JP7498079B2 - 車両制御システム - Google Patents

車両制御システム Download PDF

Info

Publication number
JP7498079B2
JP7498079B2 JP2020167602A JP2020167602A JP7498079B2 JP 7498079 B2 JP7498079 B2 JP 7498079B2 JP 2020167602 A JP2020167602 A JP 2020167602A JP 2020167602 A JP2020167602 A JP 2020167602A JP 7498079 B2 JP7498079 B2 JP 7498079B2
Authority
JP
Japan
Prior art keywords
route
predicted route
vehicle
predicted
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020167602A
Other languages
English (en)
Other versions
JP2022059786A (ja
Inventor
優輝 倉上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2020167602A priority Critical patent/JP7498079B2/ja
Priority to US17/493,273 priority patent/US11912278B2/en
Publication of JP2022059786A publication Critical patent/JP2022059786A/ja
Application granted granted Critical
Publication of JP7498079B2 publication Critical patent/JP7498079B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、車両に関する車両制御システムに係るものとされ、特に、適切な走行経路を選択する車両制御システムの技術分野に関する。
車両の自動運転に関する技術が発達してきている。例えば、ハンズフリー走行などはその一例であり、このような自動運転を適切に行うためには、自車両の走行車線を適切に認識することが重要である。
例えば、下記特許文献1においては、自車位置に対応する車線数情報と、先行車の走行軌跡に対する自車位置の横方向の位置関係とを用いて、自車の走行車線を推定するのに適切でない走行軌跡を判定する技術が開示されている。
また、下記特許文献2においては、カメラ画像に基づく区画線パターンと地図情報に基づく区画線パターンを比較してカメラ画像に基づく道路区画線の位置の確からしさを判定する技術が開示されている。
特開2020-057146号公報 特開2017-084137号公報
しかし、特許文献1に記載の方法や特許文献2に記載の方法では、地図情報が古く実際には白線が旧来の位置とは異なる位置に引き直されているような場合においては、適切に走行車線を把握することができない虞がある。
本発明は上記事情に鑑みて為されたものであり、車載カメラの画像の信頼度が低い場合や地図情報の信頼度が低い場合などにおいて、適切な走行経路を選択することを目的とする。
本発明に係る車両制御システムは、地図情報と自車両の位置情報に基づく自車両の予測経路を第1予測経路として生成する第1予測経路生成手段と、自車両外部の走行環境を認識する外部環境認識手段から取得した外部環境情報に基づく自車両の予測経路を第2予測経路として生成する第2予測経路生成手段と、先行車の走行経路に関する情報を先行車情報として取得する先行車情報取得手段と、前記第1予測経路と前記第2予測経路の所定以上の乖離の有無を判定する乖離判定手段と、前記第1予測経路と前記第2予測経路に所定以上の乖離があると判定された場合に前記先行車情報に基づいて前記第1予測経路と前記第2予測経路それぞれの信頼度を判定する信頼度判定手段と、前記それぞれの信頼度に基づいて自車両の走行経路を選択する走行経路選択手段と、を備えている。
第1予測経路と第2予測経路が乖離している場合には、より適した予測経路を走行経路として選択することが望ましい。走行経路選択手段を備えることにより、適した予測経路を選択することが可能とされる。
上記した車両制御システムにおいては、前記第1予測経路と前記第2予測経路に基づいて第3予測経路を生成する第3予測経路生成手段を備え、前記走行経路選択手段は、前記第3予測経路を自車両の走行経路として選択可能とされていてもよい。
第1予測経路と第2予測経路は、何れか一方が不適切な経路である可能性がある。そのような場合に、選択可能な走行経路として第3予測経路が生成されることにより、より適切な予測経路を選択することが可能とされる。
上記した車両制御システムにおいては、前記第1予測経路と前記第2予測経路に所定以上の乖離があると判定した場合において、前記走行経路選択手段は、前記信頼度の判定を行う前は前記第3予測経路を自車両の走行経路として選択し、前記信頼度の判定を行った後は前記第1予測経路と前記第2予測経路のうち前記信頼度が高い方の予測経路を自車両の走行経路として選択してもよい。
第3予測経路は、例えば、第1予測経路と第2予測経路の少なくとも一方よりも適切な経路とされる。
上記した車両制御システムにおける前記乖離判定手段は、前記第1予測経路における所定時間後または所定距離走行後の自車両の予測位置と前記第2予測経路における所定時間後または所定距離走行後の自車両の予測位置とが所定距離以上離れている場合に、前記所定以上の乖離があると判定してもよい。
この判定は、各予測経路上の何れかの予測位置に自車両が到達する前に行われる。
上記した車両制御システムにおいて、前記第3予測経路は、前記第1予測経路における所定時間後または所定距離走行後の自車両の予測位置と前記第2予測経路における所定時間後または所定距離走行後の自車両の予測位置の中間地点を通過する経路とされていてもよい。
第1予測経路と第2予測経路のうち一方が最適な経路とされる場合に、他方の予測経路を選択してしまうと、最適な経路から所定距離以上離れた位置を自車両が走行してしまう可能性がある。このような場合に、第3予測経路として第1予測経路と第2予測経路の中間の経路が生成されて選択されることにより、最適な経路からの乖離を半分に抑えることができる。
なお、第3予測経路は、第1予測経路と第2予測経路にそれぞれ重みを付けて算出してもよい。これにより、最適な経路からの乖離を抑制することができる。特に、第1予測経路と第2予測経路のうち何れかが高い確率で最適な経路であると推定できる場合には、重みを付けることで中間地点を通過するように第3予測経路を設定するよりも最適な経路側に寄せることができる。
本発明によれば、車載カメラの画像の信頼度が低い場合や地図情報の信頼度が低い場合などにおいて、適切な走行経路を選択することができる。
車両制御システムの構成例を示す概略図である。 運転支援制御部の機能構成を示す図である。 第1予測経路と第2予測経路から生成された第3予測経路を説明するための図である。 乖離判定処理において乖離ありと判定される状態を示した概略図である。 乖離判定処理において乖離なしと判定される状態を示した概略図である。 ハンズオン要求モードにおいて運転者に提示される報知画面の一例を示す図である。 モード遷移と遷移条件を説明するための図である。 走行経路選択処理の一例を示すフローチャートである。 乖離判定処理において乖離ありと判定され得る状況の一例を示す図である。 乖離判定処理において乖離ありと判定され得る状況の他の例を示す図である。 第3予測経路を介して走行経路が切り換えられた場合の自車両の挙動を説明するための図である。 第3予測経路を介さずに走行経路が切り換えられた場合の自車両の挙動を説明するための図である。 乖離判定処理の一例を示すフローチャートである。 左側逸脱判定処理の一例を示すフローチャートである。 左側逸脱量の算出例を示す図である。 信頼度判定処理の一例を示すフローチャートである。 先行車が自車両の第2予測経路を逸脱している状態を示す図である。 先行車が自車両の第1予測経路を逸脱している状態を示す図である。
<1.車両制御システムの構成>
以下添付図面を参照して本発明に係る実施の形態として、車両の運転を支援する車両制御システム1の構成について説明する。
以下の実施の形態における車両制御システム1は、ハンズオフ走行を行うための運転支援制御が可能とされている。また、車両制御システム1は、ハンズオフ走行において、地図情報に基づいて予測した第1予測経路と、自車両の外部状況に基づいて予測した第2予測経路との間に所定以上の乖離が発生した場合に、安全性を確保した上で予測経路を選択する機能を備えている。
図1は車両100が備える車両制御システム1の構成例を示す概略図である。なお、図1は、車両制御システム1が備える各構成のうち、本発明に係る要部の構成を中心に示したものである。従って、車両制御システム1が図1に示していない構成を備えていてもよい。
車両制御システム1は、運転支援制御部2、外部環境認識装置3、地図ロケータ4、通信部5、表示制御部6、エンジン制御部7、TM(トランスミッション)制御部8、ブレーキ制御部9、操舵制御部10、表示部11、エンジン関連アクチュエータ12、TM関連アクチュエータ13、ブレーキ関連アクチュエータ14、操舵関連アクチュエータ15、センサ・操作子類16とを備えている。
運転支援制御部2、外部環境認識装置3、地図ロケータ4、通信部5、表示制御部6、エンジン制御部7、TM制御部8、ブレーキ制御部9、操舵制御部10は、バス17を介して相互に接続されている。
外部環境認識装置3は、車両100の外部環境を認識し外部環境情報を取得するための機能を備えた装置とされ、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えたマイクロコンピュータで構成されている。
外部環境認識装置3は、車両100の前方を撮像可能なステレオカメラ18と、ステレオカメラ18から取得した画像に対する各種の処理を行う画像処理部19と、ミリ波レーダやレーザレーダなどのレーダ装置20やその他のセンシング装置などを備えている。
ステレオカメラ18は、複数の撮像部を備え、それぞれがカメラ光学系とCCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子とを備えて構成され、前記カメラ光学系により前記撮像素子の撮像面に被写体像が結像されて受光光量に応じた電気信号が画素単位で得られる。
各撮像部は、いわゆるステレオ撮像法による測距が可能となるように設置されている。そして各撮像部で得られた電気信号はA/D変換や所定の補正処理が施され、画素単位で所定階調による輝度値を表すデジタル画像信号(撮像画像データ)として画像処理部19に供給される。
なお、ステレオカメラ18の代わりに、測距可能な撮像素子を備える一つの撮像部を備えたカメラ装置とされていてもよい。なお、外部環境認識装置3は、車両100の前方を撮像するステレオカメラ18以外に、車両100の後方を撮像する撮像部や車両100の側方を撮像する撮像部などを備えて構成されていてもよい。
画像処理部19は、例えばCPU、ROM、RAM等を備えたマイクロコンピュータで構成され、ステレオカメラ18等の撮像部によって得られた撮像画像データに基づき、車外環境の認識に係る所定の画像処理を実行する。画像処理部19による画像処理は、外部環境認識装置3が備える不揮発性メモリ等の記憶部を用いて行われる。
画像処理部19は、ステレオ撮像により得られた各撮像画像データに基づく各種の画像処理を実行し、自車両の前方の立体物データや区画線(センターラインや車線境界線など)等の前方情報を認識し、これら認識情報等に基づいて自車両が走行している道路や車線(自車走行車線)を推定することが可能とされている。さらに、画像処理部19は、認識した立体物データ等に基づいて自車走行車線上の先行車両の検出を行う。
具体的に、画像処理部19は、ステレオ撮像された各撮像画像データに基づく処理として、例えば以下のような処理を行う。先ず、ステレオカメラ18から得た一対の撮像画像を用いて、対応する位置のずれ量(視差)から三角測量の原理によって距離情報を生成する。そして、距離情報に対して周知のグルーピング処理を行い、グルーピング処理した距離情報を予め記憶しておいた三次元的な道路形状データや立体物データ等と比較することにより、白線データ、道路に沿って存在するガードレール、縁石等の側壁データ、車両等の立体物データ、一時停止線、交通信号機、踏切、横断歩道、レーン等を抽出する。
また、撮像部2の視野角、配置等によっては、画像処理部19は自車両と並進する並進車両を抽出する場合もある。
このように画像処理部19は撮像部2の撮像画像に基づいて周囲の物体を認識すると共に、その挙動を認識することもできる。例えば並進車両の速度、加速度(加速又は減速による正負の加速度)、進行方向の変化、ウインカー点滅等を認識することも可能である。
画像処理部19は、上記のような各種の周囲環境の情報を例えば撮像画像データのフレームごとに算出し、算出した情報を逐次、記憶部に記憶(保持)させる。
地図ロケータ4は、例えば全地球衛星航法システム(GNSS:Global Navigation Satellite System)用の受信器であるGNSS受信機21と、高精度の地図データが記憶された地図DB(Database)22を備え、自車両としての車両100についての高精度な現在位置を特定することが可能とされている。具体的には、地図ロケータ4は、車両100が走行している道路だけでなく走行車線についても特定可能とされている。
運転支援制御部2は、例えばCPU、ROM、RAM等を備えたマイクロコンピュータで構成され、外部環境認識装置3や地図ロケータ4やセンサ・操作子類16が備える各種のセンサ等から得られる検出情報や操作入力情報、或いは通信部5から得られる情報などに基づいて、運転支援のための各種の制御処理を実行する。
運転支援制御部2は、同じくマイクロコンピュータで構成された表示制御部6、エンジン制御部7、TM制御部8、ブレーキ制御部9、操舵制御部10の各制御部とバス17を介して接続されており、これら各制御部との間で相互にデータ通信を行うことが可能とされる。運転支援制御部2は、上記の各制御部のうち必要な制御部に対して指示を行って運転支援に係る動作(運転支援制御)を実行させる。
運転支援制御部2が実行する運転支援制御としては、例えばオートレーンキープ制御、衝突被害軽減ブレーキ制御(AEB:Autonomous Emergency Braking )、車間距離制御付クルーズコントロール(ACC:Adaptive Cruise Control)、自動車線変更制御などが想定される。
運転支援制御部2は、車両100の制御モードとしてハンズオン走行モード、ハンズオフ走行モード、ハンズオン要求モード、MRM(Minimum Risk Maneuver)実行モードを切り換える制御を行う。
ハンズオン走行モードとしては、車両100の操舵を運転者自らが行うモードでありオートレーンキープ制御などを実行しないモードである通常走行モードと、ハンズオン状態においてレーンをキープし続ける制御を行うレーンキープ制御モード(LKS:Lane Keeping System)と、が設けられている。なお、通常走行モードであっても、衝突被害軽減ブレーキ制御など運転支援制御の一部が実行可能とされていてもよい。
ハンズオフ走行モードは、運転者がステアリングホイールから手を離した状態で車両100が適切な走行車線を走行し続けるように車両制御を行うモードである。ハンズオフ走行モードへの遷移は、例えば、車速が所定未満となるような渋滞状態などで可能とされている。これにより、先行車の情報や車外環境の情報などを用いて走行車線をキープし続ける運転支援制御が可能とされる。
ハンズオン要求モードは、ハンズオフ走行モードにおいて所定の条件が成立した場合に移行するモードであり、運転者にステアリングホイール操作を要求するモードである。また、ハンズオン要求モードは、ハンズオフ走行モードからハンズオン走行モードへの移行期間とも言える。
MRM実行モードは、例えば、運転者に異常が発生するなどして運転の継続が難しいと判定した場合などに遷移するモードである。MRM実行モードでは、車両100をゆっくりと減速し停車させる制御などが行われる。
なお、各制御モードの遷移条件については後述する。
通信部5は,ネットワーク通信やいわゆるV2V通信(車車間通信)や路車間通信を行うことが可能とされている。運転支援制御部2は通信部5によって受信した各種の情報を取得することができる。また通信部5はインターネット等のネットワーク通信により各種情報、例えば現在地の周辺環境情報、道路情報等を取得することもできる。
センサ・操作子類16は、車両100に設けられた各種のセンサや操作子を包括的に表している。センサ・操作子類16が有するセンサとしては、自車両の速度を検出する車速センサ16a、エンジンの回転数を検出するエンジン回転数センサ16b、アクセルペダルの踏込み量からアクセル開度を検出するアクセル開度センサ16c、操舵角を検出する舵角センサ16d、ヨーレート(Yaw Rate)を検出するヨーレートセンサ16e、加速度を検出するGセンサ16f、エンジン温度を推測するための指標となる冷却水の温度やオイルの温度を計測する水温・油温センサ16g、燃料タンク内に備えられたフロートの上下位置を計測することにより燃料残量を検出する燃料センサ16h、ブレーキペダルの操作や非操作に応じてONまたはOFFされるブレーキスイッチ16iなどがある。
表示制御部6は、センサ・操作子類16における所定のセンサからの検出信号や操作子による操作入力情報等に基づき、表示部11による表示動作を制御する。例えば、運転支援制御部2からの指示に基づき、運転支援の一環として表示部11に所定の注意喚起メッセージを表示させることが可能とされている。具体的には、上述したハンズオン要求モードにおいて、運転者に操舵入力を促す表示を表示部11に表示させる。
なお、表示部11としては、例えば、MFD(Multi Function Display)やCID(Center Information Display)やHUD(Head-Up Display)などのHMI(Human Machine Interface)などを用いることができる。
また、注意喚起メッセージを表示させる場合には、同時に警報などの音による提示を行ってもよい。
エンジン制御部7は、センサ・操作子類16における所定のセンサからの検出信号や操作子による操作入力情報等に基づき、エンジン関連アクチュエータ12として設けられた各種アクチュエータを制御する。
エンジン関連アクチュエータ12としては、例えばスロットル弁を駆動するスロットルアクチュエータや燃料噴射を行うインジェクタ等のエンジン駆動に係る各種のアクチュエータが設けられる。
例えば、エンジン制御部7は、前述したイグニッションスイッチの操作に応じてエンジンの始動/停止制御を行う。また、エンジン制御部7は、エンジン回転数センサ16bやアクセル開度センサ16c等の所定のセンサからの検出信号に基づき、燃料噴射タイミング、燃料噴射パルス幅、スロットル開度等の制御も行う。
またエンジン制御部7は、運転支援制御部2が目標加速度に基づき計算・出力した要求トルクと、自動変速機の変速比とに基づき、目標とするスロットル開度を例えばマップ等から求め、求めたスロットル開度に基づきスロットルアクチュエータの制御(エンジンの出力制御)を行う。
TM制御部8は、センサ・操作子類16における所定のセンサからの検出信号や操作子による操作入力情報等に基づき、トランスミッション関連アクチュエータ13として設けられた各種のアクチュエータを制御する。
トランスミッション関連アクチュエータ13としては、例えば自動変速機の変速制御を行うためのアクチュエータが設けられる。
例えば、TM制御部8は、セレクトレバーによって自動変速モードが選択されている際には、所定の変速パターンに従い変速信号を上記のアクチュエータに出力して変速制御を行う。また、TM制御部8は、手動変速モードの設定時には、セレクトレバーによるシフトアップ/ダウン指示に従った変速信号を上記のアクチュエータに出力して変速制御を行う。
自動変速機がCVT(Continuously Variable Transmission:無段変速機)とされる場合、上記の自動変速モード設定時の変速制御としては、変速比を連続的に変化させる制御が行われる。
ブレーキ制御部9は、センサ・操作子類16における所定のセンサからの検出信号や操作子による操作入力情報等に基づき、ブレーキ関連アクチュエータ14として設けられた各種のアクチュエータを制御する。
ブレーキ関連アクチュエータ14としては、例えば、ブレーキブースターからマスターシリンダへの出力液圧やブレーキ液配管内の液圧をコントロールするための液圧制御アクチュエータ等、ブレーキ関連の各種のアクチュエータが設けられる。
例えば、ブレーキ制御部9は、運転支援制御部2から出力された液圧の指示情報に基づき、上記の液圧制御アクチュエータを制御して自車両を制動させる。またブレーキ制御部9は、所定のセンサ(例えば車軸の回転速度センサや車速センサ16a)の検出情報から車輪のスリップ率を計算し、スリップ率に応じて上記の液圧制御アクチュエータにより液圧を加減圧させることで、所謂ABS(Antilock Brake System)制御を実現する。
操舵制御部10は、例えば運転支援制御部2から与えられた目標の操舵角に応じて必要なステアトルクを求め、操舵関連アクチュエータ15を制御することで、必要な自動操舵を実現する。
また、それ以外にも、センサ・操作子類16として、エンジンへの吸入空気量を検出する吸入空気量センサ、吸気通路に介装されてエンジンの各気筒に供給する吸入空気量を調整するスロットル弁の開度を検出するスロットル開度センサ、車外の気温を検出する外気温センサや、車輪の温度やブレーキ温度を検出する各種温度センサや、自車両走行路の勾配を検出する勾配センサ等も有する。
また、操作子としては、エンジンの始動/停止を指示するためのイグニッションスイッチや、前述した運転支援制御関連の操作として、例えば、運転モードを切り換えるための操作子、自動変速機における自動変速モード/手動変速モードの選択や手動変速モード時におけるシフトアップ/ダウンの指示を行うためのセレクトレバーや、表示部11として設けられた後述するMFDにおける表示情報の切り換えを行うための表示切換スイッチなどがある。
表示部11は、運転者の前方に設置されているメータパネル内に設けられたスピードメータやタコメータ等の各種メータやMFD、及びその他運転者に情報提示を行うための表示デバイスを包括的に表している。MFDには、自車両の総走行距離や外気温、瞬間燃費等といった各種の情報を同時又は切り換えて表示可能とされる。
図2は、運転支援制御部2が本実施の形態についての各処理を行うためにソフトウエアにより設けられる機能構成を示している。なお、各機能の一部または全部がハードウェアにより実現されてもよい。
運転支援制御部2は、アシスト走行制御部31、第1予測経路生成部32、第2予測経路生成部33、第3予測経路生成部34、先行車情報取得部35、乖離判定部36、信頼度判定部37、走行経路選択部38、移行制御部39、報知制御部40を有する。
なお、以下においては、自車両としての車両100を自車両100Aとし、先行車としての車両100を先行車100Bとして説明を行う。
アシスト走行制御部31は、運転支援制御としてのオートレーンキープ制御、衝突被害軽減ブレーキ制御、車間距離制御付クルーズコントロールなどを実行可能とされる。本実施の形態においては、ハンズオン状態におけるオートレーンキープ制御だけでなく、ハンズオフ状態におけるオートレーンキープ制御(即ち、ハンズオフ走行)が実行可能とされる。ハンズオフ走行では、例えば渋滞時など先行車100Bが自車両100Aの前方に検出されている状態においてレーンをキープし続ける制御が実行される。当該ハンズオフ走行では、ステレオカメラ18から取得した情報などの車外環境の認識結果情報を用いて生成された予測経路と、地図ロケータ4から取得した情報を用いて生成された予測経路を用いてオートレーンキープ制御を行う。そして、これらの予測経路に乖離が生じてしまった場合には、予測経路ごとの信頼度に基づいて走行経路を選択する処理や、ハンズオン要求を行う処理などを実行する。具体的には後述する。
第1予測経路生成部32は、地図ロケータ4から取得した自車両100Aの位置情報や地図情報に基づいて自車両100Aの予測経路を生成する。第1予測経路生成部32が生成した予測経路を「第1予測経路PT1」と記載する。
第2予測経路生成部33は、ステレオカメラ18やその他のセンサ類から取得した車外環境情報に基づいて、自車両100Aの予測経路を生成する。具体的には、ステレオカメラ18が認識した白線(区画線)に基づいて予測経路を生成する。第2予測経路生成部33が生成した予測経路を「第2予測経路PT2」と記載する。
第3予測経路生成部34は、第1予測経路PT1と第2予測経路PT2から第3予測経路PT3を生成する。例えば、第3予測経路生成部34は、図3に示すように、第1予測経路PT1と第2予測経路PT2の中間地点を通る経路を第3予測経路PT3として生成する。
先行車情報取得部35は、画像処理部19における画像処理の結果取得した先行車情報や白線情報などに基づいて、先行車100Bについての走行経路に関する情報を取得する。
具体的には、例えば、先行車100Bの進行方向や走行車線などの情報である。
乖離判定部36は、第1予測経路PT1と第2予測経路PT2の乖離が所定以上であるか否かを判定する。例えば、第1予測経路PT1において認識されている左右の白線と、第2予測経路PT2を自車両100Aが走行した場合の自車両100Aの左端部と右端部の位置と、に基づいて乖離判定を行う。
具体的に、図4及び図5を参照して乖離判定処理について説明する。
地図ロケータ4の情報に基づいて生成された第1予測経路PT1に従って自車両100Aが走行した場合における自車両100Aの左端部100ELと右端部100ERの移動軌跡をそれぞれ左軌跡TL、右軌跡TRとする。
また、画像処理部19が認識している自車両100Aの左側の白線を左白線WLLとし、自車両100Aの右側の白線を右白線WLRとする。
現時点から2.5sec後の第1予測経路PT1における自車両100Aの左端部100ELと右端部100ERの何れか一方が白線から所定以上はみ出している場合に第1予測経路PT1と第2予測経路PT2に乖離があると判定する(図4参照)。
換言すれば、何れか一方の予測経路に沿って走行した場合に他方の予測経路から所定以上外れてしまう場合に、二つの予測経路に乖離ありと判定する。また、この判定結果は、自車両100Aの現在位置においては第1予測経路PT1と第2予測経路PT2にずれがない場合であっても、所定時間後(例えば2.5sec後)にずれが大きくなる場合に得られる結果と言える。
一方、二つの予測経路に多少のずれがあったとしても、ずれ量が所定量未満に収まっている場合には、乖離なしと判定する(図5参照)。
乖離ありと判定された状態は、何れか一方の予測経路に沿って走行を続けていると、何れ適切でない走行経路を走行してしまう可能性がある状態である。
また、乖離なしと判定された状態は、何れか一方の予測経路に沿って走行を続けても、適切な走行経路を維持できる状態である。
信頼度判定部37は、第1予測経路PT1と第2予測経路PT2のうち、信頼度の高い方の予測経路を判定する。
信頼度の判定処理においては、第1予測経路PT1と第2予測経路PT2のそれぞれの信頼度を多段階(0~100など)で算出してもよいし、信頼度の高低をフラグ(0or1)のような形で算出してもよい。
このような信頼度の情報は、第1予測経路PT1の方第2予測経路PT2の乖離が大きい場合に必要とされる。
走行経路選択部38は、第1予測経路PT1と第2予測経路PT2と第3予測経路PT3から何れかの予測経路を選択する処理を行う。
移行制御部39は、ハンズオン走行モード(通常走行モード、レーンキープ制御モード)、ハンズオフ走行モード、ハンズオン要求モード、MRM実行モードの遷移制御を行う。例えば、ハンズオフ走行モードにおいて、第1予測経路PT1と第2予測経路PT2の乖離が所定以上と判定された場合には、ハンズオン要求モードへ遷移させる処理などを行う。具体的なモード遷移の条件については後述する。
報知制御部40は、運転者に対して各種の報知処理を実行可能とされている。本実施の形態においては、特に、ハンズオン要求モードにおいて、運転者に操舵入力を促すための報知処理を行う。具体的には、MFDなどの上述した各種の表示部11において図6に示すような報知画像を表示させる処理などを行うと共に警報などの音による注意喚起を行う。
<2.モード遷移>
先ず、各モードについて説明する。
ハンズオン走行モード、ハンズオフ走行モード、ハンズオン要求モード、MRM実行モードは上述したように、移行制御部39によって制御されるモードである。それぞれのモードについて、ハンズオン走行モードMD1、ハンズオフ走行モードMD2、ハンズオン要求モードMD3、MRM実行モードMD4と記載する。
ハンズオン走行モードMD1とハンズオフ走行モードMD2とハンズオン要求モードMD3にはそれぞれいくつかの状態が存在する。
ハンズオン走行モードMD1には、上述したように、運転者自らが操舵を行う通常モードMD1-1と、ハンズオン状態でレーンキープを行うレーンキープ制御モードMD1-2とが更に設けられている。
ハンズオフ走行モードMD2には、ステレオカメラ18等で認識した白線に従って走行する、即ち、第2予測経路PT2に基づいて走行する白線制御モードMD2-1と、地図ロケータ4の情報に基づいて走行する、即ち、第1予測経路PT1に基づいて走行する地図制御モードMD2-2とが更に設けられている。
また、ハンズオン要求モードMD3には、第2予測経路PT2に基づいて走行する白線制御モードMD3-1と、第1予測経路PT1に基づいて走行する地図制御モードMD3-2と、第3予測経路PT3に基づいて走行するMIX制御モードMD3-3とが設けられている。
先ず、ハンズオフ走行モードMD2において、第1予測経路PT1と第2予測経路PT2の何れも問題が無い場合、即ち、第1予測経路PT1と第2予測経路PT2の信頼度が共に高い場合には、白線制御モードMD2-1に制御することにより、白線情報に基づく制御として第2予測経路PT2に基づいて自車両100Aの走行経路を設定する。
この状態において、白線をロストした場合、即ち、ステレオカメラ18から出力される画像において白線を検出できなくなった場合には、地図制御モードMD2-2へと遷移することにより、地図情報に基づく制御として第1予測経路PT1に基づいて自車両100Aの走行経路を設定する。
地図制御モードMD2-2において白線ロスト状態を解消した場合、即ち、白線を再度検出した場合、地図制御モードMD2-2から白線制御モードMD2-1へと遷移することにより、第2予測経路PT2に基づく自車両100Aの制御を行う。
白線制御モードMD2-1において、自車位置を正常に検出している状態(即ち、自車位置の誤検出がなく自車位置精度が低下していない状態)において第1予測経路PT1と第2予測経路PT2に乖離が発生した場合、即ち、乖離なしの状態から乖離ありの状態へと変化した場合、MIX制御モードMD3-3へと遷移することにより、第3予測経路PT3に基づいて自車両100Aの走行経路を設定する。
MIX制御モードMD3-3において、自車位置精度が低下した場合や自車位置を誤検出した場合、即ち、地図ロケータ4の信頼度が低下した場合には、白線制御モードMD3-1へと遷移し、第2予測経路PT2に基づく自車両100Aの制御を行う。
また、MIX制御モードMD3-3において、白線をロストした場合や白線を誤検出した場合には、地図制御モードMD3-2へと遷移し、第1予測経路PT1に基づく自車両100Aの制御を行う。
MIX制御モードMD3-3を含めたハンズオン要求モードMD3においては、運転者がステアリングホイールに対する操作を行った場合やステアリングホイールに触れた場合などのように、ハンズオン状態を検出した場合には、他のモードへと遷移する。
具体的には、ハンズオン状態が検出されると共に白線を検出している状態であれば、ハンズオン走行モードMD1におけるレーンキープ制御モードMD1-2へと遷移する。これにより、検出している白線に基づいたオートレーンキープ制御が実行される。
一方、ハンズオン状態が検出されたが白線をロストしている状態であれば、ハンズオン走行モードMD1の通常走行モードMD1-1へと遷移する。
レーンキープ制御モードMD1-2において検出していた白線をロストした場合には、通常走行モードMD1-1へと遷移する。
一方、通常走行モードMD1-1において白線を検出した場合には、レーンキープ制御モードMD1-2への遷移が可能となる。
また、レーンキープ制御モードMD1-2においてハンズオフ走行を許可する条件が成立した場合には、ハンズオフ走行モードMD2の白線制御モードMD2-1へと遷移する。
ハンズオフ走行を許可する条件とは各種考えられる。一例を挙げると、白線を検出し続けた状態で自車位置を正常に検出し、且つ、車速が所定速度未満とされるなどの条件である。更に、高速道路などの特定の道路を走行している場合に条件が成立したと判定してもよいし、ユーザによるハンズオフ走行の許可がなされた場合に条件が成立したと判定してもよい。
ハンズオフ走行モードMD2の白線制御モードMD2-1において、自車位置精度が低下した場合や自車位置を誤検出した場合には、ハンズオン要求モードMD3の白線制御モードMD3-1へと遷移することにより、運転者に対するハンズオン要求を行いつつ第2予測経路PT2に基づく自車両100Aの制御を行う。
また、ハンズオフ走行モードMD2の白線制御モードMD2-1において、白線を誤検出した場合には、ハンズオン要求モードMD3の地図制御モードMD3-2へと遷移することにより、運転者に対するハンズオン要求を行いつつ第1予測経路PT1に基づく自車両100Aの制御を行う。
ハンズオフ走行モードMD2の地図制御モードMD2-2は、白線をロストした状態であるが、当該ロスト状態が0.5sec以上継続した場合には、ハンズオン要求モードMD3の地図制御モードMD3-2へと遷移することにより、運転者に対するハンズオン要求を行いつつ第1予測経路PT1に基づく自車両100Aの制御を継続する。
即ち、ハンズオフ走行モードMD2の地図制御モードMD2-2は、白線をロストした場合に一時的に遷移するモードであり、そのまま白線をロストした状態が所定時間以上継続した場合には、運転者に対してハンズオン要求を行うこととなる。
ハンズオン要求モードMD3の白線制御モードMD3-1は、白線を正常に検出した状態で遷移するモードであるが、白線制御モードMD3-1において白線をロストした状態に陥った場合には、他のモードへと遷移する。例えば、自車位置を正常に検出した状態で白線をロストしたような場合は、地図制御モードMD3-2へと遷移する。一方、自車位置を正常に検出できていない状態で白線をロストしたような場合は、MRM実行モードMD4へと遷移する。
また、ハンズオン要求モードMD3の地図制御モードMD3-2は白線をロストした状態とされるが、白線を正常に検出しなおした場合、即ち白線を検出且つ誤検出していない場合には白線制御モードMD3-1へと遷移する。
一方、地図制御モードMD3-2において自車位置の精度が低下したような場合、即ち白線と自車位置を共に正常に検出できていない場合には、MRM実行モードMD4へと遷移する。
MRM実行モードMD4は、例えば、運転者が意識を失ってしまった場合などの緊急事態が発生した場合に遷移するモードである。
MRM実行モードMD4へ遷移する例としては、例えば上述した以外にも、ハンズオン要求モードMD3の各モードにおいて、所定時間(例えば4sec)に亘ってハンズオン状態を検出できなかった場合などがある。即ち、この場合には、運転者が運転不能な状態に陥ったと判定し、MRM実行モードMD4へと遷移する。
<3.処理例>
運転支援制御部2が実行する各種の処理の一例について、添付図を参照して説明する。
<3-1.走行経路選択処理>
図8に示す走行経路選択処理は、各種の情報を用いて自車両100Aについての適切な走行経路を選択する処理である。なお、図8に示す一連の処理の開始時点においては、移行制御部39は、ハンズオフ走行モードMD2を選択した状態とされている。そして、各処理結果に応じてモードを移行する処理を実行する。各図のフローチャートにおいては、状態遷移に係る処理を省略して示している。
運転支援制御部2は、ステップS101において、乖離判定処理を行う。乖離判定処理は、上述したように、第1予測経路PT1と第2予測経路PT2に所定の乖離が発生したか否かを判定する処理であり、例えば、第1予測経路PT1に従って自車両100Aの走行経路を決定した場合に、自車両100Aの左端部100ELと右端部100ERの何れか一方が画像から特定された白線位置よりも外側に所定量はみ出そうとしているか否かを判定する処理である。具体的な処理内容については、他のフローチャートを参照して後述する。
乖離判定処理では、乖離フラグが出力される。乖離フラグは、乖離ありと判定された場合にONとされ、乖離なしと判定された場合にOFFとされる。
ここで、乖離判定処理において乖離ありと判定され得る状況について、図9及び図10を参照して説明する。
図9は、乖離判定処理において乖離ありと判定され得る一つ目の例である。この図は、高速道路の出口付近を模式的に示したものである。図示するように、運転支援制御部2が地図ロケータ4からの情報に基づく第1予測経路PT1を走行経路として選択した場合には、高速道路の本線を走り続けることになる。一方、自車両100Aの左側の白線である左白線WLLに基づいて自車両100Aの走行経路を選択した場合には、第2予測経路PT2を選択したこととなる。この場合には、第1予測経路PT1と第2予測経路PT2の間に所定以上の乖離があると判定される。
なお、図9に示す破線の白線をステレオカメラ18等で正しく認識している場合には、高速道路の本線を走行する場合において第2予測経路PT2を適切に設定することが可能である。即ち、本線を走行する走行経路として第2予測経路PT2を生成することは可能である。しかし、先行車100Bの存在等の要因によって、破線の白線や右白線WLRを認識できない場合には、左白線WLLに基づいて第2予測経路PT2を生成するため、第1予測経路PT1と第2予測経路PT2が乖離してしまう場合がある。
図10は、乖離判定処理において乖離ありと判定され得る二つ目の例である。この図は、道路の敷設領域が変更された場所を模式的に示したものである。図中に黒塗りで示された白線は、変更前の走行車線を特定するための旧白線WLOを示している。また、図中に白塗りで示された白線は、変更後の走行車線を特定するための新白線WLNを示している。
ここで、地図ロケータ4の情報が古い場合について考える。図示するように、運転支援制御部2が地図ロケータ4からの古い情報に基づいて車両制御を行う場合には、旧白線WLOによって特定される古い走行車線を走行する第1予測経路PT1を走行経路として選択することとなる。一方、ステレオカメラ18によって認識された新白線WLNに基づいて自車両100Aの走行経路を選択した場合には、第2予測経路PT2を選択したこととなる。この場合には、第1予測経路PT1と第2予測経路PT2の間に所定以上の乖離があると判定される。
図8のフローチャートの説明に戻る。
運転支援制御部2はステップS102において、乖離フラグがONであるか否かに応じた分岐処理を行う。
乖離フラグがOFFである場合には、走行経路を選択し直す必要はないため、図8に示す走行経路選択処理を終える。この場合には、地図ロケータ4から自車両100Aの位置などを取得しつつステレオカメラ18の画像に基づいてハンズオフ走行モードMD2の制御が継続される。
一方、乖離フラグがONである場合には、走行経路を選択し直さなければならない虞がある。もし走行経路を選択し直さない場合には、自車両100Aが適切出ない走行経路を走行してしまう虞がある。
そこで、運転支援制御部2はステップS103において、第1予測経路PT1と第2予測経路PT2に基づいて第3予測経路PT3(図3参照)を生成する。
続いて、運転支援制御部2はステップS104において、第3予測経路PT3を自車両100Aの走行経路として選択する。
運転支援制御部2はステップS105において、第1予測経路PT1と第2予測経路PT2に対する信頼度判定処理を実行する。信頼度判定処理は、第1予測経路PT1と第2予測経路PT2のうち、何れの予測経路の信頼度が高いかを判定する処理である。具体的な処理例については、別のフローチャートを参照して後述する。
運転支援制御部2はステップS106において、第1予測経路PT1の方が第2予測経路PT2よりも信頼度が高いかどうかを判定する。第1予測経路PT1の方が第2予測経路PT2よりも信頼度が高いと判定した場合、運転支援制御部2はステップS107へと進み、第1予測経路PT1を走行経路として選択する。
一方、第1予測経路PT1の方が第2予測経路PT2よりも信頼度が高いわけではないと判定した場合、運転支援制御部2はステップS108へと進み、第2予測経路PT2を走行経路として選択する。
このように、第1予測経路PT1と第2予測経路PT2に所定以上の乖離があると判定した場合に、第3予測経路PT3を走行経路として選択しながら第1予測経路PT1と第2予測経路PT2の信頼度の高さを判定し、信頼度が高い方の予測経路を走行経路として選択することにより、例えば図11に示すように、第1予測経路PT1から第3予測経路PT3へと走行経路を変更した後、更に第2予測経路PT2へと走行経路が変更される。第1予測経路PT1から第3予測経路PT3へと走行経路を変更した際の自車両100Aの挙動と、第3予測経路PT3から第2予測経路PT2へと走行経路を変更した際の自車両100Aの挙動は、図12に示すように第1予測経路PT1から第2予測経路PT2へ直接走行経路を変更した場合と比較して緩やかな変化となる。これにより、走行経路の変更ごとの操舵量が小さくされるため、自車両100Aの挙動が安定すると共に、周辺の車両を運転する運転者に違和感や危機感を与えることのない走行が可能となる。
なお、信頼度判定処理は、先行車情報を用いて信頼度の判定を行う処理である。従って、信頼度判定処理を実行するためには先行車100Bを検出している必要がある。先行車100Bを検出していない場合には、ステップS105の信頼度判定処理を実行しない。それに伴ってステップS106の判定処理を実行せずに第3予測経路PT3を選択し続けてもよい。或いは、先行車情報を用いずに信頼度を判定する処理を別途実行し、その結果に応じてステップS106、ステップS107及びステップS108の処理を実行してもよい。
<3-2.乖離判定処理>
図8のステップS101の乖離判定処理の具体的な処理例について、図13を参照して説明する。なお、図13に示す乖離判定処理は数msecから数百msecごとに定期的に実行される処理である。即ち、所定時間ごとに第1予測経路PT1と第2予測経路PT2が乖離していないかについての判定を行う。
運転支援制御部2はステップS201において、ステレオカメラ18が白線を検出中であるか否かを判定する。
ステレオカメラ18が白線を検出中でない場合、即ち、ステレオカメラ18の後段の画像処理部19の画像処理において白線を検出できていない場合、運転支援制御部2はステップS202へと進み乖離フラグにOFFを設定し、図13に示す一連の処理を終了する。このケースは、第2予測経路PT2を生成できないため、乖離判定が不能となるケースである。
一方、ステップS201においてステレオカメラ18が白線を検出中である場合、即ち、ステレオカメラ18の後段の画像処理部19の画像処理により白線を検出中である場合、運転支援制御部2はステップS203へと進み地図ロケータ4が自車両100Aの走行車線を特定中であるか否かを判定する。
地図ロケータ4が車線特定中でない場合、第1予測経路PT1を生成できないため、運転支援制御部2はステップS202へと進み乖離フラグにOFFを設定する。
一方、ステップS203において地図ロケータ4が車線特定中である場合、運転支援制御部2はステップS204へと進み、自動車線変更制御中であるか否かを判定する。
自動車線変更制御は、例えば、ハンズオフ走行モードにおいてウインカーを操作した際に自動で走行車線を変更する制御である。この制御においては、変更先の走行車線を走行している他車両を検出する処理や、操舵制御が実行される。
自動車線変更制御中である場合には、検出中の白線を逸脱しても問題ないことが想定されるため、運転支援制御部2はステップS202において乖離フラグにOFFを設定して乖離判定処理を終える。
ステップS204において自動車線変更制御中でないと判定した場合、運転支援制御部2は、ステップS205へと進み左側逸脱判定処理を実行し、続くステップS206において右側逸脱判定処理を実行する。
左側逸脱判定処理は、自車両100Aの左端部100ELが左白線WLLを所定以上はみ出そうとしているか否か(所定時間を経てはみ出すか否か)を判定する処理である。
同様に、右側逸脱判定処理は、自車両100Aの右端部100ERが右白線WLRを所定以上はみ出そうとしているか否かを判定する処理である。
左側逸脱判定処理と右側逸脱判定処理は、自車両100Aの左右が入れ替わるだけの同様の処理で実現可能である。従って、左側逸脱判定処理の一例について、図14を参照して説明し、右側逸脱判定処理については説明を省略する。
運転支援制御部2はステップS301において、左側逸脱量を算出する。
算出される左側逸脱量の一例について図15に示す。図中の白塗りの白線は、画像処理部19が認識している自車両100Aの左側の白線である左白線WLLと、右側の白線である右白線WLRを示している。また、図中には、第1予測経路PT1と第2予測経路PT2が示されている。更に、自車両100Aの左端部100ELの移動軌跡である左軌跡TLと、右端部100ERの移動軌跡である右軌跡TRについても示されている。
図15に示すように、所定時間後(例えば2.5sec後)の自車両100Aの左端部100ELについての左側逸脱量は、左白線WLLの中心線CLと所定時間後の左端部100ELの位置との距離とされている。
左側逸脱量は、自車両100Aの車幅と、自車両100Aの車線幅方向の位置と、走行車線の車線幅と、走行車線の曲率と、自車両100Aの速度及び加速度と、走行車線に対する自車両100Aのヨー角などから算出可能である。また、左側逸脱量の算出においては、自車両100Aの左端部100ELの位置情報を用いてもよいし、自車両100Aの車幅方向における中心位置の情報を用いてもよい。
なお、左側逸脱量の算出においては、上述した以外の各種の情報を利用することができる。一例を挙げると、自車両100Aの実舵角などである。また、ヨー角を算出(推定)するためにヨーレートセンサ16eの出力値を用いてもよい。
図14のフローチャートの説明に戻る。
運転支援制御部2はステップS302において、左側逸脱量が第1閾値(例えば1m)よりも大きいか否かを判定する。第1閾値(1m)よりも大きいと判定した場合、左側逸脱量が大きいため、運転支援制御部2はステップS303において左側逸脱フラグにONを設定して左側逸脱判定処理を終える。
一方、左側逸脱量が第1閾値(1m)以下であると判定した場合、運転支援制御部2はステップS304へと進み、左側逸脱量が第2閾値(例えば20cm)よりも大きいか否かを判定する。左側逸脱量が第2閾値(20cm)よりも大きい場合、即ち、左側逸脱量が第2閾値(20cm)よりも大きく第1閾値(1m)以下である場合、運転支援制御部2はステップS305においてON時間変数が0.5secよりも大きいか否かを判定する。
ここでON時間変数はとOFF時間変数について説明する。ON時間変数は、左側逸脱フラグにONが設定されるべき状況が発生してからの経過時間が格納される変数である。また、OFF時間変数は、左側逸脱フラグにOFFが設定されるべき状況が発生してからの経過時間が格納される変数である。
ステップS304で左側逸脱量が20cmよりも大きいと判定される状況とは、少なからず自車両100Aの左端部100ELが左白線WLLの外側に位置している状況である。従って、このような状況は左側逸脱フラグにONを設定すべき状況であるといえる。
ステップS304で左側逸脱量が20cmよりも大きい場合には、ステップS305においてON時間変数が所定時間(例えば0.5sec)よりも大きいか否かを判定し、ON時間変数が所定時間(0.5sec)よりも大きい場合には、運転支援制御部2はステップS306において左側逸脱フラグにONを設定して左側逸脱判定処理を終える。
一方、ステップS305においてON時間変数が所定時間(0.5sec)以下であると判定した場合には、運転支援制御部2はステップS307においてON時間変数を加算する処理を行い、左側逸脱判定処理を終える。これにより、自車両100Aの左端部100ELが白線から少しはみ出した状態が継続されたまま次にステップS305の処理が実行される場合には、左側逸脱フラグにONが設定されやすくなる。
なお、図14に示す左側逸脱判定処理は、図13が所定時間ごとに定期的に実行されることに応じて、同様の処理間隔で実行される。
従って、ON時間変数やOFF時間変数が所定時間(0.5sec)を超えるまでステップS307のON時間加算処理や後述するステップS313のOFF時間加算処理が繰り返し実行されると共に、ON時間変数やOFF時間変数が所定時間(0.5sec)を超えた場合には、ステップS306やステップS312において左側逸脱フラグのON/OFF設定が切り替えられる。
ステップS304において左側逸脱量が第2閾値(20cm)以下であると判定した場合、運転支援制御部2はステップS308において、左側逸脱量が小さいことからON時間変数をゼロ値にリセットする。
続いて、運転支援制御部2はステップS309において、左側逸脱量が第3閾値よりも小さいか否かを判定する。第3閾値は、例えば、-20cmなどの数値である。逸脱量が負の値の場合は、白線よりも内側に自車両100Aの端部が位置している状況とされる。
即ち、第3閾値は、自車両100Aの左端部100ELが左白線WLLよりも内側に入っているか否かを判定するための閾値とされる。左側逸脱量が第3閾値(-20cm)よりも小さいということは、自車両100Aの左端部100ELが左白線WLLを踏み越えるまでに余裕があるということを示している。
左側逸脱量が第3閾値(-20cm)以上であった場合、即ち、左側逸脱量が第3閾値(-20cm)以上且つ第2閾値(20cm)以下である場合、自車両100Aの左端部100ELが左白線WLL付近を走行することになるため、運転支援制御部2はステップS310においてOFF時間変数をゼロ値にリセットして左側逸脱判定処理を終える。
一方、左側逸脱量が第3閾値(-20cm)未満である場合、自車両100Aの左端部100ELが左白線WLLを踏み越えるまでに余裕があるため、運転支援制御部2はステップS311においてOFF時間変数が所定時間(例えば0.5sec)以上であるか否かを判定する。
OFF時間変数が所定時間(0.5sec)以上である場合、運転支援制御部2はステップS312へと進み、左側逸脱フラグにOFFを設定して左側逸脱判定処理を終える。
一方、OFF時間変数が所定時間未満である場合、運転支援制御部2はステップS313へと進み、OFF時間変数を加算する処理を行い左側逸脱判定処理を終える。
図13のフローチャートの説明に戻る。
運転支援制御部2は、ステップS205及びステップS206の処理において左側逸脱判定処理及び右側逸脱判定処理を終えた後、ステップS207において左側逸脱フラグ及び右側逸脱フラグの少なくとも何れか一方がONであるか否かを判定する。双方の逸脱フラグがOFFである場合、運転支援制御部2はステップS202において乖離フラグにOFFを設定して乖離判定処理を終える。
また、何れか一方の逸脱フラグがONである場合、運転支援制御部2はステップS208において、乖離フラグにONを設定して乖離判定処理を終える。
<3-3.信頼度判定処理>
図8のステップS105の信頼度判定処理について、一例を図16に示す。
信頼度判定処理は、第1予測経路PT1と第2予測経路PT2が所定以上乖離した場合に、何れの予測経路が適切かを判定する処理である。信頼度判定処理においては、先行車情報を用いて信頼度の判定を行う。
運転支援制御部2はステップS401において、先行車逸脱量算出処理を行う。先行車逸脱量は、図14のステップS301において算出した自車両100Aの左側逸脱量と同様の手法で算出することができる。具体的には、図14のステップS301で演算に用いた自車両100Aについての車幅と、車線幅方向の位置、速度及び加速度と、走行車線に対するヨー角などの情報を先行車100Bについての情報に置き換えることで算出可能である。また、自車両100Aについての左側逸脱量の算出においては、2.5sec後の自車両100Aの予測位置についての逸脱量を算出したが、先行車逸脱量算出では、自車両100Aの現在位置に対する先行車100Bの位置を用いる。
運転支援制御部2は、ステップS402において、先行車左側逸脱判定処理を行う。
先行車左側逸脱判定処理は、自車両100Aが認識している左白線WLLを先行車100Bの左端部が現時点で踏み越えているか否かを判定する処理である。
自車両100Aが認識している左白線WLLを先行車100Bの左端部が踏み越えている状態とは、図17に示すような状態である。
続いて、運転支援制御部2は、ステップS403において、先行車右側逸脱判定処理を行う。先行車右側逸脱判定処理は、自車両100Aが認識している右白線WLRを先行車100Bの右端部が現時点で踏み越えているか否かを判定する処理である。
運転支援制御部2はステップS404において、先行車100Bが自車両100Aの第2予測経路PT2を逸脱しているか否かを判定する。
先行車100Bが第2予測経路PT2を逸脱している状態とは、先行車100Bの左端部が左白線WLLを踏み越えている状態(図17参照)や、先行車100Bの右端部が白線WLRを踏み越えている状態などである。
このような場合は、先行車100Bが第2予測経路PT2を逸脱していると判定され、運転支援制御部2はステップS405において、第1予測経路PT1の方が第2予測経路PT2よりも信頼度が高いと判定する。
一方、先行車100Bが自車両100Aの第2予測経路PT2を逸脱していないと判定した場合、即ち、先行車100Bが自車両100Aの左端部100ELの左軌跡TLや右端部100ERの右軌跡TRを所定以上踏み越えている(図18参照)と判定した場合は、運転支援制御部2はステップS406へと進み、第2予測経路PT2の方が第1予測経路PT1よりも信頼度が高いと判定する。
なお、自車両100Aの左端部100ELの左軌跡TLや右端部100ERの右軌跡TRを先行車100Bが所定以上踏み越えているか否かを判定する代わりに、地図ロケータ4から特定された第1予測経路PT1の左右の白線を先行車100Bが踏み越えているか否かを判定してもよい。
図16に示す一連の処理は、自車両100Aのステレオカメラ18及び画像処理部19が白線や先行車100Bを正常に検出していること、及び、地図ロケータ4が走行車線を適切に検出していることを条件として実行される。
換言すれば、これらの情報のうちの一部が正常に検出できていない場合には、信頼度の判定を行わずにハンズオン要求モードMD3へと遷移してもよい。
<4.変形例>
上述した例では、第1予測経路PT1と第2予測経路PT2の二つの予測経路から第3予測経路PT3を生成する例を説明したが、これ以外の方法も考えられる。例えば、自車両100Aが第1予測経路PT1上を走行するために自車両100Aに与える車両制御のための第1制御値(例えば操舵量や操舵角など)と、自車両100Aが第2予測経路PT2上を走行するために自車両100Aに与える車両制御のための第2制御値から、第3予測経路PT3上を走行するための第3制御値を生成し、第3制御値に基づいて自車両100Aの運転支援制御を行ってもよい。
<5.まとめ>
上記した車両制御システム1は、地図情報と自車両100Aの位置情報に基づく自車両100Aの予測経路を第1予測経路PT1として生成する第1予測経路生成手段(第1予測経路生成部32)と、自車両100Aの外部の走行環境を認識する外部環境認識手段(外部環境認識装置3)から取得した外部環境情報に基づく自車両100Aの予測経路を第2予測経路PT2として生成する第2予測経路生成手段(第2予測経路生成部33)と、先行車100Bの走行経路に関する情報を先行車情報として取得する先行車情報取得手段(先行車情報取得部35)と、第1予測経路PT1と第2予測経路PT2の所定以上の乖離の有無を判定する乖離判定手段(乖離判定部36)と、第1予測経路PT1と第2予測経路PT2に所定以上の乖離があると判定された場合に先行車情報に基づいて第1予測経路PT1と第2予測経路PT2それぞれの信頼度を判定する信頼度判定手段(信頼度判定部37)と、それぞれの信頼度に基づいて自車両100Aの走行経路を選択する走行経路選択手段(走行経路選択部38)と、を備えている。
第1予測経路PT1と第2予測経路PT2が乖離している場合には、より適した予測経路を走行経路として選択することが望ましい。
本構成によれば、二つの予測経路のうち、先行車が走行している経路に近い経路が信頼度の高い予測経路として選択されるため、少なくとも走行不能な経路が走行経路として選択されてしまうことを防止することができる。これにより、自車両100Aの走行の安全性を確保することができる。
車両制御システム1においては、第1予測経路PT1と第2予測経路PT2に基づいて第3予測経路PT3を生成する第3予測経路生成手段(第3予測経路生成部34)を備え、走行経路選択手段(走行経路選択部38)は、第3予測経路PT3を自車両100Aの走行経路として選択可能とされていてもよい。
第1予測経路PT1と第2予測経路PT2は、何れか一方が不適切な経路である可能性がある。
選択された予測経路が不適切な経路だった場合には、安全性を損なってしまう虞がある。本構成によれば、第1予測経路PT1と第2予測経路PT2に基づいて第3予測経路PT3が生成され、第3予測経路PT3を走行経路として選択可能とされている。これにより、選択肢が増えるため、より安全な経路選択が可能とされる。
車両制御システム1は、第1予測経路PT1と第2予測経路PT2に所定以上の乖離があると判定した場合において、走行経路選択手段(走行経路選択部38)は、信頼度の判定を行う前は第3予測経路PT3を自車両100Aの走行経路として選択し、信頼度の判定を行った後は第1予測経路PT1と第2予測経路PT2のうち信頼度が高い方の予測経路を自車両100Aの走行経路として選択してもよい。
第3予測経路PT3は、例えば、第1予測経路PT1と第2予測経路PT2の少なくとも一方よりも適切な経路とされる。
信頼度の判定を行うまでは第3予測経路PT3が走行経路として選択されることにより、最も適切でない予測経路は選択されないこととなる。これにより、安全性の向上に寄与することができる。また、信頼度の高い予測経路が判明した場合には、信頼度の高い予測経路が走行経路として選択されることで、安全性の向上を図ることができる。
車両制御システム1における乖離判定手段(乖離判定部36)は、第1予測経路PT1における所定時間後(例えば2.5sec後)または所定距離走行後の自車両100Aの予測位置と第2予測経路PT2における所定時間後または所定距離走行後の自車両100Aの予測位置とが所定距離以上離れている場合に、所定以上の乖離があると判定してもよい。
この判定は、各予測経路上の何れかの予測位置に自車両100Aが到達する前に行われる。
従って、最適な走行経路に対して実際に自車両100Aの位置が所定距離以上離れてしまう前に、走行経路の選択を行うことができる。これにより、自車両100Aの位置が最適な走行経路に対して所定距離以上離れてしまうことを防止することができ、安全性を向上させることができる。
車両制御システム1において、第3予測経路PT3は、第1予測経路PT1における所定時間後または所定距離走行後の自車両100Aの予測位置と第2予測経路PT2における所定時間後または所定距離走行後の自車両100Aの予測位置の中間地点を通過する経路とされてもよい。
第1予測経路PT1と第2予測経路PT2のうち一方が最適な経路とされる場合に、他方の予測経路を選択してしまうと、最適な経路から所定距離以上離れた位置を自車両100Aが走行してしまう可能性がある。このような場合に、第3予測経路PT3として第1予測経路PT1と第2予測経路PT2の中間の経路が生成されて選択されることにより、最適な経路からの乖離を半分に抑えることができる。
これにより、自車両100Aの走行位置を最適な経路側にオフセットすることができるため、安全性の向上を図ることができる。また、第3予測経路PT3から最適な予測経路へ変更する際の自車両100Aの横方向の移動距離を短くすることができ、自車両100Aの挙動を安定させることができる。また、自車両100Aの急制動や急操舵を抑制することができることで自車両100Aの安全性だけでなく周辺車両の安全性を向上させることができ、乗り心地の改善を図ることもできる。
上述した車両制御システム1は、地図情報と自車両100Aの位置情報に基づく自車両100Aの予測経路を第1予測経路PT1として生成する第1予測経路生成手段(第1予測経路生成部32)と、自車両100Aの外部の走行環境を認識する外部環境認識手段(外部環境認識装置3)から取得した外部環境情報に基づく自車両100Aの予測経路を第2予測経路PT2として生成する第2予測経路生成手段(第2予測経路生成部33)と、第1予測経路PT1と前記第2予測経路PT2に基づいて第3予測経路PT3を生成する第3予測経路生成手段(第3予測経路生成部34)と、運転者による操舵または保舵が不要とされたハンズオフ走行を行うためのアシスト走行制御手段(アシスト走行制御部31)と、第1予測経路PT1と第2予測経路PT2の所定以上の乖離の有無を判定する乖離判定手段(乖離判定部36)と、第1予測経路PT1と第2予測経路PT2に所定以上の乖離があると判定された場合にハンズオフ走行(ハンズオフ走行モードMD2)からハンズオン走行(ハンズオン走行モードMD1)へと移行する移行制御手段(移行制御部39)と、ハンズオフ走行からハンズオン走行への移行の際に第3予測経路PT3を自車両100Aの走行経路として選択する走行経路選択手段(走行経路選択部38)と、を備えている。
第1予測経路PT1と第2予測経路PT2に乖離が発生した状況とは、例えば、地図情報と外部環境情報の何れかの精度が落ちている場合や誤っている場合が考えられる。このような場合に何れか一方の予測経路に基づいて自車両100Aのハンズオフ走行を継続することは適切でない可能性がある。本構成によれば、ハンズオフ走行からハンズオン走行への移行が行われると共に、第3予測経路PT3が選択される。
これにより、第1予測経路PT1と第2予測経路PT2のうち適切でない方の予測経路よりも適した経路を自車両100Aが走行できる可能性を高めることができる。また、第3予測経路PT3に沿って自車両100Aを走行させることで、適切でない走行経路を自車両100Aが走行してしまうまでの距離及び時間を伸ばすことができるため、運転者による操舵または保舵がなされるまでの時間を稼ぐことができる。これにより、前述したようなMRM実行モードMD4へ遷移させるまでに運転者による操舵または保舵が行われる可能性を高めることができ、自車両100Aを停車させずに済む可能性を高めることができる。
車両制御システム1において、第3予測経路PT3は、第1予測経路PT1における所定時間後または所定距離走行後の自車両100Aの予測位置と第2予測経路PT2における所定時間後または所定距離走行後の自車両100Aの予測位置の中間地点を通過する経路とされてもよい。
第1予測経路PT1と第2予測経路PT2のうち一方が最適な経路とされた場合に、第3予測経路PT3は他方の予測経路である最適でない経路よりも最適経路側にずれた経路とされる。
これにより、自車両100Aの走行位置を最適な経路側にすることができるため、安全性の向上を図ることができる。また、第3予測経路PT3から最適な予測経路へ変更する際の自車両100Aの横方向の移動距離を短くすることができ、自車両100Aの挙動を安定させることができる。また、自車両100Aの急制動または急操舵を抑制することができることで自車両100Aの安全性だけでなく周辺車両の安全性を向上させることができ、乗り心地の改善を図ることもできる。
車両制御システム1における走行経路選択手段(走行経路選択部38)は、走行経路として第3予測経路PT3を選択している状態において、第1予測経路PT1と第2予測経路PT2のうち何れかの予測経路が正常な経路であると判定された場合に、正常な経路と判定された予測経路を走行経路として選択してもよい。
これにより、最適な経路から最も離れた経路を走行することを回避することができると共に、最適な経路が判明した際には最適な経路へと切り換えられる。
従って、自車両100Aの走行安全性を向上させることができる。また、第3予測経路PT3から最適な予測経路へと切り換えられることにより、経路切り替えの際に自車両100Aの横方向の移動距離を少なくすることができ、自車両100Aの挙動を安定させることが可能となる。
車両制御システム1における移行制御手段(移行制御部39)は、ハンズオフ走行からハンズオン走行へと移行させる場合に移行期間を経てハンズオン走行へと移行させてもよい。
これにより、ハンズオフ走行から運転者による操舵または保舵が必要なハンズオン走行へと直接遷移することがない。
従って、運転者は操舵または保舵を開始するための準備期間として移行期間を利用することができ、円滑にハンズオン走行へと移行させることができる。また、移行先が通常運転モードMD1-1である場合には、操舵または保舵を急に開始しなくてもよいため、自車両100Aの安全性を向上させることができる。
車両制御システム1は、移行期間において運転者に対してハンズオンを促す報知を行う報知手段(報知制御部40、表示制御部6、表示部11)を備えていてもよい。
これにより、運転者は操舵または保舵が必要になることを確実に認識することができる。
従って、運転者は円滑にハンズオン運転へと移行させることができ、安全性の向上に寄与することができる。
1 車両制御システム
3 外部環境認識装置(外部環境認識手段)
6 表示制御部(報知手段)
11 表示部(報知手段)
31 アシスト走行制御部(アシスト走行制御手段)
32 第1予測経路生成部(第1予測経路生成手段)
33 第2予測経路生成部(第2予測経路生成手段)
34 第3予測経路生成部(第3予測経路生成手段)
35 先行車情報取得部(先行車情報取得手段)
36 乖離判定部(乖離判定手段)
37 信頼度判定部(信頼度判定手段)
38 走行経路選択部(走行経路選択手段)
39 移行制御部(移行制御手段)
40 報知制御部(報知手段)
100 車両
100A 自車両
100B 先行車
PT1 第1予測経路
PT2 第2予測経路
PT3 第3予測経路
MD1 ハンズオン走行モード(ハンズオン走行)
MD2 ハンズオフ走行モード(ハンズオフ走行)

Claims (3)

  1. 地図情報と自車両の位置情報に基づく自車両の予測経路を第1予測経路として生成する第1予測経路生成手段と、
    自車両外部の走行環境を認識する外部環境認識手段から取得した外部環境情報に基づく自車両の予測経路を第2予測経路として生成する第2予測経路生成手段と、
    先行車の走行経路に関する情報を先行車情報として取得する先行車情報取得手段と、
    前記第1予測経路と前記第2予測経路の所定以上の乖離の有無を判定する乖離判定手段と、
    前記第1予測経路と前記第2予測経路に所定以上の乖離があると判定された場合に前記先行車情報に基づいて前記第1予測経路と前記第2予測経路それぞれの信頼度を判定する信頼度判定手段と、
    前記それぞれの信頼度に基づいて自車両の走行経路を選択する走行経路選択手段と、
    前記第1予測経路と前記第2予測経路に基づいて第3予測経路を生成する第3予測経路生成手段と、を備え
    前記走行経路選択手段は、
    前記第3予測経路を自車両の走行経路として選択可能とされ、
    前記第1予測経路と前記第2予測経路に所定以上の乖離があると判定した場合において、前記信頼度の判定を行う前は前記第3予測経路を自車両の走行経路として選択し、前記信頼度の判定を行った後は前記第1予測経路と前記第2予測経路のうち前記信頼度が高い方の予測経路を自車両の走行経路として選択する
    車両制御システム。
  2. 前記乖離判定手段は、前記第1予測経路における所定時間後または所定距離走行後の自車両の予測位置と前記第2予測経路における所定時間後または所定距離走行後の自車両の予測位置とが所定距離以上離れている場合に、前記所定以上の乖離があると判定する
    請求項1に記載の車両制御システム。
  3. 前記第3予測経路は、前記第1予測経路における所定時間後または所定距離走行後の自車両の予測位置と前記第2予測経路における所定時間後または所定距離走行後の自車両の予測位置の中間地点を通過する経路とされた
    請求項1に記載の車両制御システム。
JP2020167602A 2020-10-02 2020-10-02 車両制御システム Active JP7498079B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020167602A JP7498079B2 (ja) 2020-10-02 2020-10-02 車両制御システム
US17/493,273 US11912278B2 (en) 2020-10-02 2021-10-04 Vehicle control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020167602A JP7498079B2 (ja) 2020-10-02 2020-10-02 車両制御システム

Publications (2)

Publication Number Publication Date
JP2022059786A JP2022059786A (ja) 2022-04-14
JP7498079B2 true JP7498079B2 (ja) 2024-06-11

Family

ID=80931050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020167602A Active JP7498079B2 (ja) 2020-10-02 2020-10-02 車両制御システム

Country Status (2)

Country Link
US (1) US11912278B2 (ja)
JP (1) JP7498079B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510491A (ja) 2014-03-11 2017-04-13 コンチネンタル オートモーティブ システムズ インコーポレイテッドContinental Automotive Systems, Inc. 道路逸脱防止システム
JP2018045500A (ja) 2016-09-15 2018-03-22 日産自動車株式会社 走行制御方法および走行制御装置
WO2019026210A1 (ja) 2017-08-02 2019-02-07 日産自動車株式会社 走行支援方法及び走行支援装置
WO2019180919A1 (ja) 2018-03-23 2019-09-26 三菱電機株式会社 経路生成装置、および、車両制御システム
WO2020002964A1 (ja) 2018-06-29 2020-01-02 日産自動車株式会社 走行支援方法および走行支援装置
US20210094574A1 (en) 2019-09-27 2021-04-01 Hyundai Mobis Co, Ltd. Autonomous driving apparatus and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6485915B2 (ja) 2015-10-28 2019-03-20 本田技研工業株式会社 道路区画線認識装置、車両制御装置、道路区画線認識方法、および道路区画線認識プログラム
JP7087896B2 (ja) 2018-10-01 2022-06-21 株式会社Soken 走行車線推定装置、走行車線推定方法、及び制御プログラム
JP7253908B2 (ja) * 2018-12-03 2023-04-07 日立Astemo株式会社 車両制御装置
JP7347301B2 (ja) * 2020-03-31 2023-09-20 株式会社デンソー 走路生成装置、方法及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510491A (ja) 2014-03-11 2017-04-13 コンチネンタル オートモーティブ システムズ インコーポレイテッドContinental Automotive Systems, Inc. 道路逸脱防止システム
JP2018045500A (ja) 2016-09-15 2018-03-22 日産自動車株式会社 走行制御方法および走行制御装置
WO2019026210A1 (ja) 2017-08-02 2019-02-07 日産自動車株式会社 走行支援方法及び走行支援装置
WO2019180919A1 (ja) 2018-03-23 2019-09-26 三菱電機株式会社 経路生成装置、および、車両制御システム
WO2020002964A1 (ja) 2018-06-29 2020-01-02 日産自動車株式会社 走行支援方法および走行支援装置
US20210094574A1 (en) 2019-09-27 2021-04-01 Hyundai Mobis Co, Ltd. Autonomous driving apparatus and method

Also Published As

Publication number Publication date
US11912278B2 (en) 2024-02-27
US20220105937A1 (en) 2022-04-07
JP2022059786A (ja) 2022-04-14

Similar Documents

Publication Publication Date Title
US11180143B2 (en) Vehicle control device
US10435025B2 (en) Vehicle control device
US20180281803A1 (en) Vehicle control device
US20180178839A1 (en) Driving assistance device
US11396293B2 (en) Driving support control device
RU2760046C1 (ru) Способ помощи при вождении и устройство помощи при вождении
JP6947849B2 (ja) 車両制御装置
EP2042962A1 (en) Driving support system
JP6623311B2 (ja) 制御装置及び制御方法
US11524688B2 (en) Apparatus and method for assisting turn of vehicle at intersection
WO2013153660A1 (ja) 運転支援装置
CN110446641B (zh) 车辆控制装置和车辆控制方法
JP2009137562A (ja) 車両制御装置、車両制御方法及びコンピュータプログラム
EP3816966B1 (en) Driving assistance method and driving assistance device
US20210001856A1 (en) Vehicle control device and vehicle control method
US20200051436A1 (en) Vehicle control apparatus and vehicle control method
JP2012212271A (ja) 運転支援装置
JP7498079B2 (ja) 車両制御システム
WO2021235043A1 (ja) 車両制御装置
US20220105930A1 (en) Vehicle control system
CN114274971B (zh) 车辆控制***
JP7467522B2 (ja) 車両制御装置
JP7467520B2 (ja) 車両制御装置
WO2023171458A1 (ja) 車両用報知制御装置及び車両用報知制御方法
JP2023167989A (ja) 制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240530

R150 Certificate of patent or registration of utility model

Ref document number: 7498079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150