JP7504630B2 - 撮像素子、撮像装置、コンピュータプログラム及び記憶媒体 - Google Patents

撮像素子、撮像装置、コンピュータプログラム及び記憶媒体 Download PDF

Info

Publication number
JP7504630B2
JP7504630B2 JP2020040210A JP2020040210A JP7504630B2 JP 7504630 B2 JP7504630 B2 JP 7504630B2 JP 2020040210 A JP2020040210 A JP 2020040210A JP 2020040210 A JP2020040210 A JP 2020040210A JP 7504630 B2 JP7504630 B2 JP 7504630B2
Authority
JP
Japan
Prior art keywords
separation
section
separation section
control electrode
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020040210A
Other languages
English (en)
Other versions
JP2021141552A (ja
Inventor
康平 岡本
浩一 福田
駿一 若嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020040210A priority Critical patent/JP7504630B2/ja
Priority to US17/193,699 priority patent/US11417697B2/en
Publication of JP2021141552A publication Critical patent/JP2021141552A/ja
Application granted granted Critical
Publication of JP7504630B2 publication Critical patent/JP7504630B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • G02B7/346Systems for automatic generation of focusing signals using different areas in a pupil plane using horizontal and vertical areas in the pupil plane, i.e. wide area autofocusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Automatic Focus Adjustment (AREA)

Description

本発明は、裏面照射型の撮像素子等に関する。
撮像装置で行われる焦点検出方法の1つに、撮像素子に形成された焦点検出画素により、位相差方式の焦点検出を行う撮像面位相差方式がある。
このような撮像面位相差方式の例として、特許文献1には、1つの画素に対して、1つのマイクロレンズと複数に分割された光電変換部が形成されている2次元撮像素子を用いた撮像装置が開示されている。複数の光電変換部は、1つのマイクロレンズを介して撮像レンズの射出瞳の異なる領域を透過した光を受光するように構成され、瞳分割を行っている。個々の光電変換部の信号である視差信号から像ずれ量を算出することで、位相差方式の焦点検出を行うことができる。また、画素毎に個々の光電変換部の信号を足し合わせた撮像信号から画像を取得することができる。
特許文献2では、一つの画素の中で電気的に分割された光電変換部を受光部とした瞳分割位相差方式の撮像画素が提案されており、光電変換部の分割部の光入射側に設けられた電極によりこの部分の電圧を制御する構成となっている。この構成によれば、電極の電圧制御により光電変換部の分割部分のポテンシャル障壁高さと幅を変化させることができる。
ポテンシャル障壁高さと幅により、互いに電気的に分割された光電変換部間での電荷のクロストーク率が変化するため、各光電変換部からの信号量を制御することが可能である。この信号量は瞳分割位相差方式の瞳分割性能に結びついているため、このような構成により、瞳分割性能を変化させることができることになる。
特開昭58-24105号公報 特開2015-220279号公報
しかしながら、光電変換部の光入射側に電極を設けるということは、入射光の散乱や吸収による損失を招き、撮像素子の受光効率低下を招くだけでなく、瞳分割位相差方式の瞳分割性能の精度を大幅に低下させることになる。従来、瞳分割位相差方式の焦点検出を行う撮像素子では、製造時の光電変換部の膜厚ばらつきにより、分割された光電変換部間の光学クロストーク量がばらついていた。それにより撮像素子の瞳分割性能の個体間でのばらつきが発生するが、従来技術においてはばらつきが大きくなる場合が多く、撮像素子およびこれをなす撮像画素構造において個体ばらつきを補正するというのは、困難であった。
ばらつきを補正すべく、電荷クロストーク量を従来技術である分割部の電圧で制御するとしても、前述の効率低下、精度低下の課題が存在してしまう。さらに、装着される結像光学系によって射出瞳距離が異なるため、瞳距離のずれによる焦点検出精度の低下を生じる。
本発明は、このような従来技術の問題を改善し、瞳分割位相差方式の焦点検出に適した撮像素子を提供することを目的とする。
上記課題を解決するため、本発明の撮像素子は、
半導体基板の第1の面側に設けられ、複数の画素が2次元状に配された受光部と、
前記半導体基板の前記第1の面とは反対側の第2の面側に設けられ、前記画素からの信号を読出すための読出し回路と、を有する撮像素子であって、
前記画素はそれぞれ少なくとも2つの光電変換部と、前記2つの光電変換部の間の領域である分離部を有し、
前記画素はそれぞれが1つのマイクロレンズと対応し、該マイクロレンズから前記2つの光電変換部にそれぞれ入射される光によって視差信号を取得するものであり、
前記分離部の、前記第2の面側に配置され、前記分離部のポテンシャルを制御することにより瞳分割特性を補正するための分離部制御電極と、を有することを特徴とする。
本発明によれば、瞳分割位相差方式の焦点検出に適した撮像素子を得ることができる。
本発明の実施例1等における、撮像素子の全体構成を概略的に示す図である。 実施例1等における、画素アレイの画素配列を概略的に示す図である。 実施例1等における、撮像素子の画素の平面を概略的に示す図である。 実施例1等における、撮像素子の画素の断面を概略的に示す図である。 実施例1等における、受光部のポテンシャル分布を概略的に示す図である。 実施例1等における、図4のe-e’に示した方向の受光部のポテンシャル分布を概略的に示す図である。 実施例1等の画素の断面構造と、結像光学系の射出瞳面との関係を示す概略図である。 実施例1における、瞳強度分布とその変化を説明するための図である。 実施例2における、シェーディング波形を示す図である。 実施例3における画素の断面を概略的に示す図である。 実施例4における画素の断面を概略的に示す図である。 実施例5における、撮像装置の全体構成を概略的に示す図である。 実施例6における、瞳強度分布を説明するための図である。 実施例6における、センサー瞳距離とレンズ射出瞳距離の関係を表す図である。 実施例7の画素アレイの画素配列を示す模式図である。 実施例7の画素を、受光面側(+z側)から見た場合の図である。 実施例7の画素を、受光面側(+z側)から見た場合の他の例を示す図である。 実施例7の図4中のe-e’線分の内、受光部のポテンシャル分布を概略的に示す図である。 実施例7の図16中のb-b’、c-c’、d-d’線分の内、受光部のポテンシャル分布を概略的に示す図である。 実施例7の画素の等価回路図である。 実施例7における、蓄積期間と画素信号読み出し期間における画素の駆動タイミング例を説明するタイミングチャートである。 実施例7における瞳強度分布を概略的に示す図である。 実施例7において行われるAFワンショット撮影の動作を示すフローチャートである。 実施例8における、図3のa-a’断面を-y側から見た場合の断面図である。 実施例8の、図24のe-e’で示した線分の内、画素内のポテンシャル分布を概略的に示す図である。 実施例8の、瞳強度分布を概略的に示す図である。 実施例9の画素の断面図である。 実施例8、9の画素内のポテンシャル分布を概略的に示す図である。
以下、添付図面を参照して、本発明の好適な実施の形態について実施例を用いて説明する。なお、各図において、同一の部材ないし要素については同一の参照番号を付し、重複する説明は省略ないし簡略化する。
なお、実施例においては、撮像装置としてデジタルスチルカメラに適用した例について説明する。しかし、撮像装置はデジタルムービーカメラ、カメラ付きのスマートフォン、カメラ付きのタブレットコンピュータ、車載カメラ、ネットワークカメラなど撮像機能を有する電子機器等を含む。
次に、本発明の実施例1の撮像素子の具体的な構成例について説明する。
図1は、本発明の実施例1のCMOSタイプの撮像素子100の全体構成を概略的に示す図である。
撮像素子100は、画素アレイ部101、垂直走査回路102、列回路103、水平走査回路104を有する。
画素アレイ部101は、半導体基板の第1の面(受光面)側に光電変換用の画素が2次元状に配置された受光部を構成している。垂直走査回路102の出力が画素に入力されることにより画素選択スイッチがオンになり、所定の行の画素信号が不図示の垂直信号線を介して列回路103に読み出される。垂直信号線は画素列毎もしくは複数の画素列に1つ、または画素列毎に複数設けることが可能である。列回路103には複数の垂直信号線から並列に読み出された信号が入力される。列回路103は、信号の増幅やノイズ除去、AD変換等の処理を行う。
なお、画素選択スイッチ等は前記画素からの信号を読出すための読出し回路を構成しており、読出し回路やそのための配線等は前記半導体基板の前記第1の面(受光面)とは反対側の第2の面側に設けられている。
水平走査回路104は、列回路103に保持された信号を順次、ランダム、または同時に不図示の水平出力線に出力する。
2次元の撮像信号(や後述の位相差信号)は、垂直走査回路102により選択した行単位の画素信号を読出して列回路103でデジタル変換・保持する。次に列回路で保持されたデジタル信号を水平走査回路104により順次列毎に不図示の出力部を介して撮像素子100の外に出力する。上記の動作を、垂直走査回路102で選択する行を1水平期間毎にずらしながら順次行うことで複数行の映像信号を1垂直期間かけて撮像素子100から読み出す。
図2は画素アレイ部101の画素配列を概略的に示す図であり、図2に示す4列×4行の画素を平面上に多数配置することで撮像信号及び焦点検出信号の取得が可能となっている。図2の紙面に垂直な方向をz方向とし、紙面内の左右方向をx方向とし、上下方向をy方向としてx、y、x軸による直交座標系を定義する。
画素群200は2行×2列の4つの画素部からなる単位ブロックである。R(赤)フィルタによってRの分光感度を有する画素200Rが左上に位置し、G(緑)フィルタによってGの分光感度を有する画素200Gが右上と左下にそれぞれ位置する。B(青)フィルタによってBの分光感度を有する画素200Bが右下に位置する。
各画素の受光部は、2つの光電変換部としてのn型半導体のPDA(フォトダイオードA)201、PDB(フォトダイオードB)202と、2つの光電変換部の間の領域である分離部303を有する。分離部303には光電変換部とは異なる導電型の半導体である、p型半導体の不純物がドープされている。また、その不純物の濃度分布は分離部303のx方向の中心において最大となっている。また、分離部303の中心は画素中心と一致している。
1つの画素部の中で、相対的にx座標値が小さい側に配置された光電変換部であるPDをPDA201、相対的にx座標値が大きい側に配置された光電変換部であるPDをPDB202と呼ぶ。PDA201とPDB202は光電変換及び蓄積をするために用いるPDである。
また、205は光電変換部の画素境界であり、204はマイクロレンズ、カラーフィルタ、遮光壁からなる光学部材の画素境界である。図2のように光電変換部の画素境界と光学部材の画素境界はy方向にずれている。しかし、x方向についてはほぼ一致している。
図3は実施例1における撮像素子の画素の平面を概略的に示す図であり、図2に示した画素配列の1つの画素200Gを、撮像素子100の受光面側(+z側)から見た場合の図である。図4は実施例1における撮像素子の画素の断面を概略的に示す図であり、図3のa-a’断面を-y側から見た場合の断面図である。図3(A)は、図4のe-e’断面に対応し、図3(B)は図4のf-f’断面に対応している。
また、図5は実施例1における、受光部のポテンシャル分布を概略的に示す図であり、図4中のg-g’、h-h’、i-i’線分の内、受光部内のポテンシャル分布を概略的に示す。ポテンシャル分布601は分離部制御電極304の電圧が相対的に低い場合、ポテンシャル分布602は分離部制御電極304の電圧が相対的に高い場合を示している。このように分離部制御電極304の電圧が相対的に高くするとPDA201とPDB202の間の分離部のポテンシャル障壁が低くなりクロストークを増やすことができる。
図6は図4のe-e’に示したx方向の受光部のポテンシャル分布を概略的に示す図であり、図6(A)は分離部制御電極304の電圧が相対的に低い場合、図6(B)は分離部制御電極304の電圧が相対的に高い場合を示す図である。
受光部はSi(シリコン)半導体で形成されており、図4、図5に示すように、受光部の内の、z座標値が大きい側の面が受光面(第1の面)となっている。また、図12の結像レンズ1501によって被写体像が撮像素子の受光面側から入射するように構成されている。なお、図4に示すように、受光部の内の、受光面と反対側の面を駆動面(第2の面)と呼ぶ。
図4、図5において、受光部を構成する複数の光電変換部(PDA201、PDB202)は、完全電荷転送が可能なフォトダイオード(PDとも記す)で構成されている。一つの画素のPDはほとんどの部分が光電変換可能な領域であるが、その内部に所定パターンの不純物濃度の分布を形成することにより、2つの光電変換部(PDA201、PDB202)と分離部303を形成している。
PDA201、PDB202は、空乏層が図4、図5のz方向に広がっており、そのポテンシャルは、z座標値が小さい側が低いポテンシャルとなっている。ポテンシャルの極小値は完全電荷転送が可能なように駆動面付近に形成されている。画素境界部には、隣接画素との間のクロストークを抑制するための絶縁層301が形成されている。また、駆動面よりz座標値が小さい領域には、金属配線と絶縁体からなる配線層504が配置されている。
PDA201とPDB202の間の領域には、受光面側に分離部303が設けられている。また、分離部303のポテンシャルを制御するために、半導体基板の第2の面側から受光部のz方向に入り込むように分離部制御電極304が埋め込まれている。分離部303のポテンシャルは、図6に示すようにx方向において中心が高く、y方向においてはおよそ一定の分布となるように、不純物がドープされている。
分離部制御電極304は、受光部を構成する半導体と接する、例えばポリシリコンや金属で構成される。また、Siからなる受光部中で各色の光が吸収される深さに合わせ、分離部制御電極304のz方向長さはカラーフィルタ毎に異なってもよい。即ち、画素毎にカラーフィルタを有する場合に、分離部制御電極の受光部の深さ方向の長さが前記カラーフィルタ毎に異なっていても良い。
Siからなる受光部中の金属・絶縁層と接する領域付近には、多数キャリアとしてホールが存在するp領域が形成され、Si界面起因の暗電流を抑制している。Siからなる受光部中、分離部制御電極304と接する領域付近にp領域305、絶縁層301と接する領域付近にp領域302が形成される。
また、配線層504と接するSi界面付近にp領域505、受光面側絶縁層と接するSi界面付近にp領域506が形成される。また、画素境界部には、絶縁層301の代わりに、分離部303、分離部制御電極304、p領域305を配置してもよい。
各画素部の受光面側にz座標値が大きい側から、マイクロレンズ501、カラーフィルタ502、遮光壁503が形成されている。マイクロレンズは画素に対してz軸と平行な光が入射した場合に、凡そ受光面における分離領域の重心に集光するように形成されている。
図6からわかるように、PDA201とPDB202の間には、分離部の位置にポテンシャル障壁が存在する。また、図6(A)と図6(B)に示すように、分離部制御電圧に印加する電圧値によってこのポテンシャル障壁の高さとx方向における形状を変化させられる。
分離部制御電極は、画素配線から周辺回路を経て、外部に設けられた電圧制御手段に接続されており、電圧制御手段によりその電圧を制御することが可能である。
図6中に示したように、分離部制御電極304の電圧が相対的に低い場合には、電極と接続されているp領域305を介して分離部303のポテンシャルがVaとなる。
また、分離部制御電極304の電圧を相対的に高くすると、分離部制御電極304と接続されているp領域305を介して分離部303のポテンシャルが、Vaより低いVbとなる。
蓄積期間中、画素200Gに入射した光は、マイクロレンズ501により集光される。そしてカラーフィルタ502で分光された後、分離部303、PDA201、PDB202へ入射する。
分離部303、PDA201、PDB202では、入射した光量と入射角度に応じて電子とホール(正孔)が対生成し、電界により分離される。正電荷のホールは定電圧源に接続されたp型半導体領域を通じて排出される。負電荷の電子は信号電荷として、以下のように移動・蓄積される。
受光部(光電変換部)であるSi層へ光が入射した際、PDA201内で光電変換によって発生した電子の大多数は、PDA201中で相対的にポテンシャルの低い、z座標値が相対的に小さい側へ移動し、ポテンシャルが極小となる駆動面付近にて蓄積される。PDB202内で発生した電子の大多数も、PDB202中で相対的にポテンシャルの低いz座標値が相対的に小さい側へ移動し、ポテンシャルが極小値となる駆動面付近にて蓄積される。
一方、分離部303で発生した電子は、図6で示す、x方向におけるポテンシャル障壁の両側であるPDA201およびPDBに振り分けられる。そして、相対的にポテンシャルの低い(z座標値が相対的に小さい)側へ移動し、ポテンシャルが極小となる駆動面付近にて蓄積される。つまり、分離部で発生した損失以外の電子は、PDA201またはPDB202に蓄積されてそれぞれにおいて、光電変換信号として出力されることになる。
ここで、光電変換され、PDA201とPDB202のz方向ポテンシャル極小値付近で蓄積された電子は、中間に存在するポテンシャル障壁間をある確率(割合)で行き来することができる。本明細書中ではこれを電荷クロストークと称し、その割合を電荷クロストーク率と称する。電荷クロストーク率は、PDA201とPDB202の間のポテンシャル障壁の高さと幅に依存して変化する。
次に、図7と図8を参照して、本実施例の画素構造と瞳分割との対応関係について説明する。図7は実施例1の画素の断面構造と、結像光学系の射出瞳面との関係を示す概略図である。
射出瞳面については光軸方向をz方向とし、図7の紙面内にx方向及びy方向を示している。図8は実施例1における、瞳強度分布とその変化を説明するための図である。
画素部の受光面と瞳領域1100は、マイクロレンズによって概ね共役関係になっている。瞳領域1100は第1の瞳分割領域1101、第2の瞳分割領域1102、第3の瞳分割領域1103を有する。PDA201と第1の瞳分割領域1101とが対応し、PDB202と瞳分割領域1102とが対応し、分離部303と瞳分割領域1103とが対応する関係である。つまり被写体からの光の内、第1の瞳分割領域1101を通過した光はマイクロレンズ501を介してPDA201に入射する。
また、第2の瞳分割領域1102を通過した光、第3の瞳分割領域1103を通過した光は、マイクロレンズ501を介して、それぞれPDB202、分離部303に入射する。
図8は、画素アレイ部101の中央に位置する画素に光が入射した場合の、受光信号の光入射角度依存性(瞳強度分布)を表している。PDA201により得られる信号強度を801a(801b)、PDB202により得られる信号強度を802a(802b)、PDA201とPDB202で得られる信号強度を加算した撮像信号強度を803で表している。
図8において、801aと802aは、PDA201とPDB202の間での電荷クロストーク率が相対的に低い場合、801bと802bは、PDA201とPDB202の間での電荷クロストーク率が相対的に高い場合の信号強度(瞳強度分布)を表す。
ここで、図2に示したように、x(軸)方向に規則的に配列されたPDA201群の各出力から取得される被写体像信号をA像信号(A像データ)と呼ぶ。また、x(軸)方向に規則的に配列されたPDB202群の各出力から取得される被写体像信号をB像信号(B像データ)と呼ぶ。また、A像信号とB像信号を画素毎に足し合わせて作成した被写体像をA+B像信号と呼ぶ。
図8において、PDA201により得られる信号強度801a(801b)がA像信号に対応し、PDB202により得られる信号強度802a(802b)がB像信号に対応する。また、PDA201とPDB202で得られる信号強度を加算した撮像信号強度を803がA+B像信号に対応する。
なお、A像信号とB像信号との像ずれ量(相対位置)を検出することで、x(軸)方向に輝度分布を有する被写体像のデフォーカス量(合焦ずれ量)を検出することができる。
像ずれ量計算においては、A像信号、B像信号の相対位置をずらした場合における、画素毎のA像信号とB像信号の差分の二乗の総和(信頼値)が最も小さいずらし量を像ずれ位置としている。また、この信頼値は、値が小さい程像ずれ量計算の精度が高いことを表す。
瞳分割位相差方式の焦点検出のための瞳分割特性としては、電荷クロストーク率が低いほうがPDA201の出力信号とPDB202の出力信号の強度重心差である基線長を確保しやすく精度を出しやすい。しかし、電荷クロストーク率が高いほうが、入射角度が大きい場合には信頼性が高い場合が多い。このように、電荷クロストーク率の変化により瞳分割特性が変化し、それによって焦点検出性能が変化する。
また、受光部(光電変換部)のSi層の厚さが変化すると、光電変換に寄与する領域厚さが変化し、電荷クロストーク率が変化する。撮像素子の製造過程における製造誤差から、このような膜厚ばらつきが生じ、個体ごとに電荷クロストーク率、つまり瞳分割性能がばらついてしまう。
本実施例の撮像素子では、撮像画素内でのPDA201、PDB202間の電荷クロストーク率を、分離部制御電極の電圧印加でポテンシャル障壁高さを変化させることにより調整(補正)することが可能である。
本実施例では例えば、分離部制御電極に電圧を印加しない状態で設計値に近い瞳強度分布を有する撮像素子を標準試料とする。そして、標準試料よりもSi膜厚を厚くした試料と薄くした試料について、瞳強度分布を標準試料のそれに合わせるための分離部制御電極電圧を抽出しておくことにより、標準試料から構造がばらついた試料の性能補正を行うことができる。
この性能補正については、撮像素子ごとにPDA201、PDB202の瞳強度分布を測定して、標準試料からのずれを検出し、これを補正するために分離部制御電極へ補正電圧を印加すればよい。本実施例の撮像素子では、瞳分割性能のばらつきとしては、前述のSiからなる受光部の膜厚ばらつきのみならず、その他の構造からのずれも要因として含まれるため、Siの膜厚に応じた補正だけでなく、他構造部に応じた補正も含めて補正可能である。
即ち、本実施例では、受光部の膜厚のばらつきやその他製造誤差によって生じるPDA201、PDB202の瞳強度分布のばらつきを、分離部制御電極への印加電圧値を調整することによって補正することができる。それによって位相差検出精度を向上させることができる。
本実施例の撮像素子では、実施例1の撮像素子の個体構造ばらつきによる性能ばらつきの補正を、PDA201の群から得られる画像信号と、PDB202の群から得られる画像信号のシェーディング波形の標準試料からのずれを参照して行う。図9は実施例2における、シェーディング波形を示す図である。
例えば、均一の輝度の画面を撮像した際のPDA201の群から得られる画像信号とPDB202の群から得られる画像信号の、図1内の1点鎖線W-W‘上の画素アレイからの画像信号をx方向についてグラフ化したシェーディング波形を示している。
図9中、PDA201の群から得られる画像信号に基づくシェーディング波形が901、PDB202の群から得られる画像信号に基づくシェーディング波形が902である。図9のように、像高(受光面上の中心(光軸)からの距離)にしたがって901と902の波形はほぼ対称に変化する。しかし製造誤差等によって非対称になる場合やシェーディング波形が歪む場合がある。
ここで、瞳分割位相差方式の焦点検出を行う際の瞳分割特性は、光電変換部から得られるこれらの信号のシェーディング特性と相関がある。このような瞳分割特性の劣化の原因となるシェーディング特性の歪みや非対称性もまた、画素内での電荷クロストーク率に依存している。従って、本実施例の撮像画素において、分離部制御電極に印加する電圧を制御することによって瞳分割特性の修正(補正)が可能となる。
実施例1と同様、標準試料に対するシェーディング波形のずれと印加電圧の関係を予め撮像素子ごとに製造工程で測定しメモリに保存しておくことにより、個体ばらつきや歪みを印加電圧で制御できる。
瞳強度分布測定と異なり、シェーディング波形の取得は、1度または数度の撮像手順だけで行えるため、補正するまでの効率が高いという利点がある。
図10は、実施例3における、撮像素子の画素の断面を概略的に示す図である。実施例3は、実施例1、2における画素の分離部制御電極の構造のみを変更した物である。
実施例3では、分離部制御電極304の周囲に絶縁膜1301が構成されている。また、Siから成る受光部の内、絶縁膜1301とx方向またはy方向に接する側面領域付近には、多数キャリアとしてホールが存在するp領域1302が形成されている。
一方、絶縁膜1301とz方向で接する上面領域付近には、p領域1302が形成されていない。分離部制御電極304は、例えばポリシリコン、金属で構成されており、絶縁膜1301は、例えば酸化シリコン、窒化シリコンで構成されている。このように実施例3においては、分離部制御電極と前記受光部を構成する半導体の一部の領域との間に絶縁膜を有している。
分離部制御電極304からの電界は、p領域が形成されている場合は多数キャリアであるホールに終端される。そのため、分離部制御電極304の電圧変化によるPDA201、PDB202を形成する空乏層への影響を抑制することができる。一方、絶縁膜1302と分離部303の間にはp領域が形成されていないため、分離部制御電極304からの電界が空乏層のポテンシャルを変化させることができる。
図11は実施例4における画素の断面を概略的に示す図である。実施例4は、実施例1~3における画素の分離部制御電極の構造のみを変更した物である。
実施例4では、駆動面側から分離部303分まで延びたp層によって、分離部制御電極1401を構成する。即ち、注入エネルギーを変化させて複数回イオン注入を行うことにより、駆動面側から分離部303分まで延びるようにp層を形成し、このp層によって分離部制御電極1401を構成する。
即ち、受光部を例えばn型半導体で構成し、分離部制御電極を、前記光電変換部と異なる導電型であるp型半導体で構成している。
実施例4の分離部制御電極1401は、実施例1~3と比較して、Si界面が少ないため暗電流を抑制することができる。
このように、実施例4の撮像素子では、Si界面に起因する暗電流を抑制しつつ、分離部の電位を制御することができ、不自然なボケを抑制した撮像信号の取得と、焦点検出に適した信号を選択的に取得することができる。
実施例5の撮像装置の構成例を実施例5として、図12を用いて説明する。
図12は、実施例5の撮像装置の全体構成を概略的に示す図であり、実施例1~4の撮像素子100を搭載した撮像装置(例えば、デジタルスチルカメラの構成例を示している。
結像レンズ1501は、図12の-z方向から入射される被写体の光学像を撮像素子100の受光面に結像させる。レンズ駆動部1502は、結像レンズ1501のズーム制御、フォーカス制御、絞り制御等を行う。
全体制御演算部1503は、撮像素子100から出力される信号の補正、画像の生成、デフォーカス量算出、レンズ駆動信号生成、更には、前記2つの光電変換部で光電変換された信号を用いて瞳分割位相差方式の焦点検出等を行う。即ち、全体制御演算部1503は焦点検出手段としても機能している。
ここで瞳分割位相差方式の焦点検出は、前述したように、A像信号とB像信号との像ずれ量(相対位置)を検出することで、x(軸)方向に輝度分布を有する被写体像のデフォーカス量(合焦ずれ量)を検出することにより焦点検出を行う処理である。
像ずれ量の計算においては、A像信号、B像信号の相対位置をずらした場合における、画素毎のA像信号とB像信号の差分の二乗の総和(信頼値)が最も小さいずらし量を像ずれ量とする。
メモリ部1504は画像データを一時的に記憶するためのメモリとして機能する。1505は例えばLCD等からなる画像表示部である。
記録部1506は、画像データの記録や読み出しを行うための着脱可能な、例えば半導体メモリである。操作部1507は、撮像システムの各種インターフェースであり、操作部1507を介したユーザからの指示に従って、全体制御演算部1503が、撮像システムの各構成を制御する。
全体制御演算部1503にはコンピュータとしてのCPUが内蔵されており、不図示のメモリに記憶されたコンピュータプログラムに基づき装置全体の各種動作を実行させる制御手段として機能する。
操作部1507は、電源スイッチ、シャッタースイッチ、ズーム操作スイッチ、撮影モード選択スイッチ、或いは表示部1505のタッチパネル等で構成される。シャッタースイッチは、シャッターボタンが全押しされることによりオンとなって撮像を開始させる撮像指示スイッチSW2を含む。
撮影時、前述の実施例で述べた方法で得られた、製造プロセスに起因する撮像素子の電荷クロストーク量の個体ばらつきを補正するための印加電圧を分離部電極電圧制御手段1508により、撮像素子の画素内の分離部電極に印加する。それにより、撮像素子の画素内の分離部におけるポテンシャル障壁の高さを制御し、電荷クロストーク量を補正、瞳分割特性を改善することが可能となる。
即ち、A像信号とB像信号の非対称性、歪み等により焦点検出における瞳分割特性が劣化するが、各画素の分離部電極に印加する電圧を調整することによって補正し、瞳分割特性を改善することが可能となる。
印加電圧に関する補正データは撮像素子ごとに製造工程で測定されたものを例えばメモリ部1504に保存しておき、撮影時に前記補正データをメモリから読み出すことによって画素毎の分離部電極に印加される電圧を制御する。
なお、前述したように、瞳分割位相差方式の焦点検出のための瞳分割特性としては、電荷クロストーク率が低いほうがPDA201の出力信号とPDB202の出力信号の強度重心差である基線長を確保しやすく精度を出しやすい。しかし、電荷クロストーク率を高めたほうが、入射角度が大きい場合には信頼性を高めることができる。このように、電荷クロストーク率の変化により瞳分割特性が変化し、それによって焦点検出性能が変化する。
実施例6においては、結像レンズ1501はカメラ本体(撮像装置本体)に対して着脱可能なレンズ鏡筒に設けられている。そしてレンズ鏡筒内のメモリに結像レンズの射出瞳情報を予め保存しておく。また、撮像装置本体内部のメモリには、撮像素子のセンサー瞳距離情報が記憶されている。
そして、前記レンズ鏡筒をカメラ本体に装着したときに、前記レンズ鏡筒内のメモリに保存されている結像レンズの射出瞳情報を撮像装置本体で読み出す。そして、撮像素子のセンサー瞳距離と結像レンズの射出瞳距離の差を演算し、差に応じて分離部電極への電圧を制御する。それによって、位相差検出の精度を向上させる。
即ち、電圧制御手段は、受光部に光学像を結像するための結像光学系に応じて、分離部制御電極に印加する電圧を変更することで瞳分割特性を改善している。
図13は実施例6における、瞳強度分布を説明するための図であり、撮像素子100の有効画素範囲(表示部により表示される画素範囲)における所定の行位置における画素の瞳強度分布を示している。図14は実施例6における、センサー瞳距離とレンズ射出瞳距離の関係を表す図である。
実施例6の撮像素子100においては、図14に示すように、撮像素子の受光面中央(入射角度0の位置)から周辺に向かうに従って、徐々に各画素のマイクロレンズ501の位置が画素中心から撮像素子中央へ向けて偏心するように構成している。これは受光量をできるだけ確保するためである。
しかし、図14に示される周辺位置の画素200Gにおいては、マイクロレンズが画素中心から偏心している影響により、PDA201とPDB202での信号強度が等しくなる光の入射角度は例えば1002となる。
なお、受光面の中央に位置する画素においては、マイクロレンズ501は偏心しておらず入射角度は0となる。従ってPDA201とPDB202が受光する光は均等となり信号強度は略等しくなる。
この入射角度1002をセンサー瞳角度、またこの入射方向を表す線1005が、中央画素のセンサー瞳角度を表す線(ここではz軸)と交わる位置のz軸と垂直な面をセンサー瞳面と称する。センサー瞳面と撮像素子100の受光面(ここではxy面)との距離をセンサー瞳距離1003と称する。
一方、装着される結像レンズの光学的な絞りを1008とした場合に、この絞り開口の中心と画素200Gを結ぶ線1006が入射光軸を表し、絞り開口からは角度幅1001をもつ光が画素200Gへ入射される。
図13の瞳強度分布において、分離部電極への印加電圧がゼロの場合のPDA201およびPDB202の信号強度(瞳強度分布)をそれぞれ801aおよび802aとする。図14において角度幅1001で示した入射光は、図13に示された角度幅1001に対応している。この角度幅で制限された光がPDA201およびPDB202で受光され、光電変換された結果得られるA像信号とB像信号の波形の位相差を検出しなくてはならない。
分離部電極への印加電圧がゼロの場合には、切り取られる角度幅1001においては、PDA波形801のピークをプラス側に超えており、重心位置が角度幅1001内のマイナス側に近づく。従って、重心位置が角度幅1001内のマイナス側であるPDB波形との重心差が小さくなり(もしくはセンサー瞳距離1003とレンズ射出瞳距離1004のずれが小さい場合と逆向きになり、位相差を検出するのが困難な場合が生じる。
この状況は、入射角度(センサー瞳角度)1002と結像レンズの射出瞳角度1007とのずれ、つまりセンサー瞳距離1003とレンズ射出瞳距離1004のずれが大きい場合に起こりうる。
即ち、センサー瞳距離1003とレンズ射出瞳距離1004のずれが大きいほど、図13における1002と1007の角度差が大きくなり、PDA波形(A像信号)とPDB波形(B像信号)の強度差が拡大する。しかも絞りが絞られるほど図13の1001の幅が狭くなるので位相差検出は一層困難となる。
そこで実施例6においては、結像レンズ1501装着時に、レンズ情報の一部として予めレンズ鏡筒内のメモリに記憶したレンズ射出瞳距離1004を撮像装置本体側で受け取る。そして、このレンズ射出瞳距離1004と撮像装置本体のメモリに予め保存されているセンサー瞳距離1003との差を演算する。撮像装置本体内のメモリにはレンズ射出瞳距離1004とセンサー瞳距離1003の差に応じた電荷クロストーク率の補正量(印加電圧テーブル)を予め保存しておく。
印加電圧テーブルの内容は、例えば、レンズ射出瞳距離1004とセンサー瞳距離1003の差が大きい程、分離部電極へ印加する電圧を大きくしてクロストークを増やすようなテーブルとする。そして、メモリから得られる印加電圧テーブルを参照して、印加すべき電圧を分離部電極へ分離部電極電圧印加手段を介して印加する。これによって、センサー瞳距離1003とレンズ射出瞳距離1004のずれに起因するPDA波形とPDB波形の強度差を補正することができる。
なお、前記受光部に光学像を結像するための結像光学系の射出瞳距離と、前記撮像素子のセンサー瞳距離の関係に応じて瞳分割特性(光電変換部における瞳強度分布特性)が変化しているが、本実施例によればこのような瞳分割特性を改善することができる。
一方、レンズ射出瞳距離1004とセンサー瞳距離1003の差が小さい場合には、分離部電極へ印加する電圧を小さくし(またはゼロにし)PDA波形(A像信号)とPDB波形(B像信号)の基線長が長くなるようにして測距精度を向上させる。
ここで、受光部の中心からの距離に応じて、射出瞳距離と前記センサー瞳距離の差が大きくなるので、電圧制御手段は、受光部の中心からの距離に応じて、前記分離部制御電極に印加する電圧を変化させることになる。
このように、射出瞳距離と前記センサー瞳距離の差が大きい場合には、前記差が小さい場合よりも、高い電圧を分離部電極へ印加することで、PDA201とPDB202の信号強度801aと802aはそれぞれ、801bと802bへと補正される。
即ち、分離部のポテンシャル障壁を下げるような電圧が印加され、これにより、角度幅1011においてPDA波形とPDB波形の強度差が減少し、位相差検出の信頼性が向上する。
このように、実施例1~6においては、撮像素子、およびこれを用いた撮像装置における撮像素子の個体ばらつきを抑制したり、交換レンズとの光学的な性能ずれを補正したりすることで瞳分割位相差方式の焦点検出のための瞳分割特性を向上させることできる。
図15は実施例7の画素アレイの画素配列を示す模式図であり、図2に示した実施例1の構成との違いは、各画素の受光部が3つの光電変換部からなる点である。
各画素の受光部を構成する3つの光電変換部は、それぞれ完全電荷転送が可能なフォトダイオード(PD)で構成されている。1つの画素部の中で、相対的にx座標値が小さい側に配置されたPDA201、相対的にx座標値が大きい側に配置されたPDB202に対して、相対的にy座標値が大きい側に、PDとしてのPDC203が配置されている。
PDA201とPDB202は蓄積用に用い、PDC203は分離部303の電荷を排出するための排出経路(排出部)として用いる。
図16は、実施例7の画素200Gを、撮像素子100の受光面側(+z側)から見た場合の図である。なお、図16に示される画素のa-a’断面を-y側から見た場合の断面構造については実施例1の図4に示されるのと同じ構造であるので図4を実施例7の説明においても用いる。なお、図16(A)は、図4のe-e’断面図に対応しており、図16(B)は図4のf-f’断面図に対応している。
なお、実施例7においては、分離部303のポテンシャルは、x方向において分離部303の中心部のポテンシャルが高く、また、分離部303のy方向においてはPDC203に近い側のポテンシャルが低い分布となるように、不純物がドープされている。(図19参照)
また、画素へ入射する光の入射角度によらず、排出用PDであるPDC203に入射する光がPDA201とPDB202に入射する光より少なくなるように形成されている。
なお、図17は実施例7の画素を、受光面側(+z側)から見た場合の他の例を示す図であり、図17のように、PDC203に入射する光をより少なくするために、PDC203を、矩形形状を有する画素内の角側に配置しても良い。また分離部303を図17のように斜めに配置しても良い。
また、受光部に光学像を結像するための結像光学系の光軸と受光部が交わる点を中心として、排出部としてのPDC203の画素内における位置が異なるように(例えば点対称に)配置しても良い。
図18は、実施例7における図4のe-e’部に示したx方向のポテンシャル分布を概略的に示す図である。図18(A)は分離部制御電極304の電圧が相対的に低い場合、図18(B)は分離部制御電極304の電圧が相対的に高い場合のポテンシャル分布の例を示す。
図19は、図16のb-b’、c-c’、d-d’、j-j’で示した線分のy方向ポテンシャル分布を概略的に示す図である。図19(A)は分離部制御電極304の電圧が相対的に低い場合、図19(B)は分離部制御電極304の電圧が相対的に高い場合のポテンシャル分布の例を示す。
図19(A)、図19(B)中、j-j’で示したように、PDB202とPDC203の間には、ポテンシャル障壁が存在する。同様にPDA201とPDC203の間にはポテンシャル障壁が存在する。一方、分離部303とPDC203の間にはポテンシャル障壁が存在せず、前述のように、分離部303のy方向においてはPDC203に近い側のポテンシャルが低い分布となるように、不純物がドープされている。
本実施例では、後述のように、分離部制御電極304に印加する電圧を変更することによって、分離部のポテンシャルを変化させ、蓄積期間中に分離部で発生した電荷を収集するか排出するかを切り替えている。
なお、図16に示される画素のa-a’断面を-y側から見た場合の断面構造については実施例1の図4に示されるのと同じ構造であるので図4を実施例7の説明においても用いる。
なお、実施例7における受光部のポテンシャル分布は図5と同様になっており、実施例1と同様に、図4中のg-g’、h-h’、i-i’線分の内、受光部内のポテンシャル分布を概略的に示している。
実施例1と同様に、ポテンシャル分布601は分離部制御電極304の電圧が相対的に低い場合、ポテンシャル分布602は分離部制御電極304の電圧が相対的に高い場合を示している。
即ち、実施例7において、図5中に示したように、分離部制御電極304の電圧を高めると、電極と接続されているp領域305のポテンシャルが低くなる。それに応じて、空乏層である分離部303のポテンシャルが、p領域305に引っ張られるようにしてa-a’断面位置でのポテンシャルがVaからVbへと変化する。
この時、実施例7においては、図18(B)に示すように、x方向におけるポテンシャルの山の中央付近において、上記のポテンシャル変化がより大きく生じるため、分離部303のポテンシャルの山の中央部分に谷ができる。
蓄積期間中、画素200Gに入射した光は、マイクロレンズ501により集光される。そしてカラーフィルタ502で分光された後、分離部303、PDA201、PDB202等に入射する。分離部303、PDA201、PDB202、PDC203では、入射した光量と入射角度に応じて電子とホール(正孔)が対生成し、電界により分離される。正電荷のホールは定電圧源に接続されたp型半導体領域を通じて排出される。負電荷の電子は信号電荷として、以下のように輸送・蓄積される。
<蓄積動作>
本実施例では、蓄積期間中の分離部制御電極304に印加する電圧を変更することにより、電子の輸送経路を変更している。即ち、光電変換により発生する電子の数が多い、光入射面近くのSiのポテンシャルを、光入射面と反対側である駆動面側に配置された、分離部制御電極304に印加する電圧により変更している。そのため、Siへの光入射を遮ることがなく、受光感度には入射角度依存性がないという特徴を有する。
実施例7において、分離部制御電極304に印加する電圧を相対的に低くした輸送・蓄積動作を分離部収集モードと呼び、分離部制御電極304に印加する電圧を相対的に高くした輸送・蓄積動作を分離部排出モードと呼ぶ。
<<分離部排出モード>>
PDA201内で発生した電子の大多数は、PDA201中で相対的にポテンシャルの低いz座標値が相対的に小さい側(図5の左側)へ輸送され、ポテンシャルが極小となる駆動面付近にて蓄積される。PDB202内で発生した電子の大多数は、PDB202中で相対的にポテンシャルの低いz座標値が相対的に小さい側(図5の左側)へ輸送され、ポテンシャルが極小値となる駆動面付近にて蓄積される。
一方、分離部排出モードでは、図18(B)のようにx軸方向において分離部中央のポテンシャルが2つの山とその間の谷(極小値)を形成している。そして、その谷はy方向にPDC203に向かって溝状のポテンシャルを形成している。また、分離部303は図19(B)のようにy軸方向においてPDC203に向かってポテンシャルが低くなっているため、分離部303で発生した電子は上記溝に沿ってPDC203に向かってy座標値が大きい方向に輸送される。
即ち、分離部で発生した電子の大多数はPDA201やPDB202に振り分けられることなく、x方向の谷に集められ、図19(B)のy方向に沿ってy座標値が大きい方向に溝を伝って輸送され、PDC203へと到達する。PDC203に到達した電子は、PDC203内のポテンシャルが低い側へ輸送されて排出される。すなわち、分離部で発生した電子は、蓄積されることなく排出される。実施例7では、この蓄積動作を分離部排出モードと呼ぶ。
<<分離部収集モード>>
PDA201内で発生した電子の大多数は、PDA201中でポテンシャルが極小となる駆動面付近にて蓄積され、PDB202内で発生した電子の大多数も、PDB202中でポテンシャルが極小値となる駆動面付近にて蓄積される。
一方、分離部303内で発生した電子は、分離部収集モードにおいては、分離部制御電極304に印加する電圧は相対的に低くなっている。
従って、図18(A)のようにx軸方向において分離部中央には山(極大値)が形成され、谷が形成されていないため、分離部で発生した電子の大多数はPDA201、PDB202のどちらかに振り分けられる。振り分けられた電子は、PDA201、PDB202内で、ポテンシャルが極小値となる駆動面付近にてそれぞれ蓄積される。
すなわち、分離部で発生した電子は、PDA201やPDB202で発生した電子とともに、PDA201、PDB202内で蓄積される。実施例7では、この蓄積動作を分離部収集モードと呼ぶ。
<画素読み出し回路・読み出し動作>
次に、図20は、実施例7の画素200Gの等価回路を概略的に示す図である。
信号電荷を電圧に変換する電荷電圧変換部(FD)904、PDA201中の信号電荷をFD904に転送するための転送スイッチ(TXA)901、PDB202中の信号電荷をFD904に転送するための転送スイッチ(TXB)902を有する。
また、PDC203中の信号電荷をFD904に転送するための転送スイッチ(TXC)903、PDの信号電荷を排出してリセットするリセットスイッチ(RES)905を有する。
更に、読出し画素を選択する選択スイッチ(SEL)906、信号電圧を画素から出力する増幅トランジスタ(SF)907、出力信号線908、定電圧源909を有する。
また、図20には示されていないが、PDA201~PDC203の間の領域には、分離部303と、その輸送先を制御するための分離部制御電極304を有する。そして、分離部303で発生した電荷をPDCに輸送するか、PDAまたはPDBに輸送することを切り替えることができる。また、TXC903を省略し、PDC203を定電圧源909と接続してもよい。
図21は実施例7における、蓄積期間と画素信号読み出し期間における画素の駆動タイミング例を説明するタイミングチャートである。
図21中のt1001~t1009はタイミングチャート中の各タイミングを示しており、実施例7にいては、各タイミングを(t1001)のように示す。また、例えばφSELは、SELのオン/オフを示しており、オン時はH側(上側)、オフ時はL側(下側)で示している。他のスイッチについても同様である。
また、図21中の分離部制御電圧は上側が高い電圧、下側が低い電圧を示している。画素信号読み出し期間中の分離部制御電圧は、分離部排出モード/分離部収集モードともに、蓄積期間中と同じにしているが、変更しても良い。また、分離部蓄積モード/分離部排出モードの切り替えは、例えば、蓄積期間開始(t1001)の前に行うことが望ましい。図21においては、蓄積期間中は分離部排出モード(H側)となっている。
図21中に示したように、蓄積期間中の分離部収集モード/分離部排出モードによらず、画素信号読み出し動作は同一である。即ち、画素信号読み出しは、N信号読み出し、N+A信号読み出し、N+A+B信号読み出しからなる。N信号は、PDに蓄積した電荷を転送する前のFD電圧に対応したノイズ信号に相当する。
N+A信号は、蓄積期間中にPDA201に蓄積した電荷をFD904に転送した後のFD電圧に対応した信号であり、前述のN信号を含んでいる。N+A+B信号は、蓄積期間中にPDA201およびPDB202に蓄積した電荷をともにFD904に転送した後のFD電圧に対応した信号であり、やはりN信号を含んでいる。
以下、蓄積期間・画素信号読み出し期間の画素動作を説明する。
<蓄積期間(t1001~t1002)>
蓄積期間中はSEL906がオフであり、SF907と出力信号線908が切り離されている。また、図21においては、蓄積期間中は分離部排出モード(H側)となっており、しかもRES905とTXC903がオンとなっている。従って、分離部303の谷や溝を伝ってPDC203に集められた信号電荷はTXC903、FD904、RES905を介して画素から排出される。
一方、TXC903は、蓄積期間中にオンにすることでPDC203中の電荷を排出しているが、分離部収集モード時には分離部303の溝を伝ってPDC203内に集められる電荷は少ないため、TXC903をオフとしても良い。
<画素信号読み出し期間(t1002~t1009)>
蓄積期間終了後、SELがオンとなるので、SF907と出力信号線908が接続される(t1002)。続いてRES905とTXC903がオフとなる(t1003)。その後のFD904の電位に対応した電圧がN信号として、SF907を介して画素から出力信号線908に読み出される(t1003~t1004)。
続いて、TXA901がオン(t1004)/オフ(t1005)され、蓄積期間中にPDAに蓄積された信号電荷がFD904に転送され、FDの電位は転送された電荷量に応じて降下する。その後のFD電圧に対応した電圧がN+A信号として、SF907を介して画素から読み出される(t1005~t1006)。
続いて、TXA901とTXB902がオン(t1006)/オフ(t1007)され、蓄積期間中にPDBに蓄積された信号電荷がFD904に転送され、FD電位は転送された電荷量に応じて降下する。その後のFD電圧に対応した電圧がN+A+B信号として、SF907を介して画素から読み出される(t1007~t1008)。
続いて、RES905、TXC903がオンとなって(t1008)、PDC203が電源電圧と接続されてPDC203やFD内の残留電荷が除去された後に、SEL906がオフとなる(t1009)。それによって、SF907と出力信号線908が切り離されて、画素信号読み出し期間が終了する。
上記動作により得られた信号の内、N信号とN+A信号の差分を計算することで、PDA201に蓄積した電荷量に対応した信号Aを得る。また、N+A信号とN+A+B信号の差分を計算することで、PDB202に蓄積した電荷量に対応した信号Bを得る。信号Aと信号Bが視差信号であり焦点検出に用いられる。一方、信号Aと信号Bを足し合わせた信号A+Bが撮像信号であり、画像表示等に用いられる。
<撮像信号/位相差信号の取得>
次に、図22等を参照して、実施例7の画素構造と瞳分割との対応関係について説明する。
図22は、実施例7における、射出瞳面内のx軸に沿った信号強度である瞳強度分布例を示す図であり、図22(A)は分離部収集モードにおける瞳強度分布例、図22(B)は分離部排出モードにおける瞳強度分布例を示す。
図22において、1201と1204は信号Aを表し、1202と1205は信号Bを表し、1203と1206が信号A+Bを表す。
デフォーカス量が大きい場合、分離部排出モードでは、A像、B像それぞれのボケ量も大きくなるためA像とB像の信号強度分布が異なりやすくなる。
即ち、デフォーカス量が大きい場合には、A像、B像それぞれのボケ量も大きいため、A像とB像の信号強度分布が異なりやすく、分離部収集モードでは像ずれ量計算時の信頼値が大きくなりやすい。即ち、デフォーカス量の精度が低下しやすい。
なお、前述のように、焦点検出演算(像ずれ量の計算)において、A像信号、B像信号の相対位置をずらした場合における、画素毎のA像信号とB像信号の差分の二乗の総和(信頼値)が最も小さいずらし量を像ずれ量(デフォーカス量)とする。
また、上記の信頼値もデフォーカス量の信頼性や精度を判断するための値として取得する。即ち、本実施例ではこの信頼値の値が小さい程像ずれ量計算の精度が高いことを表す。
なお、信頼値は焦点検出の状態を表す値として用いているが、焦点検出状態を表す値としては上記信頼値に限定されず、例えばA像信号、B像信号の形状の類似度やレベル差などを用いても良い。
一方、分離部排出モードではPDA(A像)、PDB(B像)それぞれに蓄積する光の入射角度範囲を狭くすることができるため、A像、B像のボケ量が小さくなり、像ずれ量計算時の信頼値が低くなる。
即ち、デフォーカス量の精度が高くなる。そのため、デフォーカス量が大きい場合、分離部排出モードの方が、焦点検出に適した信号を取得することができる。
更にまた、画像取得時には、分離部排出モードよりも分離部収集モードの方が不自然なボケが発生しにくい。
従って実施例7においては、デフォーカス量検出(焦点検出)時か画像取得時かに応じて分離部排出モードと分離部収集モードとを切り替えることで、不自然なボケを抑制した撮像信号の取得と焦点検出に適した信号を最適に切り替えて取得することができる。
以上のように、本変形例の撮像素子では、PDA201、PDB202への影響を抑制しつつ、分離部収集モード/分離部排出モードを切り替えることで、不自然なボケを抑制した撮像信号の取得と焦点検出に適した信号を切り替えて取得することができる。
<カメラ動作シーケンス>
図23は、実施例7において行われるAFワンショット撮影のフローチャートの一例を示す図であり、図23を用いてAFワンショット撮影について説明する。なお、撮像装置の構成は図12に示したものと同じである。
操作部1507のユーザ操作により、撮影モードがAFワンショット撮影モードに設定されている状態で、撮像指示スイッチSW2が全押しされた場合に図23のフローがスタートする。
まず、ステップS1601では、分離部収集モードで露光・蓄積をする。
次にステップS1602で撮像素子100から信号を読み出し、ステップS1603でデフォーカス量とデフォーカス量の信頼値を算出する。即ち、ステップS1603は、焦点検出手段における焦点検出の信頼値を算出する信頼値算出手段として機能している。
ステップS1604では、S1603で算出した信頼値が予め定められた閾値より低ければ(デフォーカス量の精度が高ければ)S1605に移行し、信頼値が予め定められた閾値より高ければS1609に移行する。
ステップS1609では分離部排出モードで露光・蓄積を行う。即ち、電圧制御手段は、ステップS1604、S1609において、信頼値に基づいて、分離部制御電極に印加する電圧を変更している。ステップS1610では、撮像素子100から信号を読み出し、S1611ではデフォーカス量と信頼値を再度算出する。即ち、ステップS1611も、焦点検出手段における焦点検出の状態(信頼値)を算出する算出手段として機能している。
収集するA像/B像の光の入射角度が狭い分離部排出モードで露光・蓄積した信号を元にステップS1611で信頼値を算出する。算出された信頼値は、収集するA像/B像の光の入射角度が広い分離部収集モードで蓄積した信号を元にステップS1603で算出した信頼値よりも、小さい値になる。即ち、デフォーカス量の精度が高くなる。
ステップS1612では、ステップS1611で算出した信頼値が予め定められた閾値より高ければ(デフォーカス量の精度が低ければ)ステップS1605に移行する。そして、信頼値が予め定められた閾値より低ければ(デフォーカス量の精度が高ければ)ステップS1613に移行する。
ステップS1613では、算出したデフォーカス量によらず、レンズ駆動部1502を用いて、フォーカス位置を予め決められた方向に所定範囲だけ動かして画像のコントラスト値のピークを探す。それによって焦点が合う位置を探す、いわゆるフォーカスサーチ駆動を行い、ステップS1609に移行する。
ステップ1605では、レンズ駆動部1502を介して、ステップS1603またはステップS1611で算出したデフォーカス量を元に結像レンズをフォーカス位置まで駆動することで、ピントを被写体に合わせる。
次いでステップS1606では分離部収集モードで露光・蓄積を行い、ステップS1607で撮像素子100から画像信号としてA+B信号を読み出し、ステップS1608で記録部1506に記録を行う。また必要に応じて表示部1505で画像表示を行う。
このように、分離部収集モードで露光・蓄積した信号を元に算出したデフォーカス量の信頼値が高い(デフォーカス量の精度が低い)被写体の場合には、分離部排出モードで露光・蓄積した信号を元に算出したデフォーカス量を用いる。それによって、ピントを被写体に合わせることができる。
以上のように、表示用や記録用の画像を取得する際において、マイクロレンズを共有する光電変換部同士の分離部に感度が無い領域が存在する(又は分離部の電荷を排出する)と、非合焦時に不自然なボケが生じる。従って分離部の感度がある方が(又は分離部の電荷を排出せずに使う方が)より好ましい。
一方、焦点検出においては、光電変換部同士の分離部に感度があると焦点検出信号間の信号強度分布の形状差が大きくなりやすく、焦点検出に必要な像ずれ量の計算誤差が増加する場合がある。そのため、分離部の感度は無い方がより好ましい。しかし、Si等から成る受光部では、光を受けて電荷が発生するため、分離部近傍に存在する電荷蓄積層に、光を受けて発生した電荷の多くが収集されてしまう問題がある。
かといって、光電変換部の分割線に沿ったゲート電極(分離部制御電極)を、受光面側に配置すると、光入射面から分離部を制御することになるため、透明電極を用いたとしても感度損失が生じ、画像信号を取得する際に不自然なボケが生じやすくなってしまう。
しかし実施例7のような構成によれば、画像信号を取得する場合には、不自然なボケを抑制した撮像信号(画像信号)を取得することができる。しかも、焦点検出をする場合には精度の高い焦点検出が可能な撮像装置を得ることができるという効果を得ることができる。
図24は、実施例8における図3のa-a’断面を-y側から見た場合の断面図である。
実施例1の図4との違いは、実施例1では分離部303内のp型半導体の不純物濃度が分離部303のx方向(分離方向)の中心(画素中心)で最も高くなっており、分離部制御電極304のx方向の中心位置も画素中心に合っている。それに対して、実施例8では分離部303内のp型半導体の不純物濃度が、画素中心からx方向にずれた領域507において最も高くなっている。
また、分離部303のx方向の中心位置が画素中心(p型半導体の不純物濃度のピーク位置)からずれていることである。
このように実施例8においては、分離部の分離方向について見たときに、分離部の内部の不純物濃度が最も高い領域が、分離部制御電極の中心線とずれた位置に配置されている。
なお、分離部の内部の不純物濃度が最も高い領域と分離部制御電極の中心線が、分離方向について見たときに、画素中心から見て反対側に配置されるように構成しても良い。
更に受光部の中心に対して、分離部の内部の不純物濃度が最も高い領域と分離部制御電極の中心線の相対位置が対称の関係となる画素を有していても良い。
また、所定行数ごとに、分離部の内部の不純物濃度が最も高い領域と分離部制御電極の中心線の相対位置が対称関係である画素を交互に配置しても良い。
図25は、図24のe-e’で示した線分の内Siであるのポテンシャル分布を概略的に示す図であり、図25(A)は分離部制御電極304の電圧が相対的に低い場合、図25(B)は分離部制御電極304の電圧が相対的に高い場合を示している。
図25(A)と図25(B)に示すように、分離部制御電極304に印加する電圧を、電圧制御手段により変更することによって、分離部303内のx方向のポテンシャルが最大となる位置をx方向に移動させることができる。
分離部303で発生した電子は、分離部303内のx方向のポテンシャルが最大となる位置を境に、PDA201、PDB202に振り分けられる。そして、-z方向に輸送され、PDA201、PDB202内のポテンシャルが極小値となる場所付近に蓄積される。
分離部制御電極304の印加電圧を変化させることで、ポテンシャルが最大となる位置をx方向に移動させることができ、分離部303で発生した電荷をPDA201とPDB202に振り分ける分割位置を変更することができる。
図26を参照して、本実施形態の画素構造と瞳分割との対応関係について説明する。
図26は、実施例8の、射出瞳面内のx軸に沿った信号強度である瞳強度分布例を示す図である。図26において、901a、902aは、図25(A)に対応した、分離部制御電極304の印加電圧が低い場合のPDA201およびPDB202の瞳強度分布を示す。
また、901b、902bは図25(B)に対応した、分離部制御電極304印加電圧の高い場合のPDA201およびPDB202の瞳強度分布を示す。903はPDA201とPDB202の瞳強度分布を加算した瞳強度分布を示す。
このように、実施例8では、分離部制御電極304の印加電圧により分離部303で発生した電子の振り分け位置をx方向に移動できるため、瞳分割領域1103内の瞳分割位置を変更することができる。
なお、図24に示した断面構造における分離部制御電極の構造のみを、実施例3、4のように変更しても良い。
実施例8においては、図24に示すように1画素あたりの分離部制御電極が1つであったが、実施例9では図24における分離部制御電極の数を2つに変更している。図27は実施例9の画素の断面図であり、図27を用いて実施例9について説明する。
実施例9では、分離部制御電極は、画素中心よりx座標が小さい側の分離部制御電極1201と、x座標が大きい側の分離部制御電極1202との2つに分かれて配置されており、それぞれ独立に異なる電圧を印加することができる。
分離部303は2つの分離部制御電極1201、1202をまたがるように配置されおり、不純物濃度は画素中心領域1203がx方向において最も高くなっている。
実施例8と比較して、分離部303内で電界がかかる領域がx方向に広くなるため、ポテンシャルのピーク位置の変化量を大きくすることができ、瞳分割領域1103内で瞳分割位置が変位量を大きくすることができる。
以上のように実施例9の撮像素子では、瞳分割の位置を実施例8より広い範囲で変更することができる。
次に、実施例9においてセンサー瞳距離やレンズ射出瞳距離と瞳強度分布の関係について図28を用いて説明する。
図28は実施例8、実施例9における、瞳強度分布の例を示す図である。
図14で説明したように、装着された結像レンズの光学的な絞りを1008とした場合に、この絞り開口の中心と画素200Gを結ぶ線1006が入射光軸を表し、絞り開口からは角度幅1001をもつ光が画素200Gに入射される。この時結像レンズの光学的な絞り1008と受光面はレンズ射出瞳距離1004だけ離れている。
この状態において、入射される光は図28中の例えば角度幅2503に相当するものとなり、この角度幅で切り取られるPDA信号とPDB信号の強度波形の重心差で位相差を検出しなくてはならない。
しかし、その時に仮にPDA201とPDB202の瞳強度分布が図28の901a、902aだったとすると、強度波形の重心差が小さくなり位相差検知の精度が低下する。
重心差は、瞳強度分布においてPDA201とPDB202の信号強度が近しい角度で大きくなるので、本実施例では、分離部制御電極304の印加電圧を低くし、PDA201とPDB202の瞳強度分布を図28の901b、902bの位置にシフトする。それによって重心差を大きくすることができ、位相差検出精度を向上することができる。
同様に、装着された結像レンズの光学的な絞り1008と受光面がセンサー瞳距離1003だけ離れている場合やセンサー瞳面と受光面の距離が1003の場合、入射光軸が1005となり、図28に示すような位置の角度幅2504となる。この場合には、実施例9では分離部制御電極304の印加電圧を高くしてPDA201とPDB202の瞳強度分布を図28の901a、902aの位置にシフトすることで重心差を大きくし、位相差検出精度を向上することができる。
このように、実施例8、9の撮像素子及び撮像装置においては、結像レンズの光学的な絞りの位置やセンサー瞳距離に応じて、分離部制御電極304の印加電圧を変更することで、それぞれの光学条件において重心差を大きくすることができる。それによって位相差検出精度を向上することができる。
以上、本発明をその好適な実施例に基づいて詳述してきたが、本発明は上記実施例に限定されるものではなく、本発明の主旨に基づき種々の変形が可能であり、それらを本発明の範囲から除外するものではない。
なお、本実施例における制御の一部または全部を上述した実施例の機能を実現するコンピュータプログラムをネットワーク又は各種記憶媒体を介して撮像装置に供給するようにしてもよい。そしてその撮像装置におけるコンピュータ(又はCPUやMPU等)がプログラムを読み出して実行するようにしてもよい。その場合、そのプログラム、及び該プログラムを記憶した記憶媒体は本発明を構成することとなる。
100 撮像素子
101 画素アレイ部
102 垂直走査回路
103 列回路
104 水平走査回路

Claims (29)

  1. 半導体基板の第1の面側に設けられ、複数の画素が2次元状に配された受光部と、
    前記半導体基板の前記第1の面とは反対側の第2の面側に設けられ、前記画素からの信号を読出すための読出し回路と、を有する撮像素子であって、
    前記画素はそれぞれ少なくとも2つの光電変換部と、前記2つの光電変換部の間の領域である分離部を有し、
    前記画素はそれぞれが1つのマイクロレンズと対応し、該マイクロレンズから前記2つの光電変換部にそれぞれ入射される光によって視差信号を取得するものであり、
    前記分離部の、前記第2の面側に配置され、前記分離部のポテンシャルを制御することにより瞳分割特性を補正するための分離部制御電極と、を有することを特徴とする撮像素子。
  2. 前記分離部制御電極が、前記受光部を構成する半導体と接する金属またはポリシリコンで構成されることを特徴とする請求項1に記載の撮像素子。
  3. 前記分離部制御電極と前記受光部を構成する半導体の一部の領域との間に絶縁膜を有することを特徴とする請求項2に記載の撮像素子。
  4. 前記分離部制御電極が、前記光電変換部と異なる導電型の半導体で構成されることを特徴とする請求項1~3のいずれか1項に記載の撮像素子。
  5. 前記画素毎にカラーフィルタを有し、前記分離部制御電極の前記受光部の深さ方向の長さが前記カラーフィルタ毎に異なることを特徴とする請求項1~4のいずれか1項に記載の撮像素子。
  6. 前記分離部に接続され、前記分離部の電荷を排出するための排出部を有することを特徴とする請求項1~5のいずれか1項に記載の撮像素子。
  7. 前記画素は矩形形状を有し、前記排出部が、前記画素内の角側に配置されていることを特徴とする請求項6に記載の撮像素子。
  8. 前記受光部に光学像を結像するための結像光学系の光軸と前記受光部が交わる点を中心として、前記排出部の画素内における位置が異なることを特徴とする請求項6または7に記載の撮像素子。
  9. 前記分離部は内部に不純物の濃度分布を有し、前記分離部の分離方向について見たときに、前記分離部の内部の不純物濃度が最も高い領域が、前記分離部制御電極の中心線とずれた位置に配置されていることを特徴とする請求項1に記載の撮像素子。
  10. 前記分離部の内部の不純物濃度が最も高い領域と前記分離部制御電極の中心線が、前記分離方向について見たときに、画素中心から見て反対側に配置されていることを特徴とする請求項9に記載の撮像素子。
  11. 前記受光部の中心に対して、前記分離部の内部の不純物濃度が最も高い領域と前記分離部制御電極の中心線の相対位置が対称の関係となる画素を有していることを特徴とする請求項9に記載の撮像素子。
  12. 所定行数ごとに、前記分離部の内部の不純物濃度が最も高い領域と前記分離部制御電極の中心線の相対位置が対称関係である画素を交互に配置したことを特徴とする請求項9に記載の撮像素子。
  13. 請求項1~12のいずれか1項に記載の撮像素子の前記分離部制御電極に印加する電圧を変更することによって、前記分離部のポテンシャルを制御するための電圧制御手段と、を有することを特徴とする撮像装置。
  14. 前記2つの光電変換部で光電変換された信号を用いて瞳分割位相差方式の焦点検出を行う焦点検出手段を有することを特徴とする請求項13に記載の撮像装置。
  15. 前記電圧制御手段は、前記分離部制御電極に印加する電圧を、前記焦点検出手段における瞳分割特性を改善するように変更することを特徴とする、請求項14に記載の撮像装置。
  16. 前記瞳分割特性は、前記光電変換部における瞳強度分布特性を含むことを特徴とする請求項15に記載の撮像装置。
  17. 前記瞳分割特性は、前記光電変換部から得られる信号のシェーディング特性を含むことを特徴とする請求項15に記載の撮像装置。
  18. 前記電圧制御手段は、前記受光部に光学像を結像するための結像光学系に応じて、前記分離部制御電極に印加する電圧を変更することを特徴とする請求項13に記載の撮像装置。
  19. 前記電圧制御手段は、前記受光部の中心からの距離に応じて、前記分離部制御電極に印加する電圧を変化させることを特徴とする請求項13に記載の撮像装置。
  20. 前記瞳分割特性は、前記受光部に光学像を結像するための結像光学系の射出瞳距離と、前記撮像素子のセンサー瞳距離の関係に応じた特性を含むことを特徴とする請求項15に記載の撮像装置。
  21. 前記電圧制御手段は、前記射出瞳距離と前記センサー瞳距離の差が大きい場合には、前記差が小さい場合よりも、大きな電圧を前記分離部制御電極に印加することを特徴とする請求項20に記載の撮像装置。
  22. 前記電圧制御手段により、前記分離部制御電極に所定の電圧を印加することにより、前記分離部における電荷を所定の排出部に排出することを特徴とする請求項13に記載の撮像装置。
  23. 前記電圧制御手段により、前記分離部制御電極に前記所定の電圧を印加した場合に、前記分離部で発生した電荷を前記所定の排出部に排出するための溝状のポテンシャルを前記分離部に形成することを特徴とする請求項22に記載の撮像装置。
  24. 前記電圧制御手段により前記分離部制御電極に印加する電圧に応じて、前記分離部で発生した電荷を前記2つの光電変換部に振り分けるか、前記所定の排出部に排出させるかを切り替えることを特徴とする請求項22に記載の撮像装置。
  25. 前記焦点検出手段における焦点検出状態を算出する算出手段を有し、
    前記電圧制御手段は、前記焦点検出状態に基づいて、前記分離部制御電極に印加する電圧を変更することを特徴とする請求項1に記載の撮像装置。
  26. 前記電圧制御手段により、前記分離部制御電極に印加する電圧を変更することによって、前記分離部の内部のポテンシャルが最も高い領域を前記分離部の分離方向に移動させることを特徴とする請求項13に記載の撮像装置。
  27. 前記受光部に光学像を結像するための結像光学系が、前記撮像装置に対して着脱可能なレンズ鏡筒に含まれることを特徴とする請求項13に記載の撮像装置。
  28. 請求項13~27のいずれか1項に記載の前記撮像装置の各手段としてコンピュータを機能させるためのコンピュータプログラム。
  29. 請求項28に記載のコンピュータプログラムを記憶したコンピュータで読み取り可能な記憶媒体。
JP2020040210A 2020-03-09 2020-03-09 撮像素子、撮像装置、コンピュータプログラム及び記憶媒体 Active JP7504630B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020040210A JP7504630B2 (ja) 2020-03-09 2020-03-09 撮像素子、撮像装置、コンピュータプログラム及び記憶媒体
US17/193,699 US11417697B2 (en) 2020-03-09 2021-03-05 Imaging device and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020040210A JP7504630B2 (ja) 2020-03-09 2020-03-09 撮像素子、撮像装置、コンピュータプログラム及び記憶媒体

Publications (2)

Publication Number Publication Date
JP2021141552A JP2021141552A (ja) 2021-09-16
JP7504630B2 true JP7504630B2 (ja) 2024-06-24

Family

ID=77556335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040210A Active JP7504630B2 (ja) 2020-03-09 2020-03-09 撮像素子、撮像装置、コンピュータプログラム及び記憶媒体

Country Status (2)

Country Link
US (1) US11417697B2 (ja)
JP (1) JP7504630B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022044285A (ja) * 2020-09-07 2022-03-17 オリンパス株式会社 検出装置および検出方法
JP2023166867A (ja) * 2022-05-10 2023-11-22 キヤノン株式会社 撮像素子及び撮像装置
CN115082468B (zh) * 2022-08-22 2023-08-22 中国诚通生态有限公司 动力电池回收过程电极材料分离控制方法及***

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016046420A (ja) 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410804A (en) 1981-07-13 1983-10-18 Honeywell Inc. Two dimensional image panel with range measurement capability
JP5693082B2 (ja) * 2010-08-09 2015-04-01 キヤノン株式会社 撮像装置
JP2014183206A (ja) * 2013-03-19 2014-09-29 Sony Corp 固体撮像装置および固体撮像装置の駆動方法ならびに電子機器
JP2015106621A (ja) * 2013-11-29 2015-06-08 ソニー株式会社 固体撮像素子および製造方法、並びに電子機器
JP2015170620A (ja) * 2014-03-04 2015-09-28 株式会社東芝 固体撮像装置
JP6308864B2 (ja) 2014-05-15 2018-04-11 キヤノン株式会社 撮像装置
TWI692090B (zh) * 2014-11-05 2020-04-21 日商索尼半導體解決方案公司 固體攝像元件及其製造方法
KR20160100569A (ko) * 2015-02-16 2016-08-24 삼성전자주식회사 이미지 센서 및 이미지 센서를 포함하는 촬상 장치
TWI731017B (zh) * 2016-01-27 2021-06-21 日商新力股份有限公司 固體攝像元件及電子機器
JP6738200B2 (ja) * 2016-05-26 2020-08-12 キヤノン株式会社 撮像装置
KR102589016B1 (ko) * 2016-08-25 2023-10-16 삼성전자주식회사 반도체 소자
KR102427832B1 (ko) * 2017-04-12 2022-08-02 삼성전자주식회사 이미지 센서
KR102380819B1 (ko) * 2017-04-12 2022-03-31 삼성전자주식회사 이미지 센서
KR102542614B1 (ko) * 2017-10-30 2023-06-15 삼성전자주식회사 이미지 센서

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016046420A (ja) 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
US11417697B2 (en) 2022-08-16
US20210280619A1 (en) 2021-09-09
JP2021141552A (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
US10658405B2 (en) Solid-state image sensor, electronic apparatus, and imaging method
US8319874B2 (en) Connection/separation element in photoelectric converter portion, solid-state imaging device, and imaging apparatus
US8159580B2 (en) Solid-state imaging device and imaging apparatus using the same
EP2738812B1 (en) A pixel array
CN107425022B (zh) 固态成像装置和电子设备
KR101015766B1 (ko) 고체 촬상 소자
US20180077372A1 (en) Solid-state imaging element and driving method therefor, and electronic apparatus
JP5860168B2 (ja) 固体撮像装置
JP7504630B2 (ja) 撮像素子、撮像装置、コンピュータプログラム及び記憶媒体
JP4839990B2 (ja) 固体撮像素子及びこれを用いた撮像装置
JP5566457B2 (ja) 固体撮像素子及びデジタルカメラ
JP5955000B2 (ja) 固体撮像素子、該固体撮像素子を備えた距離検出装置、及びカメラ
JP2009109965A (ja) 固体撮像素子および撮像装置
JP2015207594A (ja) 固体撮像装置
JP2016029674A (ja) 固体撮像装置
JP2014029351A (ja) 固体撮像素子及び撮像装置
US20220028910A1 (en) Image sensor having two-colored color filters sharing one photodiode
KR20080068373A (ko) 주광선 손실을 보상하는 마이크로렌즈 어레이 및 이를포함하는 이미지센서 조립체
JP2021114538A (ja) 撮像素子および撮像装置
JP4645578B2 (ja) 固体撮像素子および固体撮像素子の製造方法
US20240205560A1 (en) Sensor including micro lenses of different sizes
CN118057834A (zh) 图像传感器和摄像设备
CN114339096A (zh) 图像感测装置
JP2011044542A (ja) 撮像装置及び固体撮像素子
JP2011066685A (ja) 固体撮像素子及びその駆動方法並びに撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240612