JPH01100515A - Manufacture of liquid crystal electrooptic device - Google Patents

Manufacture of liquid crystal electrooptic device

Info

Publication number
JPH01100515A
JPH01100515A JP25790087A JP25790087A JPH01100515A JP H01100515 A JPH01100515 A JP H01100515A JP 25790087 A JP25790087 A JP 25790087A JP 25790087 A JP25790087 A JP 25790087A JP H01100515 A JPH01100515 A JP H01100515A
Authority
JP
Japan
Prior art keywords
liquid crystal
temperature
injection hole
crystal material
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25790087A
Other languages
Japanese (ja)
Other versions
JPH067237B2 (en
Inventor
Toshio Watanabe
俊夫 渡辺
Masahiko Sato
正彦 佐藤
Hiroyuki Sakayori
坂寄 寛幸
Akio Osabe
長部 明生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP25790087A priority Critical patent/JPH067237B2/en
Priority to US07/254,096 priority patent/US4917473A/en
Priority to EP88116958A priority patent/EP0312028B1/en
Priority to DE88116958T priority patent/DE3883341T2/en
Publication of JPH01100515A publication Critical patent/JPH01100515A/en
Priority to US07/704,022 priority patent/US5193019A/en
Publication of JPH067237B2 publication Critical patent/JPH067237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To prevent an uncharged part from being left owing to volume variance corresponding to temperature variation by moving the variation in volume of a liquid crystal material smoothly from a low-temperature side to a high-temperature side according to a temperature gradient given to a liquid crystal cell. CONSTITUTION:The liquid crystal material is injected into the space formed of resin 12 for internal adhesion, a spacer 13 for gap control, and glass substrates 9 and 10 which have their peripheries sealed and are set at a constant interval through the liquid crystal injection hole 14 formed at least one position at right angles to the horizontal orienting direction (direction of molecule long axis) of the sealing part 1 at the periphery. The formed liquid crystal cell is provided in an airtight pressure reduction container, which is evacuated; and the liquid crystal injection hole 14 is sealed with a liquid crystal material and the pressure in the pressure reduction container is returned gradually to inject the liquid crystal material into the liquid crystal container. Then, the temperature gradient which holds the temperature high nearby the injection hole and low at a distance from the injection hole is given for removal. The sealing is carried out at proper temperature when the temperature nearby the injection hole is lower than the in-use temperature and the process of injecting the liquid crystal is finished. Consequently, the uncharged part due to the variation in volume is eliminated.

Description

【発明の詳細な説明】 〔従来の技術〕 パーソナルコンピュータ、ワープロ等の表示部に液晶電
気光学装置が多く用いられている。これら液晶電気光学
装置はTN型の液晶材料を用いていた。
DETAILED DESCRIPTION OF THE INVENTION [Prior Art] Liquid crystal electro-optical devices are often used in display units of personal computers, word processors, and the like. These liquid crystal electro-optical devices used a TN type liquid crystal material.

最近、ネマチック相以外にもSm^、 SmC”相を用
いた液晶電気光学装置が開発されている。このスメクチ
ック相を用いたパネルの場合、パネルに外部より加わる
衝撃による分子配向乱れ又は層構造の乱れ等が発生する
。また表示方式として複屈折モードを用いた場合不均一
セル厚による色むら等の問題が発生する。これらの対策
のために、上下ガラス基板をセル内部でなんらかの方法
で接着させる方法が注目を浴び、実用化が進められてい
る。
Recently, liquid crystal electro-optical devices have been developed that use Sm^ and SmC'' phases in addition to the nematic phase.In the case of panels using this smectic phase, the molecular orientation may be disturbed or the layer structure may be disrupted due to an external impact applied to the panel. In addition, when birefringence mode is used as the display method, problems such as color unevenness occur due to uneven cell thickness.To counter these problems, the upper and lower glass substrates are bonded inside the cell by some method. The method has attracted attention and is being put into practical use.

第1図に液晶セルの断面図を示す。(1)は偏光板、(
2)は基板、(3)は透明電極、(4)は配向処理層、
(5)は液晶、(6)はセル外周シール、(7)は偏光
板、(8)は内部接着用樹脂、(9)はギャップ制御用
スペーサである。偏光板(1)、(7)の偏光軸のなす
角は表示モードの種類等により異なるが、通常は互いに
垂直となるように設けられている。また配向処理層(4
)は絶縁性被膜上に水平配向処理を施したもので外周シ
ールによる注入口と水平配向処理方向配置は任意のもの
が通常は用いられる。
FIG. 1 shows a cross-sectional view of a liquid crystal cell. (1) is a polarizing plate, (
2) is a substrate, (3) is a transparent electrode, (4) is an alignment layer,
(5) is a liquid crystal, (6) is a cell outer circumferential seal, (7) is a polarizing plate, (8) is an internal adhesive resin, and (9) is a gap control spacer. Although the angles formed by the polarization axes of the polarizing plates (1) and (7) differ depending on the type of display mode, etc., they are usually provided so as to be perpendicular to each other. In addition, the alignment treatment layer (4
) is a product in which horizontal alignment treatment is performed on an insulating film, and any arrangement of the injection port with the outer peripheral seal and the horizontal alignment treatment direction is usually used.

このような液晶表示素子を作成するには必ずこのセルに
液晶を注入することが必要となる。
In order to create such a liquid crystal display element, it is necessary to inject liquid crystal into this cell.

この注入法において、従来用いられた方法は液晶材料と
液晶セルを真空チャンバ内に設置し、チャンバ内に設置
し、チャンバ内を真空に排気した後、液晶セルの注入口
付近に液晶材料を接触させた後チャンバ内を徐々に大気
圧に戻してセル内の圧力とチャンバ内との圧力差により
液晶材料をセル内に注入するものであった。このとき液
晶材料が粘性の低い状態又は流動性のある状態になるよ
うに液晶セルを液晶材料を適当に加熱し、接触させて、
充填させた後すぐに取り出していた。しかしながら、こ
のような従来の方法では液晶の温度変化に対応する体積
変化が起こる。しかし、液晶セルは内部接着を行ってい
るためこの体積変化に対応して、セルの容量を変化させ
ることができずセル内部に液晶の充填されない局所が発
生し、製品として歩留りを下げていた。
In this injection method, the conventional method used is to place the liquid crystal material and the liquid crystal cell in a vacuum chamber, evacuate the chamber, and then contact the liquid crystal material near the injection port of the liquid crystal cell. After that, the pressure inside the chamber was gradually returned to atmospheric pressure, and the liquid crystal material was injected into the cell using the pressure difference between the inside of the cell and the inside of the chamber. At this time, the liquid crystal cell is appropriately heated and brought into contact with the liquid crystal material so that the liquid crystal material becomes a low viscosity state or a fluid state,
It was taken out immediately after being filled. However, in such conventional methods, a volume change occurs in response to a temperature change of the liquid crystal. However, because liquid crystal cells are internally bonded, the capacity of the cell cannot be changed in response to this change in volume, resulting in areas where the liquid crystal is not filled inside the cell, reducing product yield.

〔発明の目的〕[Purpose of the invention]

本発明はセル内部をなんらかの方法で接着してセルに液
晶を充填した後に液晶の温度変化に対応する体積変化に
よる未充填部分の発生を防止する方法を提供するもので
ある。
The present invention provides a method for preventing the occurrence of unfilled portions due to volume changes corresponding to temperature changes of the liquid crystal after the cell is filled with liquid crystal by bonding the inside of the cell by some method.

〔発明の構成〕[Structure of the invention]

本発明は上記目的を達成するために第2図(A)(B)
に示すように、内部接着用樹脂@とギャップ制御用スペ
ーサ@と周囲が封止された一定の間融を持つ硝子基板■
[相]により形成された空間へ周囲への封止部■の水平
配向処理方向(分子長軸が向く方向)と垂直方向に少な
くとも1ケ所に設けられた液晶注入口[相]より液晶材
料を注入する。
In order to achieve the above object, the present invention is as shown in FIGS.
As shown, a glass substrate with a constant melting temperature is sealed around the internal adhesive resin @, gap control spacer @
Inject the liquid crystal material into the space formed by the [phase] through the liquid crystal injection port [phase] provided at at least one location in the horizontal alignment treatment direction (the direction in which the long axis of the molecules faces) and the direction of the horizontal alignment process (the direction in which the long axis of the molecules faces) of the surrounding sealing part. inject.

前述のように形成された液晶セルを、気密性の減圧容器
内に設は容器内を排気し、液晶注入口[相]を液晶材料
でふさぐ。この後、減圧容器内圧力を徐々に戻すことに
より液晶容器内に液晶材料を注入する。この後注入口付
近は温度が高めのl5opr。
The liquid crystal cell formed as described above is placed in an airtight vacuum container, the inside of the container is evacuated, and the liquid crystal injection port is plugged with a liquid crystal material. Thereafter, the liquid crystal material is injected into the liquid crystal container by gradually returning the internal pressure of the reduced pressure container. After this, the temperature near the injection port is 15opr.

pic状態又はNematic状態、注入口から遠い所
は温度が低めのI 5otropicと状態又はNem
atie状態に適当な温度勾配をもたせて除去する。そ
の時の徐冷速度は液晶材料と注入口の大きさにより違う
pic state or nematic state, the temperature is lower in the area far from the injection port.
Atie state is removed by creating an appropriate temperature gradient. The slow cooling rate at that time varies depending on the liquid crystal material and the size of the injection port.

注入口付近の温度が使用温度より低温になったときの適
当な温度で封止し液晶を注入する工程を終了するもので
ある。
When the temperature near the injection port becomes lower than the operating temperature, the liquid crystal is sealed at an appropriate temperature and the process of injecting liquid crystal is completed.

以下に実施例により本発明の詳細な説明する。The present invention will be explained in detail below using Examples.

〔実施例〕〔Example〕

第2図(A)、(B)に本実施例で用いたセル構造を示
す。
FIGS. 2(A) and 2(B) show the cell structure used in this example.

実施例においては公知の真空液晶注入装置を使用した。In the examples, a known vacuum liquid crystal injection device was used.

第2図に示すように、本実施例にて用いた液晶セルは硝
子等の絶縁性透光性基板■[相]上に形成された透明電
極[相]及び配向処理層[相]を内側に対抗させてギャ
ップ制御材■で支持し、内部接着用樹脂@でセル内部を
固定し、周囲を封止■し、水平配向処理方向(液晶分子
長軸が向く方向)と垂直方向に数ケ所の注入口■を設け
るように硝子基板■[相]を張り合わせた。
As shown in Figure 2, the liquid crystal cell used in this example has a transparent electrode [phase] formed on an insulating light-transmitting substrate such as glass, and an alignment layer [phase] formed on the inside. Support it with a gap control material ■ against the cell, fix the inside of the cell with an internal adhesive resin @, seal the periphery ■, and attach it at several locations in the horizontal alignment treatment direction (the direction in which the long axis of the liquid crystal molecules faces) and in the vertical direction. The glass substrates ■ [phase] were pasted together so that the injection port ■ was provided.

このような構造を持つ液晶セルを液晶注入装置内に入れ
、装置内を減圧状態とする。本実施例の場合は6 Xl
0−3torrまで減圧した。この後液晶材料をデイス
ペンサーにより滴下して注入口[相]をふさいだ。この
際、液晶材料の流動性を増すためにNematic相又
はl5otropic相領域付近まで温度を上げた。
A liquid crystal cell having such a structure is placed in a liquid crystal injection device, and the inside of the device is brought into a reduced pressure state. In this example, 6Xl
The pressure was reduced to 0-3 torr. After this, the liquid crystal material was dropped using a dispenser to block the injection port [phase]. At this time, the temperature was raised to near the nematic phase or 15otropic phase region in order to increase the fluidity of the liquid crystal material.

次に減圧容器内の圧力をゆっくり戻してゆき注入孔より
液晶材料をセル内に注入した。
Next, the pressure inside the vacuum container was slowly returned to normal, and the liquid crystal material was injected into the cell through the injection hole.

その後液晶セル■を第3図の様な加熱板及び冷却板■を
数枚並べ、高温側に注入口を向けて、高温側に置き、適
当なスピードで低温側に移動した。
Thereafter, the liquid crystal cell (2) was placed on the high temperature side with several heating plates and several cooling plates (2) arranged as shown in FIG. 3, with the injection port facing the high temperature side, and was moved at an appropriate speed to the low temperature side.

注入口付近が0°Cになった時に紫外線硬化エポキシ接
着材によりその注入口[相]を封止し、周囲に付着した
液晶材料を除去し液晶セルを完成させた。
When the temperature near the injection port reached 0°C, the injection port [phase] was sealed with an ultraviolet curing epoxy adhesive, and the liquid crystal material attached to the surrounding area was removed to complete the liquid crystal cell.

本発明はセル内部をなんらかの方法で接着し、注入口を
水平配向処理方向(液晶分子長軸が向く方向)と垂直方
向に少なくとも1ケ所に設けられた液晶セルにスメクチ
ック液晶材料を注入する際に液晶の温度に対応する体積
変化による未充填か所をなくすことができるものである
In the present invention, when injecting a smectic liquid crystal material into a liquid crystal cell, the inside of the cell is bonded by some method, and an injection port is provided at at least one location in a direction perpendicular to the horizontal alignment treatment direction (the direction in which the long axes of liquid crystal molecules face). It is possible to eliminate unfilled areas due to volume changes corresponding to the temperature of the liquid crystal.

本発明方法により、液晶材料の体積変化は液晶セルに加
えられた温度勾配により、低温側より高湯側にスムーズ
に移動し、最終的に液晶注入口付近で終了しすみやかに
注入、封止を行なえるという特徴を有する。
By the method of the present invention, the volume change of the liquid crystal material moves smoothly from the low temperature side to the high temperature side due to the temperature gradient applied to the liquid crystal cell, and finally ends near the liquid crystal injection port, allowing prompt injection and sealing. It has the characteristic of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明で用いる液晶セルの概略図を
示す。 第3図は液晶注入時にセルに温度勾配を加える機構を示
す。
1 and 2 show schematic diagrams of a liquid crystal cell used in the present invention. FIG. 3 shows a mechanism for applying a temperature gradient to the cell when liquid crystal is injected.

Claims (1)

【特許請求の範囲】 1、減圧注入法にて液晶材料を液晶セルに注入する際に
、液晶セルの液晶配向制御方向に対して垂直方向に設け
られた液晶注入口より液晶材料を注入する工程と、該工
程の後前記液晶セルに対し、注入方向に平行方向に温度
勾配をかけて、液晶セルを使用温度以下にまで冷却する
工程と該工程の後、液晶注入口を使用温度以下の状態で
封止する工程とを有することを特徴とする液晶電気光学
装置作製方法。 2、特許請求の範囲第1項において前記液晶材料はスメ
クチック液晶相を有することを特徴とする液晶電気光学
装置作製方法。
[Claims] 1. When injecting a liquid crystal material into a liquid crystal cell using a reduced pressure injection method, a step of injecting the liquid crystal material through a liquid crystal injection port provided in a direction perpendicular to the liquid crystal alignment control direction of the liquid crystal cell. After this step, a temperature gradient is applied to the liquid crystal cell in a direction parallel to the injection direction to cool the liquid crystal cell to a temperature below the operating temperature, and after this step, the liquid crystal injection port is kept at a temperature below the operating temperature. 1. A method for manufacturing a liquid crystal electro-optical device, comprising a step of sealing with a liquid crystal electro-optical device. 2. A method for manufacturing a liquid crystal electro-optical device according to claim 1, wherein the liquid crystal material has a smectic liquid crystal phase.
JP25790087A 1987-10-13 1987-10-13 Liquid crystal electro-optical device manufacturing method Expired - Lifetime JPH067237B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP25790087A JPH067237B2 (en) 1987-10-13 1987-10-13 Liquid crystal electro-optical device manufacturing method
US07/254,096 US4917473A (en) 1987-10-13 1988-10-06 Method of manufacturing liquid crystal devices
EP88116958A EP0312028B1 (en) 1987-10-13 1988-10-12 A method of manufacturing liquid crystal devices
DE88116958T DE3883341T2 (en) 1987-10-13 1988-10-12 Method of manufacturing liquid crystal devices.
US07/704,022 US5193019A (en) 1987-10-13 1991-05-22 Method of manufacturing liquid crystal devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25790087A JPH067237B2 (en) 1987-10-13 1987-10-13 Liquid crystal electro-optical device manufacturing method

Publications (2)

Publication Number Publication Date
JPH01100515A true JPH01100515A (en) 1989-04-18
JPH067237B2 JPH067237B2 (en) 1994-01-26

Family

ID=17312748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25790087A Expired - Lifetime JPH067237B2 (en) 1987-10-13 1987-10-13 Liquid crystal electro-optical device manufacturing method

Country Status (1)

Country Link
JP (1) JPH067237B2 (en)

Also Published As

Publication number Publication date
JPH067237B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US4691995A (en) Liquid crystal filling device
US4917473A (en) Method of manufacturing liquid crystal devices
JPH01100515A (en) Manufacture of liquid crystal electrooptic device
US5193019A (en) Method of manufacturing liquid crystal devices
JPH01100514A (en) Manufacture of liquid crystal electrooptic device
JPS63237031A (en) Liquid crystal display element
JPH0337624A (en) Liquid crystal element
JPH06160874A (en) Production of feproelectric liquid crystal element
JPH03215828A (en) Liquid crystal panel
JPH0534696A (en) Production of liquid crystal electrooptical element
JP4158890B2 (en) Liquid crystal optical element and manufacturing method thereof
JPH02157819A (en) Liquid crystal electro-optical device
JPS5971029A (en) Production of liquid crystal display
JPS63218923A (en) Liquid crystal injection port sealing method for liquid crystal display element
JP2907228B2 (en) Manufacturing method of liquid crystal display device
JPH0627471A (en) Production of liquid crystal panel
JPS6132817A (en) Liquid crystal display panel and its manufacture
JPH01304426A (en) Liquid crystal display element
JPS6234129A (en) Manufacture of liquid crystal device
JPS62150225A (en) Liquid crystal display panel
JPS634216A (en) Manufacture of liquid crystal element
JPS5853527Y2 (en) Cell structure of field-effect birefringence-controlled liquid crystal display element
JPH07168192A (en) Formation of liquid crystal cell
JPH01262524A (en) Liquid crystal display element
JPS63261223A (en) Manufacture of liquid crystal display device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 14