JPH01115897A - Production of magnesium fluoride single crystal - Google Patents

Production of magnesium fluoride single crystal

Info

Publication number
JPH01115897A
JPH01115897A JP27331187A JP27331187A JPH01115897A JP H01115897 A JPH01115897 A JP H01115897A JP 27331187 A JP27331187 A JP 27331187A JP 27331187 A JP27331187 A JP 27331187A JP H01115897 A JPH01115897 A JP H01115897A
Authority
JP
Japan
Prior art keywords
single crystal
raw material
crucible
purity
magnesium fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27331187A
Other languages
Japanese (ja)
Inventor
Kazuhiko Motoba
和彦 元場
Ryoichi Ono
大野 良一
Seiji Sogo
十河 清二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP27331187A priority Critical patent/JPH01115897A/en
Publication of JPH01115897A publication Critical patent/JPH01115897A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the titled single crystal, useful as optical parts for high- output laser and having excellent light transmission properties within the ultraviolet infrared regions, by filling a raw material in a crucible made of glassy carbon, sealing the crucible in a quartz tube in a high-purity Ar atmosphere and repeating treatment of the raw material by vertical type zone refining. CONSTITUTION:Raw material MgF2 particles are filled in a crucible made of glassy carbon and then a cap made of graphite is attached. The resultant crucible is then sealed in a quartz ampul tube in a high-purity Ar atmosphere. The raw material MgF2 is subsequently melted while lowering the obtained quartz ampul tube in a vertical heating furnace having a temperature gradient near the melting point increased to >=18 deg.C/cm at 1,250-1,350 deg.C at a constant speed of, e.g. <=100-300mm/hr, to melt the raw material MgF2. The zone refining is repeated >=4 times at <=10mm/hr melting zone moving speed to take out an ingot. The resultant colorless and transparent purified ingot part is cut and ground to afford the titled single crystal at a high single crystal formation ratio.

Description

【発明の詳細な説明】 見匪二致亙分互 本発明は、フッ化マグネシウム(以下MgF2と記す、
)単結晶の製造方法に関するものである。
[Detailed Description of the Invention] The present invention relates to magnesium fluoride (hereinafter referred to as MgF2),
) This relates to a method for producing a single crystal.

来  とその−占 MgF、は波長0.1μmの真空紫外領域から波長7.
5μ慣の赤外領域にかけての光線の透過性能が良好なた
め、レーザー用の窓材、及びレンズのコーティング材、
赤外線機器用窓材等に使用される。特に、レーザー用の
光学部品として、最近のレーザーの出力増大に伴い、そ
の高品質化、高純度化が要求されてきつつある。
This and its MgF range from the vacuum ultraviolet region with a wavelength of 0.1 μm to 7.5 μm.
Due to its good transmission performance for light in the 5μ infrared region, it is used as a window material for lasers, a coating material for lenses,
Used for window materials for infrared equipment, etc. In particular, as optical parts for lasers, higher quality and higher purity are being required as the output of lasers increases recently.

光学部品用MgF、の製造方法としては、原料粉末をホ
ットプレス等により高密度化して多結晶体を得る方法と
、ブリッジマン法等により融液がら結晶を成長させ単結
晶を得る方法がある。
Methods for producing MgF for optical components include a method in which a raw material powder is densified by hot pressing or the like to obtain a polycrystalline body, and a method in which a crystal is grown from a melt by the Bridgman method or the like to obtain a single crystal.

多結晶のものは、大型寸法が要求される分野でよく使用
されるが、単結晶に比べて紫外領域での光透過性が著し
く劣り、また可視から赤外にかけての領域でも約lOχ
光透過率が低い。
Polycrystalline materials are often used in fields where large dimensions are required, but compared to single crystals, their optical transparency in the ultraviolet region is significantly inferior, and even in the visible to infrared region, their optical transparency is approximately 1Oχ
Light transmittance is low.

単結晶のものは、光学的に高度な品質が要求される分野
で使用されるが、原料として光学用純度(3N)のもの
を用いる場合でも真空昇華法や乾燥HF気流中での加熱
処理等により精製してから単結晶化させないと光散乱の
少ない良質の単結晶が得られない。以上の問題点を解決
すべく鋭意検討した結果、本発明者等は以下の発明をな
した。
Single crystals are used in fields that require high optical quality, but even when using optically pure (3N) materials as raw materials, they cannot be processed using vacuum sublimation, heat treatment in a dry HF stream, etc. A high-quality single crystal with low light scattering cannot be obtained unless it is purified and then single crystallized. As a result of intensive studies to solve the above problems, the present inventors have made the following invention.

見1度1弐 本発明は、融点付近の温度勾配が大きいたて型ゾーンリ
ファイニングで処理を繰り返すことを特徴とする高純度
フッ化マグネシウム単結晶の製造方法に関する。又、上
記発明の実施態様として、以下の発明を提供する。
The present invention relates to a method for producing a high-purity magnesium fluoride single crystal, which is characterized by repeating the process in a vertical zone refining process with a large temperature gradient near the melting point. Furthermore, the following invention is provided as an embodiment of the above invention.

融帯移動速度が10mm/h以下であることを特徴とす
る前記高純度フッ化マグネシウム単結晶の製造方法、融
点付近の温度勾配が18℃/cffi以上であることを
特徴とする前記高純度フッ化マグネシウム単結晶の製造
方法及び原料をグラッシーカーボン製るつぼに充填し、
これを石英管に高純度アルゴン雰囲気にて封入すること
を特徴とする前記高純度フッ化マグネシウム単結晶の製
造方法である。
The method for producing the high-purity magnesium fluoride single crystal, characterized in that the melting zone movement speed is 10 mm/h or less; Method for manufacturing magnesium chloride single crystal and filling raw materials into a glassy carbon crucible,
The method for producing the high-purity magnesium fluoride single crystal is characterized in that it is sealed in a quartz tube in a high-purity argon atmosphere.

発1!υU幻寛履朋− 以下1本発明の内容を詳細に述べる。Release 1! υU Genkanariho- The contents of the present invention will be described in detail below.

原料MgF、は純度4N級以上であり粉末でも塊でも良
い。これを表面がガラス状で緻密なグラッシーカーボン
製るつぼに充填することが好ましい。るつぼは、一般の
黒鉛製るつぼを使用すると、炭素が混入してくるため良
質の結晶が得られない。また、石英管に直接入れると、
石英とMgF、が反応してしまう、原料を充填したるつ
ぼは、外部からの不純物の混入を避けるために高純度ア
ルゴン雰囲気で第1図のごとく石英管に封入する。グラ
ッシーカーボン製るつぼが直接石英管に接触して反応す
るのを防ぐために黒鉛性キャップを使用する。
The raw material MgF has a purity of 4N class or higher and may be in the form of powder or lump. It is preferable to fill this into a crucible made of glassy carbon whose surface is glassy and dense. If a normal graphite crucible is used, it will not be possible to obtain high-quality crystals because carbon will be mixed in. Also, if you put it directly into a quartz tube,
The crucible filled with raw materials, in which quartz and MgF react, is sealed in a quartz tube in a high-purity argon atmosphere as shown in Figure 1 to avoid contamination with external impurities. A graphite cap is used to prevent the glassy carbon crucible from directly contacting and reacting with the quartz tube.

石英管は、MgF、の融点(1255℃)付近では軟化
するため、内部の気圧が高温時に大気圧と平衡になるよ
うに設定し、石英管が変形するのを防いである。
Since the quartz tube softens near the melting point of MgF (1255° C.), the internal pressure is set to be in equilibrium with the atmospheric pressure at high temperatures to prevent the quartz tube from deforming.

例えば第1図に示した石英管を加熱炉に投入する。加熱
炉は縦型が用いられる。通常のゾーンリファイニングと
異なりたて型でありブリッジマン法とごとく全体を溶融
しないがブリッジマン法に似た結晶成長が起こり、単結
晶化が促進されるからである。このような加熱炉を使っ
てゾーンリファイニング処理を繰り返した。炉内温度分
布の一例を第3図に示す。ゾーンリファイニングを開始
する前に一定のスピード例えば100〜300mm/h
でるつぼを降下させ原料MgFtを融解させ円柱状に固
める。ゾーンリファイニング開始時には、るつぼの先端
は第2図のごとくヒーターの中央に位置している。炉内
温度が1250〜1350”Cの所定の値に達した後、
10mm八以下へ速度で石英管を原料充填量に応じて適
切な時間下降させる。下降が終了した後、炉内を常温ま
で冷却してからるつぼを引き上げ再びゾーンリファイニ
ングを行う、ゾーンリファイニングを4回以上繰り返し
た後、インゴットを取り出す。回数が多いほど純度も高
くなり単結晶化の率が高まるからである。このように原
料をるつぼ内に仕込んでから取り出すまで、外部からの
不純物の混入をまったく受けること無く精製することが
できる。得られたMgF、インゴットの精製部は無色透
明であり、He−Neレーザービーム(波長632゜8
rv+、出力1mmW、ビーム径0.8mm)をあてて
も散乱がまったく無いため、結晶内では、光線の光路が
見えなくなった。MgF、インゴットの精製部をカット
、研磨し、板材に加工され、高出力レーザー用等の光学
部品に用いられる。
For example, the quartz tube shown in FIG. 1 is placed in a heating furnace. A vertical heating furnace is used. This is because, unlike normal zone refining, it is vertical and does not melt the entire body like the Bridgman method, but crystal growth similar to the Bridgman method occurs and single crystallization is promoted. The zone refining process was repeated using such a heating furnace. An example of the temperature distribution in the furnace is shown in Fig. 3. A certain speed e.g. 100-300 mm/h before starting zone refining
The crucible is lowered and the raw material MgFt is melted and solidified into a cylindrical shape. At the start of zone refining, the tip of the crucible is located at the center of the heater as shown in FIG. After the furnace temperature reaches a predetermined value of 1250-1350"C,
The quartz tube is lowered at a speed of 10 mm or less for an appropriate time depending on the amount of raw material filled. After the descent is completed, the inside of the furnace is cooled to room temperature, the crucible is pulled up, and zone refining is performed again. After zone refining is repeated four or more times, the ingot is taken out. This is because the greater the number of times, the higher the purity and the higher the rate of single crystallization. In this way, from the time the raw material is charged into the crucible to the time it is taken out, it can be purified without being contaminated by any impurities from the outside. The purified part of the obtained MgF ingot was colorless and transparent, and was heated with a He-Ne laser beam (wavelength 632°8).
rv+, output 1 mmW, beam diameter 0.8 mm), there was no scattering at all, so the optical path of the light ray could not be seen inside the crystal. The refined part of the MgF ingot is cut and polished, processed into a plate material, and used for optical parts for high-power lasers and the like.

失凰五 4N MgF、、粒子(粒径8−6 mesh) 36
4gを第1図のごとく石英管に封入し、第3図の温度分
布を持つ抵抗加熱炉(第2図)中を200mn+/hで
2時間半降下させ、原料を融解、固化させた。炉内を常
温まで冷却した後、石英管を引き上げ、再び炉内温度が
第3図の温度分布を持つまで昇温してから、10mm/
hで30時間降下させゾーンリファイニングを行った。
Loss 4N MgF, particles (particle size 8-6 mesh) 36
4 g was sealed in a quartz tube as shown in Fig. 1, and lowered at 200 m+/h for 2 and a half hours in a resistance heating furnace (Fig. 2) having the temperature distribution shown in Fig. 3 to melt and solidify the raw material. After cooling the inside of the furnace to room temperature, pull up the quartz tube, raise the temperature in the furnace again until it has the temperature distribution shown in Figure 3, and then
Zone refining was performed by lowering the sample at h for 30 hours.

ゾーンリファイニングは5回繰り返した。得られたイン
ゴットは、直径24.5mn+、長さ240+u+で、
He−Ne    ル−ザーピームをまったく散乱させ
ないほどに精製された部分の長さは100a+mであっ
た。精製部をカット、研磨し、直径24.5+am、厚
さ5ffII11の板材に加工した。この板材の結晶性
を背面反射ラウェ法により観察したところ、第4図のと
とくラウェ斑点が規則性を持って検出されており、単結
晶であることが確認された。また、紫外領域から赤外領
域にかけての光吸収係数を測定したところ、第5図に示
すごとく、市販品に比べ小さい値が得られ、光透過性が
優れていることが判明した。
Zone refining was repeated five times. The obtained ingot had a diameter of 24.5 mm+ and a length of 240+ u+.
The length of the portion purified to the extent that He-Ne loser beam was not scattered at all was 100 a+m. The refined portion was cut, polished, and processed into a plate material with a diameter of 24.5+am and a thickness of 5ffII11. When the crystallinity of this plate material was observed by the back-reflection Lawe method, Lawe spots shown in FIG. 4 were detected with regularity, and it was confirmed that it was a single crystal. Furthermore, when the light absorption coefficient from the ultraviolet region to the infrared region was measured, as shown in FIG. 5, a value smaller than that of the commercially available product was obtained, and it was found that the light transmittance was excellent.

見匪五羞困 (1)市販品に比べ本発明品は、紫外領域から赤外領域
にかけての光吸収係数が小さい値を示し、光透過性が優
れている。
(1) Compared to commercially available products, the product of the present invention exhibits a smaller light absorption coefficient from the ultraviolet region to the infrared region, and has excellent light transmittance.

(2)紫外領域から赤外領域にかけての光透過性が極め
て良好で、高出力レーザー用光学部品として使用できる
MgF2単結晶が得られた。
(2) An MgF2 single crystal with extremely good light transmittance from the ultraviolet region to the infrared region and usable as an optical component for high-power lasers was obtained.

(3)原料MgF、の精製と同時に単結晶化を行うこと
ができ、製造工程を短縮できる。
(3) Single crystallization can be performed simultaneously with the purification of raw material MgF, and the manufacturing process can be shortened.

(4)任意の直径を持・った定径の単結晶MgF2イン
ゴットを容易に製造することができる。
(4) A fixed-diameter single-crystal MgF2 ingot having an arbitrary diameter can be easily produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は石英管層のアンプルであり、第2図は引下炉の
内部構造である。第3図は炉内の温度分布であり、第4
図は本発明製品の結晶構造を示す背面反射ラウェ図形の
図面代用写真であり、第5図は吸収係数を示す。
FIG. 1 shows an ampoule with a quartz tube layer, and FIG. 2 shows the internal structure of a drawing furnace. Figure 3 shows the temperature distribution inside the furnace, and Figure 4 shows the temperature distribution inside the furnace.
The figure is a photograph substituted for a drawing of a back reflection Laue pattern showing the crystal structure of the product of the present invention, and FIG. 5 shows the absorption coefficient.

Claims (4)

【特許請求の範囲】[Claims] (1)融点付近の温度勾配が大きいたて型ゾーンリフア
イニングで処理を繰り返すことを特徴とする高純度フッ
化マグネシウム単結晶の製造方法。
(1) A method for producing a high-purity magnesium fluoride single crystal, which is characterized by repeating the process by vertical zone refining with a large temperature gradient near the melting point.
(2)融帯移動速度が10mm/h以下であることを特
徴とする特許請求の範囲第(1)項記載の高純度フッ化
マグネシウム単結晶の製造方法。
(2) The method for producing a high-purity magnesium fluoride single crystal according to claim (1), characterized in that the fusion zone movement speed is 10 mm/h or less.
(3)融点付近の温度勾配が18℃/cm以上であるこ
とを特徴とする特許請求の範囲第(1)項記載の高純度
フッ化マグネシウム単結晶の製造方法。
(3) The method for producing a high-purity magnesium fluoride single crystal according to claim (1), wherein the temperature gradient near the melting point is 18° C./cm or more.
(4)原料をグラッシーカーボン製るつぼに充填し、こ
れを石英管に高純度アルゴン雰囲気にて封入することを
特徴とする特許請求の範囲第(1)項記載の高純度フッ
化マグネシウム単結晶の製造方法。
(4) A high-purity magnesium fluoride single crystal according to claim (1), characterized in that the raw material is filled in a glassy carbon crucible and sealed in a quartz tube in a high-purity argon atmosphere. Production method.
JP27331187A 1987-10-30 1987-10-30 Production of magnesium fluoride single crystal Pending JPH01115897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27331187A JPH01115897A (en) 1987-10-30 1987-10-30 Production of magnesium fluoride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27331187A JPH01115897A (en) 1987-10-30 1987-10-30 Production of magnesium fluoride single crystal

Publications (1)

Publication Number Publication Date
JPH01115897A true JPH01115897A (en) 1989-05-09

Family

ID=17526106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27331187A Pending JPH01115897A (en) 1987-10-30 1987-10-30 Production of magnesium fluoride single crystal

Country Status (1)

Country Link
JP (1) JPH01115897A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078345A1 (en) * 2002-03-18 2003-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metal fluoride in powder or granular form, method for the production thereof and determination of purity
WO2003079062A1 (en) * 2002-03-18 2003-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical element, method for the production thereof and for determining its optical properties
EP1449013A4 (en) * 2001-03-02 2006-09-20 Corning Inc Method of making high repetition rate excimer laser crystal optics and uv-200nm transmitting optical floride crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1449013A4 (en) * 2001-03-02 2006-09-20 Corning Inc Method of making high repetition rate excimer laser crystal optics and uv-200nm transmitting optical floride crystal
WO2003078345A1 (en) * 2002-03-18 2003-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metal fluoride in powder or granular form, method for the production thereof and determination of purity
WO2003079062A1 (en) * 2002-03-18 2003-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical element, method for the production thereof and for determining its optical properties

Similar Documents

Publication Publication Date Title
US5611856A (en) Method for growing crystals
JPH04228437A (en) Manufacture of glass product without lost of transparency
JPH01115897A (en) Production of magnesium fluoride single crystal
JPH10114533A (en) Production of high purity transparent silica glass
JPH0575703B2 (en)
JPH01126238A (en) Quartz glass member
JP4738174B2 (en) Method for producing fluoride crystals
JPS6158823A (en) Preparation of transparent quartz glass
JP3264508B2 (en) Method for producing magnesia single crystal
JP2636929B2 (en) Method for producing bismuth germanate single crystal
JP4022678B2 (en) Method for producing high purity transparent silica glass
US2936216A (en) Method of making monocrystalline calcium titanate
JPS6042195B2 (en) Chrysoberyl single crystal manufacturing method
JP4044315B2 (en) Single crystal manufacturing method
JPH0329039B2 (en)
JPH06279174A (en) Production of oxide single crystal
RU2486297C1 (en) Method of making crystalline workpieces of solid solutions of silver halides for optical components
JP4228127B2 (en) Method for producing calcium fluoride crystals
JPH0471037B2 (en)
US2985520A (en) Method for preparation of monocrystalline material
RU1468023C (en) Process of production of crystals of zinc selenide
JP3651855B2 (en) Method for producing CdTe crystal
JPH01320296A (en) Production of bi12sio20 single crystal
JP2825060B2 (en) Beta-barium borate single crystal processing surface modification method
JPS6045926B2 (en) Manufacturing method of infrared transmitting material