density higher by one digit or more than the superconducting material according to the conventional manufacturing method. Above all, the improvement of the embodiment-2 using the sliding material and the reversal of the magnetic pole is great. A slight increase in the critical temperature is also observed.

尚実施例では超電導体粉末に酸化物セラミック系を用
いたが結晶方向と粉末の形状に相関を持つものやマイス
ナー効果に異方性を持つ超電導体粉末であれば良く又成
形法にプレス法を用いたが押し出し法、圧延法等を用い
ても、何等差し支えない。
In this example, an oxide ceramic was used as the superconductor powder. However, any superconductor powder having a correlation between the crystal direction and the shape of the powder or a superconductor powder having anisotropy in the Meissner effect may be used. Although an extrusion method, a rolling method, or the like is used, there is no problem.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば超電導材料の結晶方
向を精密に制御し、配向度を高めることができるので、
臨界電流密度を大幅に向上することが可能となる。その
ため超電導体の応用範囲の制約は少なくなる。
As described above, according to the present invention, the crystal direction of the superconducting material can be precisely controlled and the degree of orientation can be increased.
The critical current density can be greatly improved. Therefore, the restriction on the application range of the superconductor is reduced.

フロントページの続き (56)参考文献 特開 昭64−48322(JP,A) 特開 昭64−56358(JP,A) 特開 昭64−28264(JP,A)Continuation of front page (56) References JP-A-64-48322 (JP, A) JP-A-64-56358 (JP, A) JP-A-64-28264 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超電導体粉末に、配向磁場をその磁極が1
回以上反転するように印加する工程と、 前記超電導体粉末を成形して成形物を得る工程と、 前記成形物を焼結する工程とを有する超電導材料の製造
方法であって、 前記超電導体粉末の成形は、前記超電導体粉末をその臨
界温度以下の温度に維持しつつ、配向磁場を印加しなが
ら行うことを特徴とする超電導材料の製造方法。
1. An orientation magnetic field is applied to a superconductor powder with a magnetic pole of 1
A step of applying the material so as to be inverted more than once, a step of molding the superconductor powder to obtain a molded product, and a step of sintering the molded product. Forming a superconducting powder while applying an orientation magnetic field while maintaining the superconductor powder at a temperature equal to or lower than its critical temperature.
JP62226884A 1987-09-10 1987-09-10 Manufacturing method of superconducting material Expired - Lifetime JP2636258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62226884A JP2636258B2 (en) 1987-09-10 1987-09-10 Manufacturing method of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62226884A JP2636258B2 (en) 1987-09-10 1987-09-10 Manufacturing method of superconducting material

Publications (2)

Publication Number Publication Date
JPS6469584A JPS6469584A (en) 1989-03-15
JP2636258B2 true JP2636258B2 (en) 1997-07-30

Family

ID=16852091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62226884A Expired - Lifetime JP2636258B2 (en) 1987-09-10 1987-09-10 Manufacturing method of superconducting material

Country Status (1)

Country Link
JP (1) JP2636258B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180744A (en) * 1988-12-29 1990-07-13 Sumitomo Heavy Ind Ltd Production of oxide superconductor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428264A (en) * 1987-07-21 1989-01-30 Sumitomo Electric Industries Production of superconducting material
JPS6448322A (en) * 1987-08-17 1989-02-22 Asahi Chemical Ind Manufacture of high orientation superconductor
JPS6456358A (en) * 1987-08-27 1989-03-03 Furukawa Electric Co Ltd Production of molded oxide superconductor

Also Published As

Publication number Publication date
JPS6469584A (en) 1989-03-15

Similar Documents

Publication Publication Date Title
JP2839415B2 (en) Method for producing rare earth superconducting composition
JP2636258B2 (en) Manufacturing method of superconducting material
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
US5100869A (en) Process for producing metal oxide-type superconductive material
JP2625280B2 (en) Manufacturing method of oxide superconducting material
US5244868A (en) Method of making high Tc superconductor material, and article produced by the method
EP0430568B1 (en) Method of making high Tc superconductor material, and article produced by the method
JPH013061A (en) Method for manufacturing superconducting materials
EP0362694B1 (en) Method of producing oxide superconducting wire
JP3889822B2 (en) Manufacturing method of oxide superconducting material
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH0737442A (en) Oxide superconductor and preparation of superconductor thereof
JP2980650B2 (en) Method for producing rare earth oxide superconductor
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
MATSUDA et al. Densification of superconducting Ba2YCu4O8 ceramics by two-stage sintering
JP2821568B2 (en) Method for producing superconducting whisker composite
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JPH01108144A (en) Superconducting material
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JPH01103406A (en) Manufacture of superconducting material
JPH01242416A (en) Production of oxide-based superconducting material
JPH05279027A (en) Rare-earth superconductor
JPH02124758A (en) Production of oxide superconductor
JPS63295471A (en) Production of oxide superconducting material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11