JP7466991B2 - Impact test compatible anchor and its test method - Google Patents

Impact test compatible anchor and its test method Download PDF

Info

Publication number
JP7466991B2
JP7466991B2 JP2020074434A JP2020074434A JP7466991B2 JP 7466991 B2 JP7466991 B2 JP 7466991B2 JP 2020074434 A JP2020074434 A JP 2020074434A JP 2020074434 A JP2020074434 A JP 2020074434A JP 7466991 B2 JP7466991 B2 JP 7466991B2
Authority
JP
Japan
Prior art keywords
impact
anchor
acceleration
inspection
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020074434A
Other languages
Japanese (ja)
Other versions
JP2021173531A (en
Inventor
透 齊藤
Original Assignee
株式会社ケー・エフ・シー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケー・エフ・シー filed Critical 株式会社ケー・エフ・シー
Priority to JP2020074434A priority Critical patent/JP7466991B2/en
Publication of JP2021173531A publication Critical patent/JP2021173531A/en
Application granted granted Critical
Publication of JP7466991B2 publication Critical patent/JP7466991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、コンクリート構造物に打設して用いられるアンカーに係り、特に打撃検査に適する打撃検査対応アンカー及びその検査方法に関する。 The present invention relates to anchors that are used by being driven into concrete structures, and in particular to impact-test-compatible anchors that are suitable for impact testing, and to a method for testing the same.

従来、コンクリート構造物に埋設されたアンカーの定着状態の健全性を検査する方法として、コンクリートから突出するアンカーボルトの突出部を加速度センサ付き打撃ハンマーで軸方向に直接打撃し、打撃による打撃力波形(時間-加速度波形)を測定し、この打撃力波形に基づいてボルトの健全性を検査する加速度計測方式の手法が知られている(特許文献1参照)。 Conventionally, a method for inspecting the soundness of the anchorage state of an anchor embedded in a concrete structure is known that uses an acceleration measurement method in which the protruding part of the anchor bolt protruding from the concrete is directly struck in the axial direction with an impact hammer equipped with an acceleration sensor, the impact force waveform (time-acceleration waveform) is measured, and the soundness of the bolt is inspected based on this impact force waveform (see Patent Document 1).

特開2015-81767号公報JP 2015-81767 A

ところで、アンカーを打撃ハンマーで軸方向に打撃して時間-加速度波形を測定する検査方法を用いる際に、例えば図8(a)に示す天井面101に埋め込まれたアンカー102の下向きに突出する突出部を加速度センサ付き打撃ハンマー105で打撃する場合や、図8(b)に示すトンネル壁面103に埋め込まれたアンカー104の斜め下方向に突出する突出部を加速度センサ付き打撃ハンマー105で打撃する場合のように、検査者がアンカーを軸方向に真っ直ぐに打撃することが難しいケースがある。特に対象アンカーがコンクリートに埋め込まれた定着されているメカニカルアンカーの場合、アンカーの大部分は埋設されていて目視できないため、露出している突出部を軸方向に真っ直ぐに打撃することは非常に難しい。 However, when using an inspection method in which an anchor is struck in the axial direction with an impact hammer to measure a time-acceleration waveform, there are cases in which it is difficult for the inspector to strike the anchor straight in the axial direction, such as when striking the downward protruding portion of anchor 102 embedded in ceiling surface 101 shown in FIG. 8(a) with impact hammer 105 equipped with an acceleration sensor, or when striking the obliquely downward protruding portion of anchor 104 embedded in tunnel wall surface 103 shown in FIG. 8(b) with impact hammer 105 equipped with an acceleration sensor. In particular, when the target anchor is a mechanical anchor that is fixed and embedded in concrete, most of the anchor is buried and cannot be seen with the naked eye, so it is very difficult to strike the exposed protruding portion straight in the axial direction.

更に、単に全ねじボルトを樹脂やセメントモルタル等の定着剤で定着させただけのアンカーは、アンカーの露出する突出部を打撃した時の時間-加速度の応答波形がそのまま定着状態を反映したものになるが、メカニカルアンカーは、打撃や締付によって拡開部にテーパーボルト等の部材を入れ込んで拡開部をコンクリート孔壁に機械的に密着させているため、加速度センサ付き打撃ハンマーの打撃によってメカニカルアンカーの複数の部品が時間差で応答することも想定され、正確な定着状態の検査を行うには正確な打撃を行って正確に応答波形を読み取ることが非常に重要となる。 Furthermore, for anchors that are simply fully threaded bolts fixed with a fixing agent such as resin or cement mortar, the time-acceleration response waveform when the exposed protruding part of the anchor is struck directly reflects the fixed state. However, for mechanical anchors, a tapered bolt or other component is inserted into the expanded part by striking or tightening, mechanically adhering the expanded part to the concrete hole wall. Therefore, it is expected that the multiple parts of the mechanical anchor will respond with a time lag when struck by an impact hammer with an acceleration sensor. Therefore, in order to accurately inspect the fixed state, it is extremely important to strike accurately and read the response waveform accurately.

例えば、テーパーボルト202にスリーブ203が打ち込まれて拡開した拡開部204がコンクリート205の孔壁に密着されているメカニカルアンカー201において、拡開部204が十分に拡開して健全な定着状態のメカニカルアンカー201を、検査装置207を備える加速度センサ付き打撃ハンマー206で打撃した場合(図9(b)、(a)参照)、図10(a)のような打撃力波形の時間-加速度波形における入力波形の加速度の極大値と応答波形の加速度の極大値の遅れ時間が0となり、見かけ上は1つの極大値に対して加速度が左右均等に近い形になる波形が出力される。これに対して、スリーブ203の打込み不足で拡開部204が十分に拡開していない不健全な定着状態のメカニカルアンカー201を、検査装置207を備える加速度センサ付き打撃ハンマー206で打撃した場合(図9(c)、(a)参照)、図10(b)のように、拡開部204の不十分な拡開でメカニカルアンカー201がコンクリート205と一体化していないことに起因して、入力波形の極大値と応答波形の極大値の遅れ時間が大きい不規則な時間-加速度の打撃力波形が出力される。しかしながら、メカニカルアンカー201のテーパーボルト202の突出部に軸方向に適正な打撃力が加えられないと、図10(c)のように、打撃力波形の時間-加速度波形において、入力波形の極大値と応答波形の極大値の遅れ時間が見かけ上0となり、見かけ上は1つの極大値に対して加速度があたかも健全な定着状態と間違えるような左右均等に近い形の波形になってしまう場合もある。 For example, in a mechanical anchor 201 in which a sleeve 203 is driven into a tapered bolt 202 and the expanded portion 204 is in close contact with the wall of a hole in concrete 205, when the mechanical anchor 201 in which the expanded portion 204 is sufficiently expanded and in a soundly fixed state is struck with an impact hammer 206 with an acceleration sensor equipped with an inspection device 207 (see Figures 9 (b) and (a)), the delay time between the maximum value of acceleration of the input waveform and the maximum value of acceleration of the response waveform in the time-acceleration waveform of the impact force waveform as shown in Figure 10 (a) becomes zero, and a waveform is output in which the acceleration appears to be nearly equal on the left and right for one maximum value. In contrast, when an unsound mechanical anchor 201 in which the expansion part 204 is not fully expanded due to insufficient driving of the sleeve 203 is struck by an impact hammer 206 with an acceleration sensor equipped with an inspection device 207 (see Figs. 9(c) and (a)), as shown in Fig. 10(b), an irregular time-acceleration impact force waveform with a large delay time between the maximum value of the input waveform and the maximum value of the response waveform is output due to the mechanical anchor 201 not being integrated with the concrete 205 due to insufficient expansion of the expansion part 204. However, if an appropriate impact force is not applied in the axial direction to the protruding part of the tapered bolt 202 of the mechanical anchor 201, as shown in Fig. 10(c), the delay time between the maximum value of the input waveform and the maximum value of the response waveform in the time-acceleration waveform of the impact force waveform becomes seemingly zero, and the acceleration for one maximum value may appear to be almost equal on the left and right, which may lead to a waveform that is mistaken for a soundly fixed state.

また、検査者自身がメカニカルアンカーのボルトの突出部を軸方向に適正に打撃できていないと認識した場合、検査者がボルトの突出部を何度も打撃する事態も想定されるが、このように何度も打撃するとボルトの突出部のねじ山が潰れてしまい、ボルトに螺合されたナットの脱着ができなくなってしまうという問題もある。 In addition, if the inspector realizes that he or she has not properly struck the protruding part of the bolt of the mechanical anchor in the axial direction, it is conceivable that the inspector may strike the protruding part of the bolt multiple times. However, if the inspector strikes the protruding part of the bolt multiple times, the threads of the protruding part of the bolt may be crushed, which may cause the nut screwed onto the bolt to become unable to be removed or attached.

本発明は上記課題に鑑み提案するものであって、加速度センサ付き打撃ハンマーで正確に打撃し易く、加速度計測方式による検査装置で適正な応答波形を確実に得ることができると共に、打撃による雄ねじ部の変形を防止して雄ねじ部に対するナットの着脱性を確保することができる打撃検査対応アンカー及びその検査方法を提供することを目的とする。 The present invention has been proposed in light of the above problems, and aims to provide an anchor that can be impact-tested and an inspection method thereof that can be easily and accurately struck with an impact hammer equipped with an acceleration sensor, can reliably obtain an appropriate response waveform with an inspection device that uses an acceleration measurement method, and can prevent deformation of the male threaded portion due to impact and ensure the ease of attaching and detaching the nut to the male threaded portion.

本発明の打撃検査対応アンカーは、拡開された拡開部がコンクリート孔壁に密着され、コンクリート表面から雄ねじ部の少なくとも一部が露出するようにコンクリート構造物に打設されるメカニカルアンカーで構成され、前記雄ねじ部の後端部から後方に突出して略円柱状の打撃部が設けられ、前記打撃部が前記雄ねじ部の外径より小径で形成されていると共に、前記打撃部の後端面が平坦面になっており、前記平坦面から周状でR面の面取り部を介して前記打撃部の周側面に至るように形成されており、前記メカニカルアンカーが、前記雄ねじ部の先端側がテーパー部になっているテーパーボルトと、前記テーパーボルトに外嵌され、前記テーパー部の入り込みによって前記拡開部が拡開するスリーブで構成され、前記テーパーボルトの前記雄ねじ部の後端部から後方に突出して前記打撃部が設けられていることを特徴とする。
これによれば、雄ねじ部の後端部から後方に打撃部を突出させ、且つその打撃される後端面を平坦面とすることにより、検査者が雄ねじ部の軸心を目視で非常に把握し易くなり、加速度センサ付き打撃ハンマーを平坦な後端面に当てて、雄ねじ部の軸方向に真っ直ぐ適正に打撃力を伝えられるように打撃することが容易となる。即ち、加速度センサ付き打撃ハンマーで正確に打撃し易くなる。また、打撃検査対応アンカーを適正、正確に打撃することが可能となることに加え、打撃部の平坦面から周状でR面の面取り部を介して打撃部の周側面に至るように形成することにより、打撃部の平坦面周囲の打撃による変形で打撃力が吸収されて応答波形が不正確になることを防止することができ、加速度計測方式による検査装置で打撃検査対応アンカーの適正な応答波形、時間-加速度波形を確実に得ることができる。尚、略円柱状の打撃部の後端面である平坦面と周側面との間を線状の周縁にした場合、打撃が打撃部の周縁に当たったときに周縁が変形しやすくなり、その変形によって打撃力が吸収され、応答波形が不正確なものとなりやすい。また、打撃される打撃部を雄ねじ部の後端部から後方に突出させ且つ雄ねじ部の外径より小径とすることにより、打撃による雄ねじ部の変形を防止して雄ねじ部に対するナットの着脱性を確保することができる。
The anchor compatible with impact testing of the present invention is comprised of a mechanical anchor that is driven into a concrete structure so that the expanded expansion portion is in close contact with the wall of a concrete hole and at least a portion of the male thread portion is exposed from the concrete surface, and a substantially cylindrical impact portion is provided protruding rearward from the rear end of the male thread portion, the impact portion is formed with a diameter smaller than the outer diameter of the male thread portion , the rear end surface of the impact portion is a flat surface, and is formed so as to extend from the flat surface to the peripheral side surface of the impact portion via a circumferential, R-surface chamfered portion, and the mechanical anchor is comprised of a tapered bolt having a tapered portion at the tip side of the male thread portion, and a sleeve that is fitted onto the tapered bolt and expands the expansion portion as the tapered portion enters, and the impact portion is provided protruding rearward from the rear end of the male thread portion of the tapered bolt .
According to this, by projecting the impact part backward from the rear end of the male screw part and making the rear end surface to be impacted a flat surface, it becomes very easy for the inspector to visually grasp the axis of the male screw part, and it becomes easy to strike the flat rear end surface with an impact hammer equipped with an acceleration sensor so that the impact force is transmitted straight and properly in the axial direction of the male screw part. That is, it becomes easy to strike accurately with the impact hammer equipped with an acceleration sensor. In addition, by forming the impact part so that the flat surface of the impact part is circumferentially formed and reaches the peripheral side surface of the impact part through the chamfered portion with a rounded surface, it is possible to prevent the response waveform from becoming inaccurate because the impact force is absorbed by the deformation caused by the impact around the flat surface of the impact part, and it is possible to reliably obtain the appropriate response waveform and time-acceleration waveform of the impact inspection compatible anchor with the inspection device using the acceleration measurement method. Incidentally, if the rear end surface of the approximately cylindrical impact part is made into a linear periphery between the flat surface and the peripheral side surface, the periphery is easily deformed when the impact hits the periphery of the impact part, and the impact force is absorbed due to the deformation, which tends to make the response waveform inaccurate. In addition, by making the striking portion that is struck protrude rearward from the rear end of the male threaded portion and making the diameter smaller than the outer diameter of the male threaded portion, deformation of the male threaded portion due to striking can be prevented, thereby ensuring the ease of attachment and detachment of the nut to the male threaded portion.

本発明の打撃検査対応アンカーは、前記メカニカルアンカーが、前記雄ねじ部の先端側がテーパー部になっているテーパーボルトと、前記テーパーボルトに外嵌され、前記テーパー部の入り込みによって前記拡開部が拡開するスリーブで構成され、前記テーパーボルトの前記雄ねじ部の後端部から後方に突出して前記打撃部が設けられ、前記打撃部の長さが前記雄ねじ部の外径よりも短く形成されていることを特徴とし、更には、打撃部の長さを雄ねじ部の外径の40%以下とするとより好適である。
これによれば、テーパーボルトの雄ねじ部の後端部から後方に打撃部を突出させ、且つその打撃される後端面を平坦面とすることにより、検査者がテーパーボルトの雄ねじ部の軸心を目視で非常に把握し易くなり、加速度センサ付き打撃ハンマーを平坦な後端面に当てて、テーパーボルトの雄ねじ部の軸方向に真っ直ぐ適正に打撃力を伝えられるように打撃することが容易となる。また、打撃されるテーパーボルトの打撃部をテーパーボルトの雄ねじ部の後端部から後方に突出させ且つ雄ねじ部の外径より小径とすることにより、打撃によるテーパーボルトの雄ねじ部の変形を防止してテーパーボルトの雄ねじ部に対するナットの着脱性を確保することができる。また、打撃部の長さをテーパーボルトの雄ねじ部の外径よりも短く形成することにより、打撃検査対応アンカーのコンクリート構造物からの突出長が長くなり過ぎて部材の取り付け等で邪魔になることを防止することができる。
The anchor compatible with impact testing of the present invention is characterized in that the mechanical anchor is composed of a tapered bolt having a tapered portion at the tip side of the male threaded portion, and a sleeve that is fitted onto the tapered bolt and whose expansion portion expands as the tapered portion fits into it, the impact portion is provided protruding rearward from the rear end of the male threaded portion of the tapered bolt, and the length of the impact portion is formed to be shorter than the outer diameter of the male threaded portion, and it is more preferable that the length of the impact portion be 40% or less of the outer diameter of the male threaded portion.
According to this, by projecting the impact part backward from the rear end of the male thread of the tapered bolt and making the rear end surface to be impacted a flat surface, it becomes very easy for the inspector to visually grasp the axis of the male thread of the tapered bolt, and it becomes easy to strike the tapered bolt so that the impact force is transmitted straight and properly in the axial direction of the male thread of the tapered bolt by placing the impact hammer with the acceleration sensor on the flat rear end surface. In addition, by projecting the impact part of the tapered bolt to be impacted backward from the rear end of the male thread of the tapered bolt and making the diameter smaller than the outer diameter of the male thread, it is possible to prevent the male thread of the tapered bolt from being deformed by impact and ensure the attachment and detachment of the nut to the male thread of the tapered bolt. In addition, by forming the length of the impact part shorter than the outer diameter of the male thread of the tapered bolt, it is possible to prevent the impact inspection compatible anchor from protruding too long from the concrete structure and becoming an obstacle when attaching a member, etc.

本発明の打撃検査対応アンカーの検査方法は、前記拡開部を拡開してコンクリート構造物に打設された本発明の打撃検査対応アンカーの検査方法であって、加速度センサ付き打撃ハンマーと、前記加速度センサ付き打撃ハンマーと電気的に接続される検査装置を用い、前記打撃検査対応アンカーの前記打撃部を前記加速度センサ付き打撃ハンマーで軸方向に打撃して前記検査装置に打撃による時系列データを入力し、前記検査装置が、前記時系列データに応じて時間-加速度波形を生成し、前記時間-加速度波形の入力波形の加速度の極大値と応答波形の加速度の極大値の遅れ時間が所定基準以下であることに基づき、前記打撃検査対応アンカーの定着状態が健全であると判定することを特徴とする。更に、時間-加速度波形の入力波形の加速度の極大値と応答波形の加速度の極大値の比が所定基準以上である場合に、打撃検査対応アンカーの定着状態が健全であると判定する構成、又は、時間-加速度波形の入力波形の加速度の極大値と応答波形の加速度の極大値の遅れ時間が0で見かけ上1つの極大値に対し、この極大値の加速度を対象軸として前後の所定時間範囲の積分領域の類似度が所定基準以上である場合に、打撃検査対応アンカーの定着状態が健全であると判定する構成としても好適である。
これによれば、打撃検査対応アンカーの適正、正確な応答波形、時間-加速度波形に基づき、複雑な判断や処理を要せずに、打撃検査対応アンカーの定着状態の健全性を判定することができる。
The inspection method for the impact inspection-compatible anchor of the present invention is a method for inspecting the impact inspection-compatible anchor of the present invention after the expansion portion has been expanded and cast into a concrete structure, and is characterized in that an impact hammer with an acceleration sensor and an inspection device electrically connected to the impact hammer with an acceleration sensor are used, the impact portion of the impact inspection-compatible anchor is struck in the axial direction with the impact hammer with an acceleration sensor, time series data due to the impact is input to the inspection device, the inspection device generates a time-acceleration waveform in accordance with the time series data, and based on the delay time between the maximum acceleration value of the input waveform of the time-acceleration waveform and the maximum acceleration value of the response waveform being below a predetermined standard, it is determined that the fixed state of the impact inspection-compatible anchor is sound. Furthermore, it is also suitable for a configuration in which the fixing state of the impact inspection-compatible anchor is determined to be sound when the ratio of the maximum acceleration value of the input waveform of the time-acceleration waveform to the maximum acceleration value of the response waveform is equal to or greater than a predetermined standard, or for a seemingly single maximum value with the delay time between the maximum acceleration value of the input waveform of the time-acceleration waveform and the maximum acceleration value of the response waveform being zero, the similarity of the integral domains in a predetermined time range before and after the acceleration of this maximum value as the axis of interest is equal to or greater than a predetermined standard.
According to this, the soundness of the fixed state of the impact test-compatible anchor can be determined based on the suitability of the impact test-compatible anchor, accurate response waveform, and time-acceleration waveform, without requiring complex judgments or processing.

本発明の打撃検査対応アンカーは、加速度センサ付き打撃ハンマーで正確に打撃し易く、加速度計測方式による検査装置で適正な応答波形を確実に得ることができると共に、打撃による雄ねじ部の変形を防止して雄ねじ部に対するナットの着脱性を確保することができる。また、本発明の打撃検査対応アンカーを用いる検査方法によれば、打撃検査対応アンカーの適正、正確な応答波形、時間-加速度波形に基づき、複雑な判断や処理を要せずに、打撃検査対応アンカーの定着状態の健全性を判定することができる。 The impact inspection-compatible anchor of the present invention can be easily and accurately struck with an impact hammer equipped with an acceleration sensor, and an appropriate response waveform can be reliably obtained with an inspection device using an acceleration measurement method, while preventing deformation of the male threaded portion due to striking and ensuring the ease of attaching and detaching the nut to the male threaded portion. Furthermore, according to an inspection method using the impact inspection-compatible anchor of the present invention, the soundness of the fixed state of the impact inspection-compatible anchor can be determined based on the suitability, accurate response waveform, and time-acceleration waveform of the impact inspection-compatible anchor without the need for complex judgments or processing.

(a)は本発明による実施形態の打撃検査対応アンカーの正面図、(b)はその斜視図、(c)はその縦断面図。1A is a front view of an anchor compatible with impact testing according to an embodiment of the present invention, FIG. 1B is a perspective view thereof, and FIG. (a)は実施形態の打撃検査対応アンカーのコンクリート定着状態を示す説明図、(b)はその縦断面図。4A is an explanatory diagram showing a state in which an anchor compatible with impact testing according to an embodiment is fixed to concrete, and FIG. 4B is a longitudinal sectional view thereof. 実施形態の打撃検査対応アンカーの検査に用いられる検査システム例のブロック図。FIG. 2 is a block diagram of an example inspection system used to inspect the impact inspection-compatible anchor of the embodiment. (a)~(d)は実施形態の打撃検査対応アンカーと比較例のアンカーに対する頭部打撃状況の差を説明する説明図。6A to 6D are explanatory diagrams illustrating the difference in head impact conditions between the impact test compatible anchor of the embodiment and the anchor of the comparative example. (a)は打撃試験を行ったコンクリート定着状態の実施形態の打撃検査対応アンカーを示す説明図、(b)は同図(a)の打撃検査対応アンカーに対する打撃試験から得られた時間-加速度の関係を示すグラフ。FIG. 1A is an explanatory diagram showing an embodiment of an anchor compatible with impact testing in a concrete-fixed state after an impact test is performed, and FIG. 1B is a graph showing the relationship between time and acceleration obtained from an impact test of the anchor compatible with impact testing in FIG. (a)は打撃試験を行ったコンクリート定着状態の比較例のアンカーを示す説明図、(b)は同図(a)の比較例のアンカーに対する打撃試験から得られた時間-加速度の関係を示すグラフ。FIG. 2A is an explanatory diagram showing an anchor of a comparative example in a state of being fixed to concrete after an impact test, and FIG. 2B is a graph showing the relationship between time and acceleration obtained from the impact test of the anchor of the comparative example of FIG. 2A. 図5と図6の打撃試験の結果として得られた実施形態の打撃検査対応アンカーと比較例のアンカーの変動係数の相違を示す図。FIG. 7 is a diagram showing the difference in coefficient of variation between the impact test-compatible anchor of the embodiment and the anchor of the comparative example obtained as a result of the impact test of FIG. 5 and FIG. 6 . (a)は検査対象のアンカーが下向きに突出している例を示す説明図、(b)は検査対象のアンカーが斜め下方に突出している例を示す説明図。FIG. 1A is an explanatory diagram showing an example in which an anchor to be inspected protrudes downward, and FIG. 1B is an explanatory diagram showing an example in which an anchor to be inspected protrudes diagonally downward. (a)は従来の加速度センサ付きハンマーを備える検査システムの説明図、(b)は従来例のアンカーがコンクリートに適正に打ち込まれている状態を示す縦断面図、(b)は従来例のアンカーのコンクリートに対する打込不足の状態を示す縦断面図。FIG. 1A is an explanatory diagram of an inspection system equipped with a conventional hammer with an acceleration sensor, FIG. 1B is a vertical cross-sectional view showing a state in which a conventional anchor is properly driven into concrete, and FIG. 1B is a vertical cross-sectional view showing a state in which the conventional anchor is not sufficiently driven into concrete. (a)は従来例のアンカーの適正打ち込み状態に対する打撃試験から得られる時間-加速度の関係を示すグラフ、(b)は従来例のアンカーの打込不足状態に対する打撃試験から得られる第1例の時間-加速度の関係を示すグラフ、b)は従来例のアンカーの打込不足状態に対する打撃試験から得られる第2例の時間-加速度の関係を示すグラフ。1A is a graph showing the relationship between time and acceleration obtained from an impact test of a conventional anchor in a properly driven state, FIG. 1B is a graph showing the relationship between time and acceleration of a first example obtained from an impact test of a conventional anchor in an insufficiently driven state, and FIG. 1B is a graph showing the relationship between time and acceleration of a second example obtained from an impact test of a conventional anchor in an insufficiently driven state.

〔実施形態の打撃検査対応アンカー〕
本発明による実施形態の打撃検査対応アンカー1は、拡開された拡開部33がコンクリート構造物60のコンクリート孔壁61に密着され、コンクリート表面62から雄ねじ部21の少なくとも一部が露出するようにコンクリート構造物60に打設されるメカニカルアンカーであり、図1及び図2に示すように、テーパーボルト2と、テーパーボルト2に外嵌されるスリーブ3とから構成される。
[Embodiment of impact test compatible anchor]
The anchor 1 compatible with impact testing according to an embodiment of the present invention is a mechanical anchor that is driven into a concrete structure 60 so that the expanded portion 33 is in close contact with a concrete hole wall 61 of the concrete structure 60 and at least a part of the male thread portion 21 is exposed from a concrete surface 62, and as shown in Figs. 1 and 2 , the anchor is composed of a tapered bolt 2 and a sleeve 3 that is fitted onto the tapered bolt 2.

テーパーボルト2は、軸方向の略中央から後端近くまで形成されている雄ねじ部21を有し、雄ねじ部21の先端側に、テーパー部22がテーパーボルト2の先端近傍領域において先端に向かって漸次拡径するように形成されている。テーパーボルト2の雄ねじ部21の後端部211には、後方に突出するようにして略円柱状の打撃部23が設けられている。 The tapered bolt 2 has a male threaded portion 21 that is formed from approximately the center in the axial direction to near the rear end, and a tapered portion 22 is formed on the tip side of the male threaded portion 21 so that the diameter gradually increases toward the tip in the area near the tip of the tapered bolt 2. A roughly cylindrical striking portion 23 is provided at the rear end portion 211 of the male threaded portion 21 of the tapered bolt 2 so as to protrude rearward.

打撃部23は、雄ねじ部21の外径よりも全長に亘って小径で形成されていると共に、打撃部23の後端面は平坦面231になっており、平坦面231から周状でR面の面取り部232を介して打撃部23の周側面233に至るように形成されている。また、打撃部23の長さは雄ねじ部21の外径よりも短く形成されており、好適には、打撃部23の長さを雄ねじ部21の外径の40%以下とするとよい。 The striking portion 23 is formed with a smaller diameter than the outer diameter of the male threaded portion 21 over its entire length, and the rear end surface of the striking portion 23 is a flat surface 231 that extends from the flat surface 231 to the peripheral side surface 233 of the striking portion 23 via a circumferential, rounded chamfered portion 232. The length of the striking portion 23 is also formed to be shorter than the outer diameter of the male threaded portion 21, and preferably the length of the striking portion 23 is 40% or less of the outer diameter of the male threaded portion 21.

スリーブ3には、略円筒状の本体31の先端側に先端から切り込まれたスリット32で区分される片状の拡開部33が設けられている。スリーブ3は、拡開部33の非拡開状態ではテーパーボルト2のテーパー部22よりも後側に配置されてテーパーボルト2に外挿されており、拡開時には拡開部33へのテーパー部22の相対的な入り込みによって拡開部33が拡開するようになっている。 The sleeve 3 has a piece-shaped expansion section 33 that is divided by a slit 32 cut from the tip of the approximately cylindrical body 31 on the tip side. When the expansion section 33 is not expanded, the sleeve 3 is positioned behind the tapered section 22 of the tapered bolt 2 and is inserted onto the tapered bolt 2. When expanding, the expansion section 33 expands due to the relative insertion of the tapered section 22 into the expansion section 33.

打撃検査対応アンカー1は、例えば図2に示すようにコンクリート構造物60に打設され、スリーブ3の打込みによる拡開部33へのテーパー部22の相対的な入り込みによって拡開された拡開部33がコンクリート孔壁61に密着されると共に、雄ねじ部21の一部と打撃部23がコンクリート表面62から突出して露出するように打設される。 The impact test compatible anchor 1 is cast into a concrete structure 60, for example, as shown in Figure 2, and the expanded portion 33 expanded by the relative insertion of the tapered portion 22 into the expanded portion 33 caused by the driving of the sleeve 3 is pressed against the concrete hole wall 61, and part of the male thread portion 21 and the impact portion 23 are exposed and protrude from the concrete surface 62.

そして、図2の例では、コンクリート表面62から突出する雄ねじ部21には取付物51、52が外挿され、その外側から雄ねじ部21に平ワッシャー41、スプリングワッシャー42が順に外挿され、更に、その外側から雄ねじ部21にナット43が螺合されてコンクリート構造物60に取付物51、52が取り付けられている。 In the example shown in FIG. 2, attachments 51 and 52 are fitted onto the male threaded portion 21 protruding from the concrete surface 62, and a flat washer 41 and a spring washer 42 are fitted onto the male threaded portion 21 from the outside, and a nut 43 is screwed onto the male threaded portion 21 from the outside to attach the attachments 51 and 52 to the concrete structure 60.

コンクリート構造物60に打設された打撃検査対応アンカー1の定着状態を検査する際には、例えば図3に示す検査装置10と加速度センサ付き打撃ハンマー16から構成される検査システムが用いられる。検査装置10は、加速度センサ付き打撃ハンマー16と電気的に接続され、加速度センサ付き打撃ハンマー16の打撃による時系列データが入力され、打撃力波形として時間-加速度波形を生成して出力可能になっている。 When inspecting the fixing state of the impact inspection compatible anchor 1 that has been driven into the concrete structure 60, an inspection system is used that is composed of an inspection device 10 and an impact hammer 16 with an acceleration sensor, as shown in FIG. 3, for example. The inspection device 10 is electrically connected to the impact hammer 16 with an acceleration sensor, and time-series data from the impact of the impact hammer 16 with an acceleration sensor is input, making it possible to generate and output a time-acceleration waveform as an impact force waveform.

検査装置10は、MPU、CPU等の演算制御部11と、HDD、SSD、フラッシュメモリ、EEPROM、ROM、RAM等で構成される記憶部12と、マウス、キーボード、タッチパネル等の入力部13と、ディスプレイ、プリンター等の出力部14と、有線若しくは無線の通信回線又は通信ケーブルを介して加速度センサ付き打撃ハンマー16と検査装置10を接続する通信インターフェイス15を備える。検査装置10は、例えば専用機器、或いはパーソナルコンピュータ、スマートフォンのような携帯端末等の汎用コンピュータ装置で構成することが可能であり、又、入力部13と出力部14は、入出力可能なタッチパネルとして一体化することも可能である。 The inspection device 10 includes an arithmetic and control unit 11 such as an MPU or CPU, a memory unit 12 consisting of an HDD, SSD, flash memory, EEPROM, ROM, RAM, etc., an input unit 13 such as a mouse, keyboard, touch panel, etc., an output unit 14 such as a display, printer, etc., and a communication interface 15 that connects the impact hammer with acceleration sensor 16 to the inspection device 10 via a wired or wireless communication line or communication cable. The inspection device 10 can be configured, for example, as a dedicated device, or a general-purpose computer device such as a personal computer or a mobile terminal such as a smartphone, and the input unit 13 and output unit 14 can also be integrated as a touch panel capable of input and output.

記憶部12は、制御プログラム格納部121を有し、制御プログラム格納部121には所定の検査処理を演算制御部11に実行させる検査プログラム格納部1211が設けられている。尚、検査プログラムは、通信回線等の伝送媒体を介して伝送されて検査装置10等のコンピュータ装置のハードディスク等の記憶部に格納されることが可能であり、又、CD-ROM等のコンピュータ装置に読み取り可能な非一過性の記録媒体に格納されることが可能である。 The memory unit 12 has a control program storage unit 121, which is provided with an inspection program storage unit 1211 that causes the calculation control unit 11 to execute a specified inspection process. The inspection program can be transmitted via a transmission medium such as a communication line and stored in a memory unit such as a hard disk of a computer device such as the inspection device 10, and can also be stored in a non-transitory recording medium such as a CD-ROM that can be read by the computer device.

演算制御部11は、所定の制御プログラムに従って所定の処理を実行し、検査プログラムと協働して検査処理部111として所定の処理を実行する。また、記憶部12は、検査プログラムに基づき実行させる所定の検査処理で用いられる検査基準データを格納する検査基準データ格納部122を有し、検査処理部111の検査処理に対応して必要な適宜の検査基準データが格納される。 The calculation control unit 11 executes a predetermined process according to a predetermined control program, and cooperates with the inspection program to execute the predetermined process as the inspection processing unit 111. The memory unit 12 also has an inspection reference data storage unit 122 that stores inspection reference data used in the predetermined inspection process executed based on the inspection program, and stores appropriate inspection reference data required in response to the inspection process of the inspection processing unit 111.

例えば検査処理部111が、時間-加速度波形の入力波形の加速度の極大値と応答波形の加速度の極大値の遅れ時間が所定基準以下であるか否かの差異で篩い分けする場合、所定基準の検査基準データとして遅れ時間の閾値が検査基準データ格納部122に格納される。また、例えば検査処理部111が、時間-加速度波形の入力波形の加速度の極大値と応答波形の加速度の極大値の比が所定基準以上であるか否かの差異で篩い分けする場合、所定基準の検査基準データとして当該比の閾値が検査基準データ格納部122に格納される。また、例えば検査処理部111が、時間-加速度波形の入力波形の加速度の極大値と応答波形の加速度の極大値の遅れ時間が0で見かけ上1つの極大値に対し、この極大値の加速度を対象軸として前後の所定時間範囲の積分領域の類似度が所定基準以上であるか否かの差異で篩い分けする場合、所定時間の範囲を示す数秒等の「一定時間」、積分領域の形状や、積分領域の対象軸からの所定離間時点の加速度値等の特徴点等の類似度の閾値等が所定基準の検査基準データとして検査基準データ格納部122に格納される。 For example, when the inspection processing unit 111 screens based on whether the delay time between the maximum acceleration value of the input waveform of the time-acceleration waveform and the maximum acceleration value of the response waveform is below a predetermined standard, a threshold value of the delay time is stored in the inspection reference data storage unit 122 as inspection reference data of the predetermined standard. Also, when the inspection processing unit 111 screens based on whether the ratio between the maximum acceleration value of the input waveform of the time-acceleration waveform and the maximum acceleration value of the response waveform is above a predetermined standard, a threshold value of the ratio is stored in the inspection reference data storage unit 122 as inspection reference data of the predetermined standard. In addition, for example, when the inspection processing unit 111 screens for a single maximum value with zero delay between the maximum value of acceleration in the input waveform of the time-acceleration waveform and the maximum value of acceleration in the response waveform, using the acceleration of this maximum value as the target axis to determine whether the similarity of the integral domain in a specified time range before and after the maximum value is equal to or greater than a specified standard, a "fixed time" such as a few seconds indicating the specified time range, the shape of the integral domain, and threshold values of similarity of feature points such as the acceleration value at a specified distance from the target axis of the integral domain are stored in the inspection reference data storage unit 122 as inspection reference data of a specified standard.

そして、拡開部33を拡開してコンクリート構造物60に打設された本実施形態の打撃検査対応アンカー1を検査装置10と加速度センサ付き打撃ハンマー16を用いて打撃検査する際には、図4(a)に示すように、打撃検査対応アンカー1の平坦面231から周状でR面の面取り部232を介して周側面233に至る打撃部23、より詳細には打撃部23の平坦面231を、加速度センサ付き打撃ハンマー16で打撃検査対応アンカー1或いはテーパーボルト2の軸方向に真っ直ぐに打撃する。 When performing an impact inspection on the impact inspection-compatible anchor 1 of this embodiment, which has been cast into a concrete structure 60 with the expansion portion 33 expanded, using the inspection device 10 and an impact hammer 16 with an acceleration sensor, as shown in FIG. 4(a), the impact portion 23 extending from the flat surface 231 of the impact inspection-compatible anchor 1 through the circumferentially rounded chamfered portion 232 to the peripheral side surface 233, more specifically the flat surface 231 of the impact portion 23, is struck straight in the axial direction of the impact inspection-compatible anchor 1 or the tapered bolt 2 with the impact hammer 16 with an acceleration sensor.

この打撃により、加速度センサ付き打撃ハンマー16と電気的に接続された検査装置10には打撃による時系列データが入力され、検査装置10の検査処理部111は、入力された時系列データに応じて打撃による打撃力波形(時間-加速度波形)を生成し、生成した時間-加速度波形を出力部14で出力する。また、検査装置10の検査処理部111は、特許文献1と同様の処理で時間-加速度波形から入力波形と応答波形を抽出し、格納された検査基準データを用い、例えば時間-加速度波形の入力波形の加速度の極大値と応答波形の加速度の極大値の遅れ時間が所定基準以下であるか否かを判断し、更に好適には、時間-加速度波形の入力波形の加速度の極大値と応答波形の加速度の極大値の比が所定基準以上であるか否かを判断し、或いは、時間-加速度波形の入力波形の加速度の極大値と応答波形の加速度の極大値の遅れ時間が0で見かけ上1つの極大値である場合に、この極大値の加速度を対象軸として前後の所定時間範囲の積分領域の類似度が所定基準以上であるか否かを判断し、検査基準データによる健全性を充足する場合に対象の打撃検査対応アンカー1の定着状態が健全であると判定し、定着状態が健全である旨の表示を出力部14で出力する。また、検査処理部111は、検査基準データによる健全性を充足しない場合には、対象の打撃検査対応アンカー1の定着状態が不健全である、又は定着状態の判断保留と判定し、定着状態が不健全である旨、又は判断保留の表示を出力部14で出力する。 As a result of this impact, time series data from the impact is input to the inspection device 10, which is electrically connected to the impact hammer 16 with an acceleration sensor, and the inspection processing unit 111 of the inspection device 10 generates an impact force waveform (time-acceleration waveform) due to the impact in accordance with the input time series data, and outputs the generated time-acceleration waveform from the output unit 14. The inspection processing unit 111 of the inspection device 10 extracts an input waveform and a response waveform from the time-acceleration waveform in a manner similar to that of Patent Document 1, and uses the stored inspection reference data to determine, for example, whether or not the delay time between the acceleration maximum value of the input waveform of the time-acceleration waveform and the acceleration maximum value of the response waveform is equal to or less than a predetermined standard, and more preferably, determines whether or not the ratio between the acceleration maximum value of the input waveform of the time-acceleration waveform and the acceleration maximum value of the response waveform is equal to or more than a predetermined standard, or, when the delay time between the acceleration maximum value of the input waveform of the time-acceleration waveform and the acceleration maximum value of the response waveform is zero and there is apparently one maximum value, determines whether or not the similarity of integral regions in a predetermined time range before and after the acceleration of this maximum value is taken as the axis of interest, and if the soundness according to the inspection reference data is satisfied, determines that the fixing state of the target impact inspection-compatible anchor 1 is sound, and outputs a message indicating that the fixing state is sound from the output unit 14. Furthermore, if the soundness according to the inspection standard data is not met, the inspection processing unit 111 determines that the fixing state of the target impact inspection compatible anchor 1 is unsound or that the judgment of the fixing state is pending, and outputs a message indicating that the fixing state is unsound or that the judgment is pending on the output unit 14.

この時間-加速度波形に基づく対象の打撃検査対応アンカー1の定着状態が健全、不健全、判断保留の判定は、所定の検査基準データを用いて人為的に行うことも可能であり、例えば検査装置10の検査処理部111が生成して出力した時間-加速度波形を検査者が目視で認識し、検査者が、入力波形と応答波形を認識し、上記と同様の遅れ時間の閾値、更に好適には入力波形の加速度の極大値と応答波形の加速度の極大値の比の閾値、或いは入力波形の加速度の極大値と応答波形の加速度の極大値の遅れ時間が0で見かけ上1つの極大値である場合に極大値の加速度を対象軸として前後の所定時間範囲の積分領域の類似度の基準値等の所定基準の検査基準データを用い、検査基準データによる健全性の充足、不充足に基づき、対象の打撃検査対応アンカー1の定着状態が健全、不健全、判断保留のように判定してもよい。 The determination of whether the anchorage state of the target impact test-compatible anchor 1 is sound, unsound, or pending based on this time-acceleration waveform can also be done manually using specified inspection reference data. For example, an inspector visually recognizes the time-acceleration waveform generated and output by the inspection processing unit 111 of the inspection device 10, recognizes the input waveform and the response waveform, and uses inspection reference data of a specified standard such as a delay time threshold similar to that described above, or more preferably a threshold value of the ratio of the maximum value of acceleration of the input waveform to the maximum value of acceleration of the response waveform, or, when the delay time between the maximum value of acceleration of the input waveform and the maximum value of acceleration of the response waveform is zero and there is apparently one maximum value, a standard value of the similarity of the integral region of a specified time range before and after the maximum value is used as the target axis, and determines whether the anchorage state of the target impact test-compatible anchor 1 is sound, unsound, or pending based on whether the inspection reference data satisfies or does not satisfy the soundness.

付言すると、図4(b)のように、テーパーボルト2pの雄ねじ部21pから後方に突出する球面状の打撃部23pを形成したアンカー1pにした場合、加速度センサ付き打撃ハンマー16で打撃部23pを打撃すると、加速度センサ付き打撃ハンマー16が滑って逃げてしまい、加速度センサ付き打撃ハンマー16反力を真っ直ぐに受け取れず、適正な打撃とならない。また、図4(c)のように、テーパーボルト2qの雄ねじ部21qに後方に突出する打撃部がない一般的なアンカー1qにした場合、加速度センサ付き打撃ハンマー16で雄ねじ部21qの後端面を叩き損ねると、雄ねじ部21qのねじ山がすぐに潰れてしまう。また、図4(d)のように、テーパーボルト2rの雄ねじ部21rから後方に突出するように単純な円柱形の打撃部23rを形成したアンカー1rにした場合、加速度センサ付き打撃ハンマー16の打撃が打撃部23rの線状の周縁に当たった時に周縁が変形し易く、この変形によって打撃力が吸収され、時間-加速度波形の応答波形が不正確なものとなる。 In addition, in the case of an anchor 1p having a spherical impact portion 23p protruding rearward from the male thread portion 21p of the tapered bolt 2p as shown in Fig. 4(b), when the impact portion 23p is struck by the impact hammer 16 with the acceleration sensor, the impact hammer 16 with the acceleration sensor slips and escapes, and the reaction force of the impact hammer 16 with the acceleration sensor cannot be received straight, resulting in an improper strike. In addition, in the case of a general anchor 1q having no impact portion protruding rearward from the male thread portion 21q of the tapered bolt 2q as shown in Fig. 4(c), if the impact hammer 16 with the acceleration sensor fails to strike the rear end surface of the male thread portion 21q, the threads of the male thread portion 21q will be immediately crushed. Furthermore, as shown in Figure 4(d), if an anchor 1r is formed with a simple cylindrical impact portion 23r that protrudes rearward from the male thread portion 21r of the tapered bolt 2r, the periphery of the impact portion 23r is likely to deform when the impact of the impact hammer 16 with acceleration sensor strikes the linear periphery of the impact portion 23r, and this deformation absorbs the impact force, resulting in an inaccurate response waveform in the time-acceleration waveform.

本実施形態の打撃検査対応アンカー1によれば、テーパーボルト2の雄ねじ部21の後端部211から後方に打撃部23を突出させ、且つその打撃される後端面を平坦面231とすることにより、検査者がテーパーボルト2の雄ねじ部21の軸心を非常に把握し易くなり、加速度センサ付き打撃ハンマー16を平坦な後端面に当てて、テーパーボルト2の雄ねじ部21の軸方向に真っ直ぐ適正に打撃力を伝えられるように打撃することが容易となる。即ち、加速度センサ付き打撃ハンマーで正確に打撃し易くなる。 According to the impact inspection compatible anchor 1 of this embodiment, the impact portion 23 protrudes rearward from the rear end portion 211 of the male thread portion 21 of the tapered bolt 2, and the rear end surface to be impacted is made a flat surface 231, making it very easy for the inspector to grasp the axis of the male thread portion 21 of the tapered bolt 2, and it becomes easy to strike the male thread portion 21 of the tapered bolt 2 so that the impact force is transmitted properly and straight in the axial direction of the male thread portion 21 of the tapered bolt 2 by placing the impact hammer 16 with an acceleration sensor against the flat rear end surface. In other words, it becomes easier to strike accurately with the impact hammer with an acceleration sensor.

また、打撃検査対応アンカー1は、適正、正確に打撃することが可能となることに加え、打撃部23の平坦面231から、線状の周縁ではなく、周状でR面の面取り部232を介して打撃部23の周側面233に至るように形成されていることにより、打撃部23の平坦面周囲の打撃による変形で打撃力が吸収されて応答波形が不正確になることを防止することができ、加速度計測方式による検査装置10で打撃検査対応アンカー1の適正な応答波形、時間-加速度波形を確実に得ることができる。 In addition to being able to strike properly and accurately, the impact inspection compatible anchor 1 is formed so that the flat surface 231 of the striking portion 23 extends to the peripheral side surface 233 of the striking portion 23 via the chamfered portion 232, which is a circumferential, rounded surface rather than a linear periphery. This prevents the impact force from being absorbed by deformation caused by striking around the flat surface of the striking portion 23, resulting in an inaccurate response waveform. This means that the inspection device 10, which uses an acceleration measurement method, can reliably obtain the proper response waveform and time-acceleration waveform of the impact inspection compatible anchor 1.

また、打撃されるテーパーボルト2の打撃部23をテーパーボルト2の雄ねじ部21の後端部211から後方に突出させ且つ雄ねじ部21の外径より小径とすることにより、打撃によるテーパーボルト2の雄ねじ部21の変形を防止してテーパーボルト2の雄ねじ部21に対するナット43の着脱性を確保することができる。また、打撃部23の長さをテーパーボルト2の雄ねじ部21の外径よりも短く形成することにより、打撃検査対応アンカー1のコンクリート構造物60からの突出長が長くなり過ぎて部材の取り付け等で邪魔になることを防止することができる。 In addition, by making the impact portion 23 of the taper bolt 2 to be impacted protrude rearward from the rear end portion 211 of the male thread portion 21 of the taper bolt 2 and making the diameter smaller than the outer diameter of the male thread portion 21, it is possible to prevent the male thread portion 21 of the taper bolt 2 from being deformed by impact and ensure the ease of attachment and detachment of the nut 43 to the male thread portion 21 of the taper bolt 2. In addition, by forming the length of the impact portion 23 shorter than the outer diameter of the male thread portion 21 of the taper bolt 2, it is possible to prevent the impact inspection compatible anchor 1 from protruding too far from the concrete structure 60 and becoming an obstacle when attaching components, etc.

また、上記例の検査処理により、打撃検査対応アンカー1の適正、正確な応答波形、時間-加速度波形に基づき、複雑な判断や処理を要せずに、打撃検査対応アンカー1の定着状態の健全性を判定することができる。 In addition, the inspection process in the above example makes it possible to determine the soundness of the anchor's fixed state based on the suitability, accurate response waveform, and time-acceleration waveform of the impact inspection-compatible anchor 1 without the need for complex judgments or processing.

〔試験例〕
次に、上記実施形態と同一構成の打撃検査対応アンカー1と、従来品であるテーパーボルト2qの雄ねじ部21qに後方に突出する打撃部がない一般的なアンカー1qとの試験例について説明する。打撃検査対応アンカー1、アンカー1qは、図5(a)、図6(a)のように、それぞれコンクリート70に拡開部33を拡開して孔壁に密着するようにして適正に打設した状態にした。そして、加速度センサ付き打撃ハンマー16により、打撃検査対応アンカー1の打撃部23の平坦面231と、アンカー1qの雄ねじ部21qの後端面を、それぞれ軸方向に真っ直ぐに10回ずつ打撃し、各打撃に対応して加速度センサ付き打撃ハンマー16から時系列データを検査装置に取り込み、検査装置で打撃力波形である時間-加速度波形を生成して出力した(図5(b)、図6(b)参照)。
[Test Example]
Next, a test example will be described for an impact inspection compatible anchor 1 having the same configuration as the above embodiment, and a general anchor 1q that does not have an impact part protruding backward from the male thread part 21q of a conventional tapered bolt 2q. As shown in Figures 5(a) and 6(a), the impact inspection compatible anchor 1 and the anchor 1q were properly cast in concrete 70 by expanding the expansion part 33 so as to be in close contact with the hole wall. Then, the flat surface 231 of the impact part 23 of the impact inspection compatible anchor 1 and the rear end surface of the male thread part 21q of the anchor 1q were each struck straight in the axial direction 10 times each by the impact hammer 16 with an acceleration sensor, and time-series data from the impact hammer 16 with an acceleration sensor corresponding to each strike was input to an inspection device, and a time-acceleration waveform, which is an impact force waveform, was generated and output by the inspection device (see Figures 5(b) and 6(b)).

更に、各打撃について時間-加速度波形に基づき加速度を時間積分して打撃の機械インピーダンスZを算出し、打撃検査対応アンカー1における機械インピーダンスZの平均値、機械インピーダンスZの標準偏差、標準偏差を平均値で割った変動係数〈2〉を算出すると共に、従来品のアンカー1qにおける機械インピーダンスZの平均値、機械インピーダンスZの標準偏差、標準偏差を平均値で割った変動係数〈1〉を算出した。そして、変動係数の比である従来品のアンカー1qの変動係数〈1〉/打撃検査対応アンカー1の変動係数〈2〉を算出した(図7参照)。 Furthermore, for each impact, the acceleration was integrated over time based on the time-acceleration waveform to calculate the mechanical impedance Z of the impact. The average value of the mechanical impedance Z, the standard deviation of the mechanical impedance Z, and the coefficient of variation <2> obtained by dividing the standard deviation by the average value were calculated for the impact test compatible anchor 1, while the average value of the mechanical impedance Z, the standard deviation of the mechanical impedance Z, and the coefficient of variation <1> obtained by dividing the standard deviation by the average value were calculated for the conventional anchor 1q. The ratio of the coefficients of variation, coefficient of variation <1> of conventional anchor 1q / coefficient of variation <2> of impact test compatible anchor 1, was then calculated (see Figure 7).

打撃検査対応アンカー1と従来品のアンカー1qは、いずれも試験用に適正に打設し、適正に打撃して時間-加速度波形を得たものであるため、図5(b)と図6(b)の時間-加速度波形を目視判断する限りでは、入力波形の加速度と応答波形の加速度の遅れ時間が0に近い、ほぼ単一の極大値を有し、この極大値の加速度を対象軸としてほぼ左右対称に近い(左右の波形の積分領域の類似度が高い)こと、打設した打撃検査対応アンカー1と従来品のアンカー1qの定着状態が健全であることが分かる。 Both the impact test compatible anchor 1 and the conventional anchor 1q were properly cast for the test and properly struck to obtain time-acceleration waveforms. Therefore, as far as a visual judgment of the time-acceleration waveforms in Figures 5(b) and 6(b) is concerned, it can be seen that the delay time between the acceleration of the input waveform and the acceleration of the response waveform is close to zero, has an almost single maximum value, and is nearly symmetrical about the acceleration of this maximum value (the integral domains of the left and right waveforms have a high similarity), and that the anchorage state of the cast impact test compatible anchor 1 and conventional anchor 1q is sound.

但し、図7に示すように、従来品のアンカー1qの機械インピーダンスZの標準偏差は、打撃検査対応アンカー1の標準偏差に比して大きく、換言すれば時間-加速度波形の応答特性が鈍く、加速度波形の山がなだらかになってしまっている。標準偏差が小さく、加速度波形の山がより尖っている方が応答特性に優れ、検出感度が高く、正確であるため、打撃検査対応アンカー1の方が従来品のアンカー1qに比べて時間-加速度波形の応答特性に優れ、検出感度が高く、正確なアンカーであることが分かる。 However, as shown in Figure 7, the standard deviation of the mechanical impedance Z of the conventional anchor 1q is larger than that of the impact test compatible anchor 1, in other words the response characteristics of the time-acceleration waveform are sluggish and the peaks of the acceleration waveform are gentler. A smaller standard deviation and a sharper peak in the acceleration waveform indicate better response characteristics, higher detection sensitivity and accuracy, so it can be seen that the impact test compatible anchor 1 has better response characteristics of the time-acceleration waveform, higher detection sensitivity and is more accurate than the conventional anchor 1q.

そして、打撃検査対応アンカー1における機械インピーダンスZの標準偏差を平均値で割った変動係数〈2〉が0.050であるのに対し、従来品のアンカー1qにおける機械インピーダンスZの標準偏差を平均値で割った変動係数〈1〉が0.082であり、変動係数の比である従来品のアンカー1qの変動係数〈1〉/打撃検査対応アンカー1の変動係数〈2〉は1.63となった。即ち、変動係数の比は、統計学的な有意性の1.3~1.4倍を十分に超える値となり、打撃検査対応アンカー1は、正確な時間-加速度波形のデータを取得可能なものであると共に、その再現性も非常に高いものであることが分かる。特に、実際の施工現場で3~10回程度の複数回打撃して時間-加速度波形を取得し、アンカー定着状態の健全性を判定する場合には、この正確さと再現性は極めて重要になる。 The coefficient of variation <2> obtained by dividing the standard deviation of the mechanical impedance Z of the impact test compatible anchor 1 by its average value was 0.050, while the coefficient of variation <1> obtained by dividing the standard deviation of the mechanical impedance Z of the conventional anchor 1q by its average value was 0.082, and the ratio of the coefficients of variation, i.e., the coefficient of variation <1> of the conventional anchor 1q / the coefficient of variation <2> of the impact test compatible anchor 1, was 1.63. In other words, the ratio of the coefficients of variation is a value that sufficiently exceeds the statistical significance of 1.3 to 1.4 times, and it can be seen that the impact test compatible anchor 1 is capable of obtaining accurate time-acceleration waveform data and has very high reproducibility. In particular, this accuracy and reproducibility are extremely important when obtaining time-acceleration waveforms by impacting multiple times, about 3 to 10 times, at an actual construction site to determine the soundness of the anchor's fixed state.

〔本明細書開示発明の包含範囲〕
本明細書開示の発明は、発明として列記した各発明、実施形態の他に、適用可能な範囲で、これらの部分的な内容を本明細書開示の他の内容に変更して特定したもの、或いはこれらの内容に本明細書開示の他の内容を付加して特定したもの、或いはこれらの部分的な内容を部分的な作用効果が得られる限度で削除して上位概念化して特定したものを包含する。そして、本明細書開示の発明には下記内容や変形例も含まれる。
[Scope of the invention disclosed herein]
The inventions disclosed in this specification include, in addition to the inventions and embodiments listed as inventions, those specified by changing partial contents of these to other contents disclosed in this specification, those specified by adding other contents disclosed in this specification to these contents, or those specified by deleting partial contents of these to the extent that partial effects can be obtained, and forming a generic concept. The inventions disclosed in this specification also include the following contents and modifications.

本発明の打撃検査対応アンカーは、上記実施形態のスリーブ打込み式の打撃検査対応アンカー1に限定されず、拡開された拡開部がコンクリート孔壁に密着され、コンクリート表面から雄ねじ部の少なくとも一部が露出するようにコンクリート構造物に打設されるメカニカルアンカーで構成されるものであれば適宜である。例えば本体打込み式アンカーの筒状本体の雌ねじ部に後方に突出する打撃部が形成されたボルトが螺合されて構成されるメカニカルアンカー、或いは、内部コーン打込み式アンカーの筒状本体の雌ねじ部に後方に突出する打撃部が形成されたボルトが螺合されて構成されるメカニカルアンカー等で、本発明の打撃検査対応アンカーを構成することも可能である。 The impact test-compatible anchor of the present invention is not limited to the sleeve-driven impact test-compatible anchor 1 of the above embodiment, but may be any suitable mechanical anchor that is driven into a concrete structure so that the expanded portion is in close contact with the concrete hole wall and at least a portion of the male thread is exposed from the concrete surface. For example, the impact test-compatible anchor of the present invention can be configured with a mechanical anchor configured by screwing a bolt having a striking portion that protrudes backward into the female thread of the cylindrical body of a main body driven-in type anchor, or a mechanical anchor configured by screwing a bolt having a striking portion that protrudes backward into the female thread of the cylindrical body of an internal cone driven-in type anchor.

また、拡開部を拡開してコンクリート構造物に打設された本発明の打撃検査対応アンカーの検査方法は、上記例の検査方法に限定されず、適用可能な検査方法であれば適宜のものを用いることが可能であり、例えば特許文献1の検査方法と同様の判定処理或いはこれと異なる判定処理により、本発明の打撃検査対応アンカーの定着状態の健全性を判定するようにしてもよい。 The inspection method for the impact inspection-compatible anchor of the present invention, which has been cast into a concrete structure by expanding the expansion portion, is not limited to the inspection method in the above example, and any suitable inspection method can be used as long as it is applicable. For example, the soundness of the fixed state of the impact inspection-compatible anchor of the present invention may be determined by a judgment process similar to the inspection method of Patent Document 1 or a judgment process different from this.

本発明は、例えば加速度センサ付き打撃ハンマーを用いて打撃検査が行われるメカニカルアンカーとして利用することができる。 The present invention can be used, for example, as a mechanical anchor for which impact testing is performed using an impact hammer equipped with an acceleration sensor.

1…打撃検査対応アンカー 2…テーパーボルト 21…雄ねじ部 211…後端部 22…テーパー部 23…打撃部 231…平坦面 232…面取り部 233…周側面 3…スリーブ 31…本体 32…スリット 33…拡開部 41…平ワッシャー 42…スプリングワッシャー 43…ナット 51、52…取付物 60…コンクリート構造物 61…コンクリート孔壁 62…コンクリート表面 10…検査装置 11…演算制御部 111…検査処理部 12…記憶部 121…制御プログラム格納部 1211…検査プログラム格納部 122…検査基準データ格納部 13…入力部 14…出力部 15…通信インターフェイス 16…加速度センサ付き打撃ハンマー 1p、1q、1r…アンカー 2p、2q、2r…テーパーボルト 21p、21q、21r…雄ねじ部 23p、23r…打撃部 101…天井面 102、104…アンカー 103…トンネル壁面 105…加速度センサ付き打撃ハンマー 201…メカニカルアンカー 202…テーパーボルト 203…スリーブ 204…拡開部 205…コンクリート 206…加速度センサ付き打撃ハンマー 207…検査装置
LIST OF SYMBOLS 1...Anchor compatible with impact inspection 2...Tapered bolt 21...Male threaded portion 211...Rear end portion 22...Tapered portion 23...Impact portion 231...Flat surface 232...Chamfered portion 233...Circumference surface 3...Sleeve 31...Main body 32...Slit 33...Expansion portion 41...Flat washer 42...Spring washer 43...Nut 51, 52...Attachment 60...Concrete structure 61...Concrete hole wall 62...Concrete surface 10...Inspection device 11...Calculation control unit 111...Inspection processing unit 12...Memory unit 121...Control program storage unit 1211...Inspection program storage unit 122...Inspection reference data storage unit 13...Input unit 14...Output unit 15...Communication interface 16...Impact hammer with acceleration sensor 1p, 1q, 1r...Anchor 2p, 2q, 2r...Tapered bolt 21p, 21q, 21r... Male threaded portion 23p, 23r... Impact portion 101... Ceiling surface 102, 104... Anchor 103... Tunnel wall surface 105... Impact hammer with acceleration sensor 201... Mechanical anchor 202... Tapered bolt 203... Sleeve 204... Expansion portion 205... Concrete 206... Impact hammer with acceleration sensor 207... Inspection device

Claims (3)

拡開された拡開部がコンクリート孔壁に密着され、コンクリート表面から雄ねじ部の少なくとも一部が露出するようにコンクリート構造物に打設されるメカニカルアンカーで構成され、
前記雄ねじ部の後端部から後方に突出して略円柱状の打撃部が設けられ、
前記打撃部が前記雄ねじ部の外径より小径で形成されていると共に、
前記打撃部の後端面が平坦面になっており、前記平坦面から周状でR面の面取り部を介して前記打撃部の周側面に至るように形成されており、
前記メカニカルアンカーが、前記雄ねじ部の先端側がテーパー部になっているテーパーボルトと、前記テーパーボルトに外嵌され、前記テーパー部の入り込みによって前記拡開部が拡開するスリーブで構成され、
前記テーパーボルトの前記雄ねじ部の後端部から後方に突出して前記打撃部が設けられていることを特徴とする打撃検査対応アンカー。
The mechanical anchor is constructed so that the expanded portion is brought into close contact with the wall of the concrete hole and at least a part of the male thread portion is exposed from the concrete surface,
A substantially cylindrical impact portion is provided protruding rearward from a rear end portion of the male thread portion,
The impact portion is formed with a diameter smaller than an outer diameter of the male screw portion,
The rear end surface of the hitting portion is a flat surface, and is formed so as to extend from the flat surface to the peripheral side surface of the hitting portion via a circumferentially rounded chamfered portion,
the mechanical anchor is comprised of a tapered bolt having a tapered portion at a tip side of the male thread portion, and a sleeve fitted onto the tapered bolt and having the expansion portion expand as the tapered portion fits into the sleeve,
An anchor compatible with impact testing, characterized in that the impact portion is provided protruding rearward from the rear end portion of the male threaded portion of the tapered bolt .
記打撃部の長さが前記雄ねじ部の外径よりも短く形成されていることを特徴とする請求項1記載の打撃検査対応アンカー。 2. The anchor according to claim 1, wherein the length of the striking portion is shorter than the outer diameter of the male thread portion. 前記拡開部を拡開してコンクリート構造物に打設された請求項1又は2記載の打撃検査対応アンカーの検査方法であって、
加速度センサ付き打撃ハンマーと、前記加速度センサ付き打撃ハンマーと電気的に接続される検査装置を用い、
前記打撃検査対応アンカーの前記打撃部を前記加速度センサ付き打撃ハンマーで軸方向に打撃して前記検査装置に打撃による時系列データを入力し、
前記検査装置が、前記時系列データに応じて時間-加速度波形を生成し、
前記時間-加速度波形の入力波形の加速度の極大値と応答波形の加速度の極大値の遅れ時間が所定基準以下であることに基づき、前記打撃検査対応アンカーの定着状態が健全であると判定することを特徴とする打撃検査対応アンカーの検査方法。
3. A method for inspecting an anchor compatible with impact inspection according to claim 1 or 2, which is driven into a concrete structure by expanding the expansion portion,
Using an impact hammer with an acceleration sensor and an inspection device electrically connected to the impact hammer with an acceleration sensor,
The impact portion of the impact inspection compatible anchor is impacted in an axial direction by the impact hammer with the acceleration sensor, and time series data resulting from the impact is input to the inspection device.
the inspection device generates a time-acceleration waveform in response to the time-series data;
This inspection method for an anchor compatible with percussion inspection is characterized in that the fixed state of the anchor compatible with percussion inspection is judged to be sound based on the delay time between the maximum value of acceleration of the input waveform of the time-acceleration waveform and the maximum value of acceleration of the response waveform being equal to or less than a predetermined standard.
JP2020074434A 2020-04-17 2020-04-17 Impact test compatible anchor and its test method Active JP7466991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020074434A JP7466991B2 (en) 2020-04-17 2020-04-17 Impact test compatible anchor and its test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020074434A JP7466991B2 (en) 2020-04-17 2020-04-17 Impact test compatible anchor and its test method

Publications (2)

Publication Number Publication Date
JP2021173531A JP2021173531A (en) 2021-11-01
JP7466991B2 true JP7466991B2 (en) 2024-04-15

Family

ID=78281588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020074434A Active JP7466991B2 (en) 2020-04-17 2020-04-17 Impact test compatible anchor and its test method

Country Status (1)

Country Link
JP (1) JP7466991B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072122A (en) * 2017-10-13 2019-05-16 株式会社三洋物産 Game machine
JP2019072124A (en) * 2017-10-13 2019-05-16 株式会社三洋物産 Game machine
JP2022033309A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033311A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033312A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033308A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine
JP2022033310A (en) * 2018-02-15 2022-02-28 株式会社三洋物産 Game machine

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015099060A (en) 2013-11-18 2015-05-28 株式会社アミック Diagnostic method of concrete structure
WO2015145914A1 (en) 2014-03-28 2015-10-01 日本電気株式会社 Anchor-bolt evaluation system, and method and program for use therein
WO2016013236A1 (en) 2014-07-22 2016-01-28 原子燃料工業株式会社 Nondestructive inspection method and nondestructive inspection device for anchor bolt
JP2016188785A (en) 2015-03-30 2016-11-04 株式会社ケー・エフ・シー Maintenance method for item fitted to concrete structure
JP2017020289A (en) 2015-07-14 2017-01-26 株式会社ティ・エス・ケー Anchor bolt driving jig, anchor bolt driving method, and anchor bolt fixing strength inspection method
JP2017032479A (en) 2015-08-05 2017-02-09 原子燃料工業株式会社 State evaluating apparatus and state evaluating method of member
JP2017082478A (en) 2015-10-28 2017-05-18 株式会社ケー・エフ・シー Anchor pin, installation method thereof and anchor pin installation structure
JP2018031389A (en) 2016-08-22 2018-03-01 中日本ハイウェイ・エンジニアリング名古屋株式会社 Falling prevention structure, installation method of the same, and anchor
JP2018080520A (en) 2016-11-17 2018-05-24 株式会社ケー・エフ・シー Hole-in anchor instrument, hole-in anchor and hole-in anchor fitting structure
JP2020002971A (en) 2018-06-26 2020-01-09 酒井工業株式会社 Screw member
JP2020032539A (en) 2018-08-27 2020-03-05 株式会社ケー・エフ・シー Drill bit and installation method of post-construction anchor
JP2020033698A (en) 2018-08-27 2020-03-05 株式会社ケー・エフ・シー Hole-in anchor and construction method thereof
WO2020045348A1 (en) 2018-08-27 2020-03-05 雄治 土肥 Expansion-type anchor, sleeve used in same, and construction method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015099060A (en) 2013-11-18 2015-05-28 株式会社アミック Diagnostic method of concrete structure
WO2015145914A1 (en) 2014-03-28 2015-10-01 日本電気株式会社 Anchor-bolt evaluation system, and method and program for use therein
WO2016013236A1 (en) 2014-07-22 2016-01-28 原子燃料工業株式会社 Nondestructive inspection method and nondestructive inspection device for anchor bolt
JP2016188785A (en) 2015-03-30 2016-11-04 株式会社ケー・エフ・シー Maintenance method for item fitted to concrete structure
JP2017020289A (en) 2015-07-14 2017-01-26 株式会社ティ・エス・ケー Anchor bolt driving jig, anchor bolt driving method, and anchor bolt fixing strength inspection method
JP2017032479A (en) 2015-08-05 2017-02-09 原子燃料工業株式会社 State evaluating apparatus and state evaluating method of member
JP2017082478A (en) 2015-10-28 2017-05-18 株式会社ケー・エフ・シー Anchor pin, installation method thereof and anchor pin installation structure
JP2018031389A (en) 2016-08-22 2018-03-01 中日本ハイウェイ・エンジニアリング名古屋株式会社 Falling prevention structure, installation method of the same, and anchor
JP2018080520A (en) 2016-11-17 2018-05-24 株式会社ケー・エフ・シー Hole-in anchor instrument, hole-in anchor and hole-in anchor fitting structure
JP2020002971A (en) 2018-06-26 2020-01-09 酒井工業株式会社 Screw member
JP2020032539A (en) 2018-08-27 2020-03-05 株式会社ケー・エフ・シー Drill bit and installation method of post-construction anchor
JP2020033698A (en) 2018-08-27 2020-03-05 株式会社ケー・エフ・シー Hole-in anchor and construction method thereof
WO2020045348A1 (en) 2018-08-27 2020-03-05 雄治 土肥 Expansion-type anchor, sleeve used in same, and construction method

Also Published As

Publication number Publication date
JP2021173531A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP7466991B2 (en) Impact test compatible anchor and its test method
JP6308902B2 (en) Non-destructive inspection method and non-destructive inspection device for anchor bolt
US9316248B2 (en) Load-indicating washer
US11105358B2 (en) Distance sensor at anchor tip
JP4943061B2 (en) Anchor health evaluation method
JP6084952B2 (en) Non-destructive inspection method and non-destructive inspection device for anchor bolt
JP6190781B2 (en) Anchor bolt condition evaluation method
JP5820084B1 (en) Anchor bolt driving jig, anchor bolt driving method, and anchor bolt fixing strength inspection method
JP6127283B2 (en) Concrete structure inspection method and concrete structure inspection apparatus
JP7348830B2 (en) Anchor inspection method
JP6681776B2 (en) Ground anchor soundness evaluation method and soundness evaluation system
JP6128432B2 (en) Anchor soundness inspection device and anchor soundness inspection method
JP6186241B2 (en) Bolt health diagnosis method
JP7252698B2 (en) Fixed state determination device and fixed state determination method for J-type anchor bolt
JP2673236B2 (en) Concrete shear strength measuring method and measuring instrument
JP6813369B2 (en) Method of diagnosing the soundness of parts
JP4726242B2 (en) Property evaluation apparatus and property evaluation method
US8342034B2 (en) System and method to test specimens
JP2006003324A (en) Method of measuring distribution of axial force of lock bolt and method of measuring distribution of axial force of lock bolt and the lock bolt
CN109958874B (en) Steel pipe sleeve and method for simultaneously measuring strength and strength of prestressed tendon thereof
JP2006322734A (en) Non-destructive inspection method of existing pile
CN116086680B (en) Method for measuring bolt axial force based on combination of longitudinal wave and trailing wave
JP5890580B1 (en) Anchor bolt driving jig and anchor bolt driving method
JP2017003451A (en) Inspection method of anchor member
JP2022133000A (en) Thinning estimation method of piping members and thinning estimation device of piping members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240402

R150 Certificate of patent or registration of utility model

Ref document number: 7466991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150