JP7466765B2 - Blower, air conditioner and refrigeration cycle device - Google Patents

Blower, air conditioner and refrigeration cycle device Download PDF

Info

Publication number
JP7466765B2
JP7466765B2 JP2023518563A JP2023518563A JP7466765B2 JP 7466765 B2 JP7466765 B2 JP 7466765B2 JP 2023518563 A JP2023518563 A JP 2023518563A JP 2023518563 A JP2023518563 A JP 2023518563A JP 7466765 B2 JP7466765 B2 JP 7466765B2
Authority
JP
Japan
Prior art keywords
blade
suction
curved surface
range
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023518563A
Other languages
Japanese (ja)
Other versions
JPWO2022234630A1 (en
Inventor
惇司 河野
拓矢 寺本
裕樹 宇賀神
幸治 山口
哲央 山下
尚史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2022234630A1 publication Critical patent/JPWO2022234630A1/ja
Application granted granted Critical
Publication of JP7466765B2 publication Critical patent/JP7466765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本開示は、クロスフローファンを備えた送風機、空気調和装置および冷凍サイクル装置に関する。 The present disclosure relates to a blower equipped with a crossflow fan, an air conditioning device, and a refrigeration cycle device.

空気調和装置の筐体内に配置される送風機は、ファンケーシングと、ファンケーシング内に収納されたクロスフローファンと、を有する。クロスフローファンは、回転軸を中心として環状に配置された複数の翼と、複数の翼が設置され、複数の翼を一体に支持する円板状の支持板と、を有する羽根車が、回転軸方向に積層された構成を有する(例えば、特許文献1参照)。羽根車は、周方向に吸込領域と吹出領域とを有し、吸込領域では径方向外側から径方向内側に空気を吸い込み、吹出領域では径方向内側から径方向外側に吹き出す気流を生成する。特許文献1では、羽根車の径方向に延びる翼の翼厚を一定とし、かつ翼の外周側の曲率を内周側の曲率よりも小さくすることで、吹出領域における翼からの気流のはく離量を低減するようにしている。The blower disposed in the housing of the air conditioner has a fan casing and a cross-flow fan housed in the fan casing. The cross-flow fan has a configuration in which an impeller having a plurality of blades arranged in a ring shape around a rotation axis and a disk-shaped support plate on which the plurality of blades are mounted and which integrally supports the plurality of blades is stacked in the direction of the rotation axis (see, for example, Patent Document 1). The impeller has an intake region and a blowing region in the circumferential direction, and in the intake region, air is sucked from the radially outer side to the radially inner side, and in the blowing region, an airflow is generated that is blown out from the radially inner side to the radially outer side. In Patent Document 1, the blade thickness of the blades extending in the radial direction of the impeller is constant, and the curvature of the outer circumferential side of the blade is made smaller than the curvature of the inner circumferential side, thereby reducing the amount of separation of the airflow from the blades in the blowing region.

特開2001-280288号公報JP 2001-280288 A

特許文献1では、羽根車の吹出領域における翼からの気流のはく離については抑制されるが、羽根車の吸込領域と吹出領域との間の境界領域における気流のはく離について検討されていない。In Patent Document 1, separation of airflow from the blades in the outlet region of the impeller is suppressed, but separation of airflow in the boundary region between the suction region and outlet region of the impeller is not considered.

本開示はこのような点を鑑みなされたもので、羽根車の吸込領域と吹出領域との間の境界領域おける気流のはく離を抑制することが可能な送風機、空気調和装置および冷凍サイクル装置を提供することを目的とする。The present disclosure has been made in consideration of these points, and aims to provide a blower, an air conditioning device, and a refrigeration cycle device that are capable of suppressing airflow separation in the boundary region between the suction region and the blowing region of the impeller.

本開示に係る送風機は、翼が環状に複数配置された羽根車を有するクロスフローファンを備えた送風機であって、翼は、クロスフローファンの回転軸に垂直な断面で見て、クロスフローファンの回転方向側に凹状の正圧面と、反回転方向側に凸状の負圧面と、翼の内周側であって正圧面と負圧面とを接続する円弧状の内周側端面と、翼の外周側であって正圧面と負圧面とを接続する円弧状の外周側端面と、を有し、外周側端面は、内周側端面よりも回転方向側に位置しており、翼の正圧面は、羽根車の内周側から順に、曲率の異なる正圧側第1の曲面と、正圧側第2の曲面と、正圧側第3の曲面と、を有し、正圧側第2の曲面の曲率>正圧側第3の曲面の曲率>正圧側第1の曲面の曲率、の関係を満足し、翼を翼の翼厚方向の仮想中心面で2つに分けたうちの正圧面側翼面を、正圧側第2の曲面の内周端と正圧側第2の曲面の外周端とを境に3つの範囲に分け、内周側から順に、正圧側第1の範囲、正圧側第2の範囲、正圧側第3の範囲としたとき、各範囲を、翼の内周端と外周端とを結んだ翼弦線に投影したときの長さは、正圧側第3の範囲長>正圧側第1の範囲長>正圧側第2の範囲長、の関係を満足するものである。The blower according to the present disclosure is a blower equipped with a crossflow fan having an impeller with a plurality of blades arranged in a ring shape, and the blade, as viewed in a cross section perpendicular to the rotation axis of the crossflow fan, has a concave positive pressure surface on the rotation direction side of the crossflow fan, a convex negative pressure surface on the opposite rotation direction side, an arc-shaped inner circumferential end face on the inner circumferential side of the blade connecting the positive pressure surface and the negative pressure surface, and an arc-shaped outer circumferential end face on the outer circumferential side of the blade connecting the positive pressure surface and the negative pressure surface, the outer circumferential end face being located on the rotation direction side of the inner circumferential end face, and the positive pressure surface of the blade is, in order from the inner circumferential side of the impeller, a positive pressure side first curved surface having a different curvature, and a positive pressure side second curved surface having a different curvature. The blade has a second curved surface and a pressure-side third curved surface, and satisfies the relationship: curvature of the pressure-side second curved surface > curvature of the pressure-side third curved surface > curvature of the pressure-side first curved surface. When the blade is divided into two by a virtual center plane in the thickness direction of the blade, and the pressure-side blade surface is divided into three ranges bounded by the inner circumferential end of the pressure-side second curved surface and the outer circumferential end of the pressure-side second curved surface, and the ranges are, in order from the inner circumferential side, a pressure-side first range, a pressure-side second range, and a pressure-side third range, the lengths of the ranges projected onto a chord line connecting the inner circumferential end and the outer circumferential end of the blade satisfy the relationship: pressure-side third range length > pressure-side first range length > pressure-side second range length.

本開示に係る空気調和装置は、上記の送風機と、送風機を収容する筐体と、熱交換器と、を備えたものである。The air conditioning device according to the present disclosure comprises the above-mentioned blower, a housing for accommodating the blower, and a heat exchanger.

本開示に係る冷凍サイクル装置は、上記の送風機を備えたものである。The refrigeration cycle device of the present disclosure is equipped with the above-mentioned blower.

本開示によれば、送風機は、翼の正圧側第1の曲面の曲率が正圧面を構成する3つの曲面のなかで最も小さく、正圧側第1の範囲長が正圧側第2の範囲長よりも長いことで、羽根車の吸込領域と吹出領域との間の境界領域における気流のはく離を抑制できる。According to the present disclosure, the blower has a first curved surface on the pressure side of the blade with the smallest curvature among the three curved surfaces constituting the pressure surface, and the first range length on the pressure side is longer than the second range length on the pressure side, thereby suppressing separation of the airflow in the boundary region between the suction region and blowing region of the impeller.

実施の形態1に係る送風機を備えた空気調和装置の構成を示す概略斜視図である。1 is a schematic perspective view showing the configuration of an air conditioning device equipped with a blower according to a first embodiment. 実施の形態1に係る送風機を備えた空気調和装置の概略縦断面図である。1 is a schematic vertical cross-sectional view of an air-conditioning apparatus equipped with a blower according to a first embodiment. 実施の形態1に係る送風機のクロスフローファンの概略正面図である。1 is a schematic front view of a crossflow fan of a blower according to a first embodiment. FIG. 実施の形態1に係る送風機の羽根車の一部を回転軸に垂直な方向で切断した断面図である。2 is a cross-sectional view of a part of the impeller of the blower according to the first embodiment, cut in a direction perpendicular to the rotation shaft. FIG. 実施の形態1に係る送風機の羽根車の正圧側第1~第3の範囲の説明図である。4 is an explanatory diagram of first to third ranges on the positive pressure side of the impeller of the blower according to the first embodiment. FIG. 実施の形態1に係る送風機の羽根車に対する気流の流入角度の説明図である。5 is an explanatory diagram of an inflow angle of airflow with respect to the impeller of the blower according to the first embodiment. FIG. 実施の形態1に係る送風機のクロスフローファンのファン吹出風速分布を示す図である。FIG. 4 is a diagram showing a fan blowing air speed distribution of a crossflow fan of the blower according to the first embodiment. 実施の形態2に係る送風機の羽根車の一部を回転軸に垂直な方向で切断した断面図である。11 is a cross-sectional view of a part of an impeller of a blower according to a second embodiment, cut in a direction perpendicular to the rotation shaft. FIG. 実施の形態2に係る送風機の羽根車の負圧側第1~第3の範囲の説明図である。10 is an explanatory diagram of first to third ranges of the negative pressure side of the impeller of a blower according to embodiment 2. FIG. 実施の形態3に係る送風機の羽根車の一部を回転軸に垂直な方向で切断した断面図である。11 is a cross-sectional view of a part of an impeller of a blower according to a third embodiment, cut in a direction perpendicular to the rotation shaft. FIG. 実施の形態4に係る送風機の羽根車の一部を回転軸に垂直な方向で切断した断面図である。11 is a cross-sectional view of a part of an impeller of a blower according to a fourth embodiment, cut in a direction perpendicular to the rotation shaft. FIG. 実施の形態5に係る羽根車の一部を回転軸に垂直な方向で切断した断面図である。13 is a cross-sectional view of a portion of an impeller according to embodiment 5 cut in a direction perpendicular to the rotation axis. FIG. 実施の形態6に係る冷凍サイクル装置の構成を示す図である。FIG. 13 is a diagram showing the configuration of a refrigeration cycle device according to a sixth embodiment.

以下に、本開示に係る空気調和装置の実施の形態について説明する。なお、図面の形態は一例であり、本開示を限定するものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Below, an embodiment of an air conditioning device according to the present disclosure is described. Note that the form of the drawings is an example and does not limit the present disclosure. Furthermore, parts with the same reference numerals in each drawing are the same or equivalent, and this is common throughout the entire specification. Furthermore, the size relationships of the components in the drawings below may differ from the actual ones.

実施の形態1.
図1は、実施の形態1に係る送風機7を備えた空気調和装置1の構成を示す概略斜視図である。図2は、実施の形態1に係る送風機7を備えた空気調和装置1の概略縦断面図である。図3は、実施の形態1に係る送風機7のクロスフローファン11の概略正面図である。
Embodiment 1.
Fig. 1 is a schematic perspective view showing the configuration of an air conditioning apparatus 1 equipped with a blower 7 according to embodiment 1. Fig. 2 is a schematic vertical cross-sectional view of the air conditioning apparatus 1 equipped with a blower 7 according to embodiment 1. Fig. 3 is a schematic front view of a cross-flow fan 11 of the blower 7 according to embodiment 1.

[空気調和装置の全体構成]
この空気調和装置1は、冷媒を循環させる冷凍サイクルを利用することで、室内等の空調対象領域に空調空気を供給するものである。空気調和装置1の筐体2は、部屋の天井に埋め込まれる本体3と、本体3の下方に設けられた化粧パネル4と、を有する。筐体2内には、熱交換器6および送風機7が収納されている。筐体2内にはさらに、熱交換器6の下部に、熱交換器6で発生した結露水を回収するドレンパン8を備えている。
[Overall configuration of air conditioning device]
This air conditioner 1 supplies conditioned air to a target area to be air-conditioned, such as a room, by utilizing a refrigeration cycle that circulates a refrigerant. A housing 2 of the air conditioner 1 has a main body 3 embedded in the ceiling of the room, and a decorative panel 4 provided below the main body 3. A heat exchanger 6 and a blower 7 are housed within the housing 2. A drain pan 8 is further provided below the heat exchanger 6 within the housing 2 to collect condensation water generated in the heat exchanger 6.

化粧パネル4には、送風機7の回転で生じる空気流の空気調和装置1への入口となる吸込口4aと、その空気流の出口となる吹出口4bと、が形成されている。吸込口4aには、筐体2内に吸い込まれる空気中の塵埃などを除去するフィルタ5が配置されている。吹出口4bには、吹き出し風の風向を制御する上下風向調整板9および左右風向調整板10が配置されている。そして、吸込口4aから吹出口4bに至る風路の前流側に熱交換器6が配置され、後流側に送風機7が配置されている。The decorative panel 4 is formed with an intake port 4a, which serves as the entrance to the air conditioning device 1 for the airflow generated by the rotation of the blower 7, and an outlet port 4b, which serves as the exit for that airflow. A filter 5 is disposed in the intake port 4a to remove dust and other particles from the air sucked into the housing 2. An up-down air direction adjustment plate 9 and a left-right air direction adjustment plate 10 are disposed in the outlet port 4b to control the direction of the blown air. A heat exchanger 6 is disposed on the upstream side of the air passage extending from the intake port 4a to the outlet port 4b, and the blower 7 is disposed on the downstream side.

空気調和装置1は、送風機7の駆動によって生じる空気を吸込口4aから筐体2内に吸込み、吸込んだ空気を熱交換器6にて冷媒と熱交換した後、吹出口4bから室内へ吹き出すことで、室内温度の調整を行うものである。以下の説明における前流とは、ある対象に対する気流の上流であり、後流とは、ある対象に対する気流の下流である。なお、図1および図2には、空気調和装置1が天井吊り下げ型空調室内機である例を示しているが、これに限られたものではなく、他に例えば、室内壁掛け型空調室内機であってもよい。The air conditioner 1 draws air generated by the operation of the blower 7 into the housing 2 through the intake port 4a, exchanges heat with the refrigerant in the heat exchanger 6, and then blows the air out of the exhaust port 4b into the room, thereby adjusting the indoor temperature. In the following description, the upstream flow is the upstream airflow relative to a certain object, and the downstream flow is the downstream airflow relative to a certain object. Note that, although Figures 1 and 2 show an example in which the air conditioner 1 is a ceiling-suspended type indoor air conditioner unit, the present invention is not limited to this, and may also be, for example, an indoor wall-mounted type indoor air conditioner unit.

[送風機7]
送風機7は、気流を発生させるクロスフローファン11と、クロスフローファン11を回転させるためのモータ12(図3参照)と、クロスフローファン11から吹き出された空気を吹出口4bに導くファンケーシング13と、を有する。図3に示すように、クロスフローファン11は、モータ12の回転軸Oの回転中心を中心として環状に配置された複数の翼21と、複数の翼21が設置され、複数の翼21を一体に支持する支持板22と、を有する羽根車20が、回転軸O方向に積層された構成を有する。クロスフローファン11は、回転軸Oが筐体2の左右方向となるように水平に設置されている。以下の説明では、回転軸Oが延びる方向を軸方向、軸方向に垂直な方向を径方向、回転軸O周りの方向を周方向という。
[Blower 7]
The blower 7 includes a cross-flow fan 11 that generates an airflow, a motor 12 (see FIG. 3) for rotating the cross-flow fan 11, and a fan casing 13 that guides the air blown out from the cross-flow fan 11 to the air outlet 4b. As shown in FIG. 3, the cross-flow fan 11 has a configuration in which an impeller 20 having a plurality of blades 21 arranged in a ring shape around the center of rotation of the rotation shaft O of the motor 12 and a support plate 22 on which the plurality of blades 21 are installed and integrally supports the plurality of blades 21 is stacked in the direction of the rotation shaft O. The cross-flow fan 11 is installed horizontally so that the rotation shaft O is in the left-right direction of the housing 2. In the following description, the direction in which the rotation shaft O extends is called the axial direction, the direction perpendicular to the axial direction is called the radial direction, and the direction around the rotation shaft O is called the circumferential direction.

羽根車20は、図2の実線矢印の向きに回転し、吸込領域E1から気流を吸込み、吹出領域E2から気流を吹き出す。吸込領域E1では、気流が翼21同士の間の隙間(以下、翼間という)を径方向外側から径方向内側に通り、吹出領域E2では、気流が翼間を径方向内側から径方向外側に流れる。The impeller 20 rotates in the direction of the solid arrow in Figure 2, drawing in airflow from the suction region E1 and blowing out airflow from the blowing region E2. In the suction region E1, the airflow passes through the gaps between the blades 21 (hereinafter referred to as the inter-blade gaps) from the radial outside to the radial inside, and in the blowing region E2, the airflow flows between the blades from the radial inside to the radial outside.

図2に示すように、ファンケーシング13は、リアガイド14と、スタビライザー15とを有する。リアガイド14は、羽根車20から吹き出された空気を吹出口4bに導く部分である。リアガイド14は、リアガイド14の前流端14aから後流端14bにかけて渦巻面を構成している。スタビライザー15は、羽根車20を挟んでリアガイド14と対向する壁部である。スタビライザー15は羽根車20の外周面に沿って形成されている。 As shown in Figure 2, the fan casing 13 has a rear guide 14 and a stabilizer 15. The rear guide 14 is a part that guides the air blown out from the impeller 20 to the air outlet 4b. The rear guide 14 forms a volute surface from the front end 14a to the rear end 14b of the rear guide 14. The stabilizer 15 is a wall portion that faces the rear guide 14 across the impeller 20. The stabilizer 15 is formed along the outer circumferential surface of the impeller 20.

羽根車20の吸込領域E1および吹出領域E2は、リアガイド14およびスタビライザー15によって区画される。具体的には、羽根車20の全周を、スタビライザー15とリアガイド14とが対向する部分を境に2つに分けた領域のうちの前流側が吸込領域E1、後流側が吹出領域E2である。羽根車20の周方向において吸込領域E1と吹出領域E2との間の境界領域は、吸い込む空気の流れと吹き出す空気の流れとが切り替わる切替領域となっている。境界領域は、リアガイド14の前流端14a側とスタビライザー15側との2つある。以下、リアガイド14の前流端14a側の境界領域を第1境界領域E3、スタビライザー15側の境界領域を第2境界領域E4という。The suction area E1 and the blowing area E2 of the impeller 20 are divided by the rear guide 14 and the stabilizer 15. Specifically, the entire circumference of the impeller 20 is divided into two areas by the part where the stabilizer 15 and the rear guide 14 face each other, with the front side being the suction area E1 and the rear side being the blowing area E2. The boundary area between the suction area E1 and the blowing area E2 in the circumferential direction of the impeller 20 is a switching area where the flow of sucked air and the flow of blown air switch. There are two boundary areas, one on the front end 14a side of the rear guide 14 and the other on the stabilizer 15 side. Hereinafter, the boundary area on the front end 14a side of the rear guide 14 will be referred to as the first boundary area E3, and the boundary area on the stabilizer 15 side will be referred to as the second boundary area E4.

次に、羽根車20の翼21の詳細について説明する。
図4は、実施の形態1に係る送風機7の羽根車20の一部を回転軸Oに垂直な方向で切断した断面図である。図5は、実施の形態1に係る送風機7の羽根車20の正圧側第1~第3の範囲の説明図である。
Next, the blades 21 of the impeller 20 will be described in detail.
Fig. 4 is a cross-sectional view of a portion of impeller 20 of blower 7 according to embodiment 1 cut in a direction perpendicular to rotation axis O. Fig. 5 is an explanatory diagram of first to third ranges on the positive pressure side of impeller 20 of blower 7 according to embodiment 1.

翼21は、回転軸Oに垂直な断面で見て、図4の矢印で示す回転方向側に凹状の正圧面23と、反回転方向側に凸状の負圧面24と、内周側端面25と、外周側端面26と、で構成される。内周側端面25は、翼21の内周側であって正圧面23と負圧面24とを接続する円弧状の部分である。外周側端面26は、翼21の外周側であって正圧面23と負圧面24とを接続する円弧状の部分である。外周側端面26は、内周側端面25に対し、回転方向側に位置している。また、翼21は、翼21の内周側の端である内周端25-Pと、翼21の外周側の端である外周端26-Pと、を有する。内周端25-Pは内周側端面25に含まれ、外周端26-Pは外周側端面26に含まれている。図4において23-P1は正圧面23の内周端、23-P2は正圧面23の外周端である。24-P1は負圧面24の内周端、24-P2は負圧面24の外周端である。 When viewed in a cross section perpendicular to the rotation axis O, the blade 21 is composed of a concave positive pressure surface 23 on the rotation direction side indicated by the arrow in FIG. 4, a convex negative pressure surface 24 on the opposite rotation direction side, an inner end surface 25, and an outer end surface 26. The inner end surface 25 is an arc-shaped portion on the inner side of the blade 21 that connects the positive pressure surface 23 and the negative pressure surface 24. The outer end surface 26 is an arc-shaped portion on the outer side of the blade 21 that connects the positive pressure surface 23 and the negative pressure surface 24. The outer end surface 26 is located on the rotation direction side relative to the inner end surface 25. The blade 21 also has an inner end 25-P, which is the end on the inner side of the blade 21, and an outer end 26-P, which is the end on the outer side of the blade 21. The inner end 25-P is included in the inner end surface 25, and the outer end 26-P is included in the outer end surface 26. 4, 23-P1 is the inner peripheral end of the positive pressure surface 23, and 23-P2 is the outer peripheral end of the positive pressure surface 23. 24-P1 is the inner peripheral end of the negative pressure surface 24, and 24-P2 is the outer peripheral end of the negative pressure surface 24.

正圧面23は、複数の曲面で構成されている。複数の曲面は、内周側から順に、正圧側第1の曲面23-1、正圧側第2の曲面23-2、正圧側第3の曲面23-3である。正圧面23は、正圧側第2の曲面23-2の曲率>正圧側第3の曲面23-3の曲率>正圧側第1の曲面23-1の曲率の関係を満足するように構成されている。正圧側第1の曲面23-1は、曲率が0の平坦面でもよい。 The pressure surface 23 is composed of multiple curved surfaces. The multiple curved surfaces are, in order from the inner circumferential side, a first curved surface 23-1 on the pressure side, a second curved surface 23-2 on the pressure side, and a third curved surface 23-3 on the pressure side. The pressure surface 23 is configured to satisfy the relationship of curvature of the second curved surface 23-2 on the pressure side > curvature of the third curved surface 23-3 on the pressure side > curvature of the first curved surface 23-1 on the pressure side. The first curved surface 23-1 on the pressure side may be a flat surface with a curvature of zero.

図5に示すように、翼21は、翼21を翼厚方向の仮想中心面27で2つに分けたうちの正圧面側翼面と負圧面側翼面とを有する。仮想中心面27は、内周端25-Pと外周端26-Pとを通過する。正圧面側翼面は、正圧側第2の曲面23-2の内周端23-2P1と正圧側第2の曲面23-2の外周端23-2P2とを境に3つの範囲に分けられる。3つの範囲は、内周側から順に、正圧側第1の範囲23a-1と、正圧側第2の範囲23a-2と、正圧側第3の範囲23a-3と、である。正圧側第1の範囲23a-1は、翼21の内周端25-Pから正圧側第2の曲面23-2の内周端23-2P1までの範囲である。正圧側第2の範囲23a-2は、正圧側第2の曲面23-2の範囲に等しい。正圧側第3の範囲23a-3は、正圧側第2の曲面23-2の外周端23-2P2から翼21の外周端26-Pまでの範囲である。 As shown in FIG. 5, the blade 21 has a pressure side blade surface and a suction side blade surface, which are two parts of the blade 21 divided by a virtual center plane 27 in the blade thickness direction. The virtual center plane 27 passes through the inner circumferential end 25-P and the outer circumferential end 26-P. The pressure side blade surface is divided into three ranges, with the inner circumferential end 23-2P1 of the pressure side second curved surface 23-2 and the outer circumferential end 23-2P2 of the pressure side second curved surface 23-2 as the boundaries. The three ranges are, from the inner circumferential side, a pressure side first range 23a-1, a pressure side second range 23a-2, and a pressure side third range 23a-3. The pressure side first range 23a-1 is the range from the inner circumferential end 25-P of the blade 21 to the inner circumferential end 23-2P1 of the pressure side second curved surface 23-2. The pressure side second range 23a-2 is equal to the range of the pressure side second curved surface 23-2. The pressure side third range 23a-3 is the range from the outer circumferential end 23-2P2 of the pressure side second curved surface 23-2 to the outer circumferential end 26-P of the blade 21.

そして、図5に示すように、正圧側第1の範囲23a-1、正圧側第2の範囲23a-2および正圧側第3の範囲23a-3を翼弦線lに投影したときの長さが、順に、正圧側第1の範囲長lps1、正圧側第2の範囲長lps2、正圧側第3の範囲長lps3と定義される。このとき、翼21は、正圧側第3の範囲長lps3>正圧側第1の範囲長lps1>正圧側第2の範囲長lps2の関係を満足するように構成されている。なお、翼弦線lとは、翼21の内周端25-Pと外周端26-Pとを結んだ直線である。 5, the lengths of the pressure side first range 23a-1, the pressure side second range 23a-2, and the pressure side third range 23a-3 projected onto the chord line l are defined as the pressure side first range length l ps1 , the pressure side second range length l ps2 , and the pressure side third range length l ps3 , respectively. At this time, the blade 21 is configured to satisfy the relationship of pressure side third range length l ps3 > pressure side first range length l ps1 > pressure side second range length l ps2 . The chord line l is a straight line connecting the inner circumferential end 25-P and the outer circumferential end 26-P of the blade 21.

上記構成による作用について説明する。 The effect of the above configuration will be explained.

図6は、実施の形態1に係る送風機7の羽根車20に対する気流の流入角度の説明図である。羽根車20において、ある1枚の翼21に着目すると、翼21に対する気流の流入角度は、その翼21の回転方向の位置によって変わる。流入角度とは、翼21の翼厚の仮想中心面27に対する内周端25-Pにおける接線Lと、気流の方向と、が成す角である。具体的には、図6において気流30は、翼21が吹出領域E2内に位置するときの気流を示しており、気流30の流入角度θはθ1である。気流31は、翼21が第1境界領域E3内に位置するときの気流を示しており、気流31の流入角度θはθ2となる。 Figure 6 is an explanatory diagram of the inflow angle of the airflow into the impeller 20 of the blower 7 according to embodiment 1. Focusing on one blade 21 in the impeller 20, the inflow angle of the airflow into the blade 21 varies depending on the position of the blade 21 in the direction of rotation. The inflow angle is the angle between the tangent L at the inner circumferential end 25-P to the imaginary central plane 27 of the blade thickness of the blade 21 and the direction of the airflow. Specifically, in Figure 6, airflow 30 represents the airflow when the blade 21 is located within the blowing area E2, and the inflow angle θ of the airflow 30 is θ1. Airflow 31 represents the airflow when the blade 21 is located within the first boundary area E3, and the inflow angle θ of the airflow 31 is θ2.

翼21に対する流入角度θがθ1のように相対的に小さい場合、気流は正圧面23に沿った流れとなるが、流入角度θがθ2のように相対的に大きい場合、気流は正圧面23の内周側ではく離しやすい。つまり、第1境界領域E3では、翼21に対する気流の流入角度θが相対的に大きくなるため、正圧面23の内周側で気流がはく離しやすい。従来技術では、第1境界領域E3に相当する領域の翼においてこのように流入角度が相対的に大きくなって正圧面の内周側で気流がはく離しやすい点について検討されておらず、気流のはく離による騒音が発生していた。When the inflow angle θ to the blade 21 is relatively small, such as θ1, the airflow flows along the positive pressure surface 23, but when the inflow angle θ is relatively large, such as θ2, the airflow tends to separate on the inner periphery of the positive pressure surface 23. In other words, in the first boundary region E3, the inflow angle θ of the airflow to the blade 21 is relatively large, so the airflow tends to separate on the inner periphery of the positive pressure surface 23. In the prior art, the fact that the inflow angle becomes relatively large in the blade in the region corresponding to the first boundary region E3, and the airflow tends to separate on the inner periphery of the positive pressure surface, was not considered, and noise was generated due to the separation of the airflow.

これに対し、実施の形態1では、翼21において気流の入口側となる翼21の内周側の正圧側第1の曲面23-1(図4参照)の曲率が、正圧面23を構成する3つの曲面のなかで最も小さい。このため、気流が翼21の内周端25-Pで仮にはく離しても、正圧面23への再付着が促進されやすい。つまり、第1境界領域E3の翼21において正圧面23での気流のはく離が抑制される。第1境界領域E3の翼21において正圧面23での気流のはく離が抑制されることで、第1境界領域E3の翼間の気流の方向が径方向内側から径方向外側に向かう流れに安定する。このことは、2つの境界領域のうち、リアガイド14の前流端14a側の第1境界領域E3の翼21を、いわば吹出領域E2内の翼21に分類することができることに相当する。つまり、羽根車20は、吹出領域E2をリアガイド14の前流端14a側に拡大できる。 In contrast, in the first embodiment, the curvature of the first curved surface 23-1 (see FIG. 4) on the inner circumferential side of the blade 21, which is the inlet side of the airflow in the blade 21, is the smallest among the three curved surfaces constituting the positive pressure surface 23. Therefore, even if the airflow separates at the inner circumferential end 25-P of the blade 21, reattachment to the positive pressure surface 23 is likely to be promoted. In other words, the separation of the airflow on the positive pressure surface 23 is suppressed in the blade 21 in the first boundary region E3. By suppressing the separation of the airflow on the positive pressure surface 23 in the blade 21 in the first boundary region E3, the direction of the airflow between the blades in the first boundary region E3 is stabilized to a flow from the radial inner side to the radial outer side. This corresponds to the fact that, of the two boundary regions, the blade 21 in the first boundary region E3 on the front end 14a side of the rear guide 14 can be classified as the blade 21 in the blowing region E2, so to speak. In other words, the impeller 20 can expand the blowing area E2 toward the front end 14a of the rear guide 14.

ところで、羽根車20の吹出側では、翼21の正圧面23と隣接する翼21の負圧面24との翼間において、正圧面23側では風速が小さく、負圧面24側では風速が大きい、といった風速分布の偏りが生じやすい。However, on the blowing side of the impeller 20, between the positive pressure surface 23 of a blade 21 and the negative pressure surface 24 of an adjacent blade 21, a bias in the wind speed distribution is likely to occur, such that the wind speed is low on the positive pressure surface 23 side and high on the negative pressure surface 24 side.

実施の形態1では、正圧面23において気流の入口側であって、曲率の最も小さい正圧側第1の曲面23-1を含む正圧側第1の範囲長lps1が、正圧側第2の範囲長lps2よりも長い。このため、翼間に流入した気流が正圧面23に張り付きやすくなり、正圧面23での気流のはく離が抑制される。また、翼間に流入した気流が正圧面23に張り付きやすくなることで、正圧面23での気流の風速が増速される。正圧面23での気流の風速が増速されることで、翼間の風速分布の偏りが抑制され、翼間の風速分布の均一化が図れる。そして、翼間の風速分布の偏りが抑制されることで翼間の通風抵抗が低減されるため、ファン入力と騒音の低減効果が得られる。 In the first embodiment, the pressure side first range length l ps1 , which is the inlet side of the airflow on the pressure surface 23 and includes the pressure side first curved surface 23-1 with the smallest curvature, is longer than the pressure side second range length l ps2 . Therefore, the airflow that flows into between the blades is more likely to stick to the pressure surface 23, and separation of the airflow on the pressure surface 23 is suppressed. In addition, the airflow that flows into between the blades is more likely to stick to the pressure surface 23, and the wind speed of the airflow on the pressure surface 23 is increased. By increasing the wind speed of the airflow on the pressure surface 23, the deviation of the wind speed distribution between the blades is suppressed, and the wind speed distribution between the blades is made uniform. Furthermore, the deviation of the wind speed distribution between the blades is suppressed, and therefore the ventilation resistance between the blades is reduced, and the effect of reducing fan input and noise is obtained.

図7は、実施の形態1に係る送風機7のクロスフローファン11のファン吹出風速分布を示す図である。図7において、横軸は羽根車20の周方向の特定の範囲、縦軸はファン吹出風速[m/s]を示している。羽根車20の周方向の特定の範囲とは、スタビライザー15の前流側の端部に対向する羽根車20の周方向の位置から、吹出領域E2を含み、リアガイド14の前流端14aに対向する羽根車の周方向の位置、に至るまでの周方向範囲である。 Figure 7 is a diagram showing the fan outlet air speed distribution of the crossflow fan 11 of the blower 7 according to embodiment 1. In Figure 7, the horizontal axis indicates a specific circumferential range of the impeller 20, and the vertical axis indicates the fan outlet air speed [m/s]. The specific circumferential range of the impeller 20 is the circumferential range from a circumferential position of the impeller 20 facing the forward end of the stabilizer 15, including the outlet region E2, to a circumferential position of the impeller facing the forward end 14a of the rear guide 14.

図7において、(a)は実施の形態1、(b)は従来技術を示している。図7から明らかなように、実施の形態1では、従来技術に比べて吹出領域がリアガイド上流端側に拡大している。そして、吹出領域が拡大することで最大流速が低減しており、その結果、通風抵抗が低減されてファンの入力と騒音の低減効果が得られる。 In Figure 7, (a) shows embodiment 1, and (b) shows the prior art. As is clear from Figure 7, in embodiment 1, the blowing area is expanded toward the upstream end of the rear guide compared to the prior art. Furthermore, the expansion of the blowing area reduces the maximum flow velocity, which results in a reduction in ventilation resistance and a reduction in fan input and noise.

以上説明したように、実施の形態1の送風機7は、翼21が環状に複数配置された羽根車20を有するクロスフローファン11を備えた送風機である。翼21の正圧面23は、正圧側第2の曲面23-2の曲率>正圧側第3の曲面23-3の曲率>正圧側第1の曲面23-1の曲率、の関係を満足する。また、翼21の正圧面23は、正圧側第3の範囲長lps3>正圧側第1の範囲長lps1>正圧側第2の範囲長lps2、の関係を満足する。 As described above, the blower 7 of the first embodiment is a blower equipped with a crossflow fan 11 having an impeller 20 with a plurality of blades 21 arranged in an annular shape. The pressure surface 23 of the blade 21 satisfies the relationship: curvature of the pressure side second curved surface 23-2 > curvature of the pressure side third curved surface 23-3 > curvature of the pressure side first curved surface 23-1. In addition, the pressure surface 23 of the blade 21 satisfies the relationship: pressure side third range length l ps3 > pressure side first range length l ps1 > pressure side second range length l ps2 .

このように、翼21の正圧面23は、正圧側第1の曲面23-1の曲率が正圧面23を構成する3つの曲面のなかで最も小さく、正圧側第1の範囲長lps1が正圧側第2の範囲長lps2よりも長い。これにより、送風機7は、第1境界領域E3における気流のはく離、具体的には第1境界領域E3の翼21の正圧面23における気流のはく離を抑制できる。また、正圧側第1の範囲長lps1が正圧側第2の範囲長lps2、よりも長いことで、送風機7は、正圧面23での気流の風速を増速できる。正圧面23での気流の風速を増速できることで、送風機7は、翼間の風速分布の偏りを抑制でき、翼間の通風抵抗を低減できて、ファン入力と騒音を低減できる。 In this way, the pressure surface 23 of the blade 21 has the smallest curvature of the pressure side first curved surface 23-1 among the three curved surfaces constituting the pressure surface 23, and the pressure side first range length l ps1 is longer than the pressure side second range length l ps2 . This allows the blower 7 to suppress separation of the airflow in the first boundary region E3, specifically, separation of the airflow on the pressure surface 23 of the blade 21 in the first boundary region E3. In addition, since the pressure side first range length l ps1 is longer than the pressure side second range length l ps2 , the blower 7 can increase the wind speed of the airflow on the pressure surface 23. By being able to increase the wind speed of the airflow on the pressure surface 23, the blower 7 can suppress bias in the wind speed distribution between the blades, reduce the ventilation resistance between the blades, and reduce the fan input and noise.

実施の形態2.
図8は、実施の形態2に係る送風機7の羽根車20の一部を回転軸Oに垂直な方向で切断した断面図である。図9は、実施の形態2に係る送風機7の羽根車20の負圧側第1~第3の範囲の説明図である。以下、実施の形態2が実施の形態1と異なる構成を中心に説明するものとし、実施の形態2で説明されていない構成は実施の形態1と同様である。
Embodiment 2.
Fig. 8 is a cross-sectional view of a portion of impeller 20 of blower 7 according to embodiment 2 cut in a direction perpendicular to rotation axis O. Fig. 9 is an explanatory diagram of first to third ranges of the negative pressure side of impeller 20 of blower 7 according to embodiment 2. The following description will focus on configurations of embodiment 2 that differ from embodiment 1, and configurations not described in embodiment 2 are similar to embodiment 1.

実施の形態2の翼21の負圧面24は、複数の曲面で構成されている。図8に示すように、複数の曲面は、内周側から順に、負圧側第1の曲面24-1、負圧側第2の曲面24-2、負圧側第3の曲面24-3である。複数の曲面のうち、負圧側第1の曲面24-1の曲率が最も小さくなるように構成されている。負圧側第1の曲面24-1は、曲率が0の平坦面でもよい。 The suction surface 24 of the blade 21 in embodiment 2 is composed of multiple curved surfaces. As shown in FIG. 8, the multiple curved surfaces are, in order from the inner circumferential side, a suction side first curved surface 24-1, a suction side second curved surface 24-2, and a suction side third curved surface 24-3. Of the multiple curved surfaces, the suction side first curved surface 24-1 is configured to have the smallest curvature. The suction side first curved surface 24-1 may be a flat surface with a curvature of zero.

また、翼21は、翼21を翼厚方向の仮想中心面27で2つに分けたうちの正圧面側翼面と負圧面側翼面とを有する。負圧面側翼面は、図9に示すように負圧側第2の曲面24-2の内周端24-2P1と負圧側第2の曲面24-2の外周端24-2P2とを境に3つの範囲に分けられる。3つの範囲は、負圧側第1の範囲24a-1と、負圧側第2の範囲24a-2と、負圧側第3の範囲24a-3である。負圧側第1の範囲24a-1は、翼21の内周端25-Pから負圧側第2の曲面24-2の内周端24-2P1までの範囲である。負圧側第2の範囲24a-2は、負圧側第2の曲面24-2の範囲に等しい。負圧側第3の範囲24a-3は、負圧側第2の曲面24-2の外周端24-2P2から翼21の外周端26-Pまでの範囲である。 The blade 21 has a pressure side blade surface and a suction side blade surface, which are two parts of the blade 21 divided by a virtual center plane 27 in the blade thickness direction. The suction side blade surface is divided into three ranges, as shown in FIG. 9, with the inner circumferential end 24-2P1 of the suction side second curved surface 24-2 and the outer circumferential end 24-2P2 of the suction side second curved surface 24-2 as the boundary. The three ranges are a suction side first range 24a-1, a suction side second range 24a-2, and a suction side third range 24a-3. The suction side first range 24a-1 is the range from the inner circumferential end 25-P of the blade 21 to the inner circumferential end 24-2P1 of the suction side second curved surface 24-2. The suction side second range 24a-2 is equal to the range of the suction side second curved surface 24-2. The suction side third range 24a-3 is the range from the outer circumferential end 24-2P2 of the suction side second curved surface 24-2 to the outer circumferential end 26-P of the blade 21.

翼21は、負圧側第1の範囲24a-1、負圧側第2の範囲24a-2、負圧側第3の範囲24a-3を、翼弦線lに投影したときの長さが、順に負圧側第1の範囲長lss1、負圧側第2の範囲長lss2、負圧側第3の範囲長lss3と定義される。なお、図9では、図示の都合上、負圧側第1の範囲長lss1、負圧側第2の範囲長lss2および負圧側第3の範囲長lss3が、翼弦線l上に示されず、翼弦線lに平行な線上に示している。正圧側第1の範囲長lps1は、負圧側第1の範囲長lss1よりも長く構成されている。 In the blade 21, the lengths of the suction side first range 24a-1, the suction side second range 24a-2, and the suction side third range 24a-3 projected onto the chord line l are defined as the suction side first range length l ss1 , the suction side second range length l ss2 , and the suction side third range length l ss3 , respectively. Note that in Fig. 9, for convenience of illustration, the suction side first range length l ss1 , the suction side second range length l ss2 , and the suction side third range length l ss3 are not shown on the chord line l, but on lines parallel to the chord line l. The pressure side first range length l ps1 is configured to be longer than the suction side first range length l ss1 .

また、正圧側第1の曲面23-1の外周端23-1P2を翼弦線lに投影した位置P23-1P2は、翼弦線lの中心Pより内周側に位置する。正圧側第1の曲面23-1の外周端23-1P2は、正圧側第2の曲面23-2の内周端23-2P1に等しい。 Additionally, the position P23-1P2 obtained by projecting the outer circumferential end 23-1P2 of the pressure side first curved surface 23-1 onto the chord line l is located on the inner circumferential side of the center Pc of the chord line l. The outer circumferential end 23-1P2 of the pressure side first curved surface 23-1 is equal to the inner circumferential end 23-2P1 of the pressure side second curved surface 23-2.

上記構成による作用について説明する。
上述したように、翼21は、正圧側第1の曲面23-1の曲率が正圧面23を構成する3つの曲面のなかで最も小さく、かつ負圧側第1の曲面24-1の曲率が負圧面24を構成する3つの曲面のなかで最も小さい。そして、正圧側第1の範囲長lps1が、負圧側第1の範囲長lss1よりも長い。
The operation of the above configuration will now be described.
As described above, in the blade 21, the curvature of the pressure-side first curved surface 23-1 is the smallest among the three curved surfaces that constitute the pressure surface 23, and the curvature of the suction-side first curved surface 24-1 is the smallest among the three curved surfaces that constitute the suction surface 24. Furthermore, the pressure-side first range length l ps1 is longer than the suction-side first range length l ss1 .

上記構成により、翼間に流入した気流が正圧面23に沿いやすくなって正圧面23側の風速が増速する。羽根車20の吹出領域E2では、翼21の正圧面側の方が負圧面側よりも翼間の気流の風速が小さいため、正圧面23側の風速が増速することで、翼間の風速分布の均一化が図れる。With the above configuration, the airflow that flows between the blades tends to flow along the pressure surface 23, increasing the wind speed on the pressure surface 23 side. In the blowing region E2 of the impeller 20, the wind speed of the airflow between the blades is slower on the pressure surface side of the blade 21 than on the negative pressure surface side, so the wind speed on the pressure surface 23 side increases, resulting in a more uniform wind speed distribution between the blades.

また、翼21は、正圧側第1の曲面23-1の外周端23-1P2を翼弦線lに投影した位置P23-1P2が、翼弦線lの中心Pより内周側に位置している。仮に、正圧側第1の曲面23-1の外周端を翼弦線lに投影した位置P23-1P2が、翼弦線lの中心Pよりも外周側に位置していると、正圧面23に沿って内周側から外周側に流れた気流が、正圧面23の外周側で、周方向ではなく径方向を向きやすくなる。 Furthermore, in the blade 21, the position P23-1P2 , where the outer peripheral end 23-1P2 of the pressure side first curved surface 23-1 is projected onto the chord line l, is located on the inner peripheral side of the center Pc of the chord line l. If the position P23-1P2 , where the outer peripheral end of the pressure side first curved surface 23-1 is projected onto the chord line l, is located on the outer peripheral side of the center Pc of the chord line l, the airflow that flows from the inner peripheral side to the outer peripheral side along the pressure surface 23 will tend to be directed in the radial direction rather than the circumferential direction on the outer peripheral side of the pressure surface 23.

正圧面23に沿って内周側から外周側に流れた気流が正圧面23の外周側で周方向に向いている場合には、この周方向に向いた気流によって以下の作用が得られる。すなわち、周方向に向いた気流は、隣接する翼21の負圧面24側に向けて流れることになるため、正圧面23と隣接する翼21の負圧面24との翼間の気流を、負圧面24側に向けて周方向に押圧する。よって、負圧面24に向けて内周側から流入した気流が負圧面24の外周側ではく離することを抑制できる。一方で、正圧面23に沿って内周側から外周側に流れた気流が正圧面23の外周側で径方向に向いている場合、この作用が得られず、負圧面24の外周側において気流がはく離しやすくなる。When the airflow that flows from the inner periphery to the outer periphery along the positive pressure surface 23 is directed in the circumferential direction on the outer periphery of the positive pressure surface 23, the following action is obtained by this circumferentially directed airflow. That is, the circumferentially directed airflow flows toward the negative pressure surface 24 of the adjacent blade 21, and thus presses the airflow between the positive pressure surface 23 and the negative pressure surface 24 of the adjacent blade 21 in the circumferential direction toward the negative pressure surface 24. Therefore, the airflow that flows in from the inner periphery toward the negative pressure surface 24 can be prevented from separating on the outer periphery of the negative pressure surface 24. On the other hand, when the airflow that flows from the inner periphery to the outer periphery along the positive pressure surface 23 is directed in the radial direction on the outer periphery of the positive pressure surface 23, this action is not obtained, and the airflow is more likely to separate on the outer periphery of the negative pressure surface 24.

これに対し、実施の形態2では、正圧側第1の曲面23-1の外周端23-1P2を翼弦線lに投影した位置P23-1P2が翼弦線lの中心Pよりも内周側に位置している。これにより、翼21の正圧側第1の曲面23-1に沿って内周側から外周側に向かう気流の方向が、外周側に向かうに連れて周方向となる。これにより、上記作用が得られ、負圧面24の外周側における気流のはく離が抑制される。 In contrast, in the second embodiment, the position P23-1P2 of the outer circumferential edge 23-1P2 of the pressure side first curved surface 23-1 projected onto the chord line l is located on the inner circumferential side of the center Pc of the chord line l. As a result, the direction of the airflow from the inner circumferential side to the outer circumferential side along the pressure side first curved surface 23-1 of the blade 21 becomes circumferential as it approaches the outer circumferential side. This provides the above-mentioned effect, and suppresses separation of the airflow on the outer circumferential side of the suction surface 24.

以上説明したように、実施の形態2では、実施の形態1と同様の効果が得られるとともに、上記構成により、翼間の風速分布の均一化および翼21の負圧面24の外周側における気流のはく離の抑制が図れる。As described above, in embodiment 2, the same effects as in embodiment 1 are obtained, and the above configuration makes it possible to uniformize the wind speed distribution between the blades and suppress separation of the airflow on the outer periphery of the negative pressure surface 24 of the blade 21.

実施の形態3.
図10は、実施の形態3に係る送風機7の羽根車20の一部を回転軸Oに垂直な方向で切断した断面図である。以下、実施の形態3が実施の形態1および実施の形態2と異なる構成を中心に説明するものとし、実施の形態3で説明されていない構成は実施の形態1および実施の形態2と同様である。
Embodiment 3.
10 is a cross-sectional view of a part of impeller 20 of blower 7 according to embodiment 3 cut in a direction perpendicular to rotation axis O. The following description will focus on configurations of embodiment 3 that differ from embodiments 1 and 2, and configurations not described in embodiment 3 are similar to embodiments 1 and 2.

実施の形態3の翼21の負圧面24は、負圧側第2の曲面24-2の曲率>負圧側第3の曲面24-3の曲率>負圧側第1の曲面24-1の曲率の関係を満足するように構成されている。また、翼21は、負圧側第3の範囲長lss3>負圧側第2の範囲長lss2>負圧側第1の範囲長lss1の関係を満足するように構成されている。 The suction surface 24 of the blade 21 of the third embodiment is configured to satisfy the relationship of curvature of suction side second curved surface 24-2 > curvature of suction side third curved surface 24-3 > curvature of suction side first curved surface 24-1. Also, the blade 21 is configured to satisfy the relationship of suction side third range length l ss3 > suction side second range length l ss2 > suction side first range length l ss1 .

羽根車20の吹出領域E2では、正圧面側に比べて負圧面側の風速が大きいことから負圧面24では気流がはく離しやすく、特に負圧面24の外周側ほど気流がはく離しやすい。このため、負圧面24のなかで最も外周側である負圧側第3の範囲長lss3が負圧面24のなかで最も長く確保される。また、曲率が大きいと気流のはく離が生じやすい。このため、最も曲率が大きい負圧側第2の曲面24-2の曲率をできるだけ小さくする観点から、負圧側第2の範囲長lss2が負圧側第1の範囲長lss1よりも長く確保されている。 In the blowing region E2 of the impeller 20, the air speed is faster on the suction surface side than on the pressure surface side, so that the airflow is more likely to separate on the suction surface 24, and the airflow is more likely to separate toward the outer periphery of the suction surface 24. For this reason, the negative pressure-side third range length l ss3 , which is the outermost side of the suction surface 24, is ensured to be the longest on the suction surface 24. Also, airflow separation is more likely to occur when the curvature is large. For this reason, from the viewpoint of minimizing the curvature of the negative pressure-side second curved surface 24-2, which has the largest curvature, the negative pressure-side second range length l ss2 is ensured to be longer than the negative pressure-side first range length l ss1 .

上記構成により、羽根車20は、吹出領域E2における翼21の負圧面24からの気流のはく離をより抑制される。 With the above configuration, the impeller 20 further suppresses separation of the airflow from the negative pressure surface 24 of the blade 21 in the blowing region E2.

実施の形態3によれば、実施の形態1および実施の形態2と同様の効果が得られるとともに、上記構成により、羽根車20は、吹出領域E2おける翼21の負圧面24からの気流のはく離をより抑制できる。According to embodiment 3, the same effects as those of embodiments 1 and 2 can be obtained, and the above configuration enables the impeller 20 to further suppress separation of the airflow from the negative pressure surface 24 of the blade 21 in the blowing region E2.

実施の形態4.
図11は、実施の形態4に係る送風機7の羽根車20の一部を回転軸Oに垂直な方向で切断した断面図である。以下、実施の形態4が実施の形態1~実施の形態3と異なる構成を中心に説明するものとし、実施の形態4で説明されていない構成は実施の形態1~実施の形態3と同様である。
Embodiment 4.
11 is a cross-sectional view of a part of impeller 20 of blower 7 according to embodiment 4, cut in a direction perpendicular to rotation axis O. The following description will focus on configurations of embodiment 4 that differ from embodiments 1 to 3, and configurations not described in embodiment 4 are similar to embodiments 1 to 3.

図11において、正圧面23上の位置Apsは、翼21を回転軸Oに垂直な断面で見て、正圧面23において翼弦線lとの垂直距離Lpsが最大となる位置である。翼21において、負圧面24上の位置Assは、翼21を回転軸Oに垂直な断面で見て、負圧面24において翼弦線lとの垂直距離Lssが最大となる位置である。実施の形態4の翼21は、正圧面23上の位置Apsを翼弦線lに投影した位置Ppsが、負圧面24上の位置Assを翼弦線lに投影した位置Pssより外周側に位置する。 11 , position A ps on pressure surface 23 is a position where vertical distance L ps from chord line l on pressure surface 23 is maximum when blade 21 is viewed in a cross section perpendicular to rotation axis O. Position A ss on suction surface 24 is a position where vertical distance L ss from chord line l on suction surface 24 is maximum when blade 21 is viewed in a cross section perpendicular to rotation axis O. In blade 21 of embodiment 4, position P ps obtained by projecting position A ps on pressure surface 23 onto chord line l is located on the outer periphery side of position P ss obtained by projecting position A ss on suction surface 24 onto chord line l.

上記構成により、吹出領域E2において翼間の風路幅が外周側で広く確保され、翼間の風速増加が抑制される。翼間の風速増加が抑制されるため、羽根車20は、ファン入力と騒音の低減効果が得られる。With the above configuration, the air passage width between the blades is secured wide on the outer periphery side in the blowing area E2, and the increase in wind speed between the blades is suppressed. Since the increase in wind speed between the blades is suppressed, the impeller 20 has the effect of reducing fan input and noise.

実施の形態4によれば、実施の形態1~実施の形態3と同様の効果が得られるとともに、上記構成により、ファン入力と騒音の低減効果が得られる。According to embodiment 4, the same effects as those of embodiments 1 to 3 can be obtained, and the above configuration also provides the effect of reducing fan input and noise.

実施の形態5.
上記実施の形態1~実施の形態4では、吹出側における気流の改善について言及してきたが、実施の形態5では、吸込側における気流の改善について言及する。
Embodiment 5.
In the above-mentioned first to fourth embodiments, the improvement of the airflow on the blowing side has been mentioned, but in the fifth embodiment, the improvement of the airflow on the suction side will be mentioned.

図12は、実施の形態5に係る羽根車20の一部を回転軸Oに垂直な方向で切断した断面図である。以下、実施の形態5が実施の形態1~実施の形態4と異なる構成を中心に説明するものとし、実施の形態5で説明されていない構成は実施の形態1~実施の形態4と同様である。 Figure 12 is a cross-sectional view of a portion of the impeller 20 according to embodiment 5 cut in a direction perpendicular to the rotation axis O. The following description will focus on the configuration of embodiment 5 that differs from embodiments 1 to 4, and the configuration not described in embodiment 5 is the same as that of embodiments 1 to 4.

羽根車20の吸込側では、気流の方向が矢印に示す方向となり、翼21の外周側が気流の入口側となり、翼21の内周側が気流の出口側となる。実施の形態5は、翼21の翼厚が最大となる位置について特定するものである。実施の形態5の翼21は、最大翼厚28の中心28aを翼弦線lに投影した位置P28a(以下、最大翼厚投影位置P28aという)が、正圧側第1の曲面23-1を翼弦線lに投影した範囲23-1aに位置する。また、翼21は、最大翼厚投影位置P28aが、翼21の内周端25-Pから翼弦線lの10%以上、15%以下の範囲に位置する。 At the suction side of the impeller 20, the direction of the airflow is the direction indicated by the arrow, the outer circumferential side of the blade 21 is the inlet side of the airflow, and the inner circumferential side of the blade 21 is the outlet side of the airflow. In the fifth embodiment, the position where the blade thickness of the blade 21 is maximum is specified. In the blade 21 of the fifth embodiment, the position P 28a where the center 28a of the maximum blade thickness 28 is projected onto the chord line 1 (hereinafter referred to as the maximum blade thickness projection position P 28a ) is located in the range 23-1a where the pressure side first curved surface 23-1 is projected onto the chord line 1. In addition, the maximum blade thickness projection position P 28a of the blade 21 is located in a range of 10% to 15% of the chord line 1 from the inner circumferential end 25-P of the blade 21.

仮に、最大翼厚投影位置P28aが、翼21の内周端25-Pから翼弦線lの10%の位置より内周側に位置していると、吸込側の気流の方向で後流側の翼21の翼厚が厚くなり、通風抵抗の増加および風切り音の増加の原因となる。 If the maximum blade thickness projection position P 28a is located on the inner peripheral side of a position 10% of the chord line l from the inner peripheral end 25-P of the blade 21, the blade thickness of the blade 21 on the wake side in the direction of the airflow on the suction side will be thick, causing an increase in ventilation resistance and wind noise.

これに対し、実施の形態5では、最大翼厚投影位置P28aが翼弦線lの内周端25-Pから翼弦線の10%の位置より外周側、言い換えれば吸込側の気流の方向で前流側に位置する。これにより、翼21は、吸込側の気流の方向で後流側の翼21の翼厚が薄くなる。このため、1枚の翼21で考えると、その翼21の正圧面23側を流れた気流と、負圧面24側を流れた気流とが、翼21の後流で合流しやすくなる。よって、上記構成の翼21は、翼21の後流に死水域が発生することを抑制でき、通風抵抗が低減し、風切り音が抑制される。 In contrast, in the fifth embodiment, the maximum blade thickness projection position P 28a is located on the outer side of the position 10% of the chord line from the inner circumferential end 25-P of the chord line l, in other words, on the front stream side in the direction of the airflow on the suction side. As a result, the blade thickness of the blade 21 on the rear stream side in the direction of the airflow on the suction side becomes thinner. Therefore, considering one blade 21, the airflow flowing on the pressure surface 23 side of the blade 21 and the airflow flowing on the suction surface 24 side are likely to merge in the rear stream of the blade 21. Therefore, the blade 21 configured as described above can suppress the occurrence of a dead water area in the rear stream of the blade 21, reducing the ventilation resistance and suppressing the wind noise.

また、仮に、最大翼厚投影位置P28aが、翼21の内周端25-Pから翼弦線lの15%の位置より外周側に位置していると、正圧面側および負圧面側における気流のはく離を抑制する効果が減る。このため、最大翼厚投影位置P28aは、翼21の内周端25-Pから翼弦線lの15%の位置以下の範囲に位置するようにしている。 In addition, if the maximum blade thickness projection position P 28a is located on the outer periphery side of the position 15% of the chord line l from the inner circumferential end 25-P of the blade 21, the effect of suppressing airflow separation on the pressure surface side and the suction surface side will be reduced. For this reason, the maximum blade thickness projection position P 28a is set to be located in a range not exceeding the position 15% of the chord line l from the inner circumferential end 25-P of the blade 21.

実施の形態5によれば、実施の形態1~実施の形態4と同様の効果が得られるとともに、最大翼厚投影位置P28aが翼21の内周端25-Pから翼弦線lの10%以上、15%以下の範囲に位置することで、以下の効果が得られる。すなわち、羽根車20は、吸込側の通風抵抗を低減でき、風切り音を抑制できる。 According to the fifth embodiment, the same effects as those of the first to fourth embodiments can be obtained, and the following effect can be obtained by positioning the maximum blade thickness projection position P28a in a range of 10% to 15% of the chord line l from the inner circumferential end 25-P of the blade 21. That is, the impeller 20 can reduce the ventilation resistance on the suction side and suppress wind noise.

なお、上記実施の形態1~実施の形態5では、羽根車20を有する送風機7が室内機に搭載されるものとして説明したが、室外機に搭載されてもよい。この場合も同様の効果が得られる。In the above first to fifth embodiments, the blower 7 having the impeller 20 is described as being mounted on an indoor unit, but it may be mounted on an outdoor unit. In this case, the same effect can be obtained.

実施の形態6.
図13は、実施の形態6に係る冷凍サイクル装置50の構成を示す図である。なお、実施の形態6に係る冷凍サイクル装置50の室内送風機202には、実施の形態1~実施の形態5のいずれかの送風機7が用いられる。また、以下の説明では、冷凍サイクル装置50について、空調用途に使用される場合について説明するが、冷凍サイクル装置50は、空調用途に使用されるものに限定されるものではない。冷凍サイクル装置50は、例えば、冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器などの、冷凍用途または空調用途に使用される。
Embodiment 6.
13 is a diagram showing a configuration of a refrigeration cycle apparatus 50 according to embodiment 6. The indoor blower 202 of the refrigeration cycle apparatus 50 according to embodiment 6 uses the blower 7 according to any one of embodiments 1 to 5. In the following description, the refrigeration cycle apparatus 50 is used for air conditioning purposes, but the refrigeration cycle apparatus 50 is not limited to being used for air conditioning purposes. The refrigeration cycle apparatus 50 is used for refrigeration or air conditioning purposes, such as a refrigerator or a freezer, a vending machine, an air conditioner, a refrigeration apparatus, and a water heater.

実施の形態6に係る冷凍サイクル装置50は、冷媒を介して外気と室内の空気の間で熱を移動させることにより、室内を暖房または冷房して空気調和を行う。実施の形態6に係る冷凍サイクル装置50は、室外機100と、室内機200とを有する。冷凍サイクル装置50は、室外機100と室内機200とが冷媒配管300および冷媒配管400により配管接続されて、冷媒が循環する冷媒回路を有する。冷媒配管300は、気相の冷媒が流れるガス配管であり、冷媒配管400は、液相の冷媒が流れる液配管である。なお、冷媒配管400には、気液二相の冷媒を流してもよい。そして、冷凍サイクル装置50の冷媒回路では、圧縮機101、流路切替装置102、室外熱交換器103、膨張弁105、室内熱交換器201が冷媒配管を介して順次接続されている。The refrigeration cycle device 50 according to the sixth embodiment heats or cools the room by transferring heat between the outdoor air and the indoor air via the refrigerant, thereby performing air conditioning. The refrigeration cycle device 50 according to the sixth embodiment has an outdoor unit 100 and an indoor unit 200. The refrigeration cycle device 50 has a refrigerant circuit in which the outdoor unit 100 and the indoor unit 200 are connected by refrigerant piping 300 and refrigerant piping 400, and the refrigerant circulates. The refrigerant piping 300 is a gas piping through which gas-phase refrigerant flows, and the refrigerant piping 400 is a liquid piping through which liquid-phase refrigerant flows. Note that a gas-liquid two-phase refrigerant may flow through the refrigerant piping 400. In the refrigerant circuit of the refrigeration cycle device 50, the compressor 101, the flow path switching device 102, the outdoor heat exchanger 103, the expansion valve 105, and the indoor heat exchanger 201 are connected in sequence via the refrigerant piping.

(室外機100)
室外機100は、圧縮機101、流路切替装置102、室外熱交換器103、および膨張弁105を有している。圧縮機101は、吸入した冷媒を圧縮して吐出する。流路切替装置102は、例えば四方弁であり、冷媒流路の方向の切り換えが行われる装置である。冷凍サイクル装置50は、制御装置(図示せず)からの指示に基づいて、流路切替装置102を用いて冷媒の流れを切り換えることで、暖房運転または冷房運転を実現することができる。
(Outdoor unit 100)
The outdoor unit 100 has a compressor 101, a flow path switching device 102, an outdoor heat exchanger 103, and an expansion valve 105. The compressor 101 compresses and discharges the sucked refrigerant. The flow path switching device 102 is, for example, a four-way valve, and is a device that switches the direction of the refrigerant flow path. The refrigeration cycle device 50 can achieve heating operation or cooling operation by switching the flow of the refrigerant using the flow path switching device 102 based on an instruction from a control device (not shown).

室外熱交換器103は、冷媒と室外空気との熱交換を行う。室外熱交換器103は、暖房運転時には蒸発器の働きをし、冷媒配管400から流入した低圧の冷媒と室外空気との間で熱交換を行って冷媒を蒸発させて気化させる。室外熱交換器103は、冷房運転時には、凝縮器の働きをし、流路切替装置102側から流入した圧縮機101で圧縮済の冷媒と室外空気との間で熱交換を行って、冷媒を凝縮させて液化させる。室外熱交換器103には、冷媒と室外空気との間の熱交換の効率を高めるために、室外送風機104が設けられている。室外送風機104は、インバータ装置を取り付け、ファンモータの運転周波数を変化させてファンの回転速度を変更してもよい。膨張弁105は、絞り装置であり、膨張弁105を流れる冷媒の流量を調節することにより、膨張弁として機能し、開度を変化させることで、冷媒の圧力を調整する。例えば、膨張弁105が、電子式膨張弁等で構成された場合は、制御装置の指示に基づいて開度調整が行われる。The outdoor heat exchanger 103 exchanges heat between the refrigerant and the outdoor air. During heating operation, the outdoor heat exchanger 103 acts as an evaporator, exchanging heat between the low-pressure refrigerant flowing in from the refrigerant piping 400 and the outdoor air to evaporate the refrigerant. During cooling operation, the outdoor heat exchanger 103 acts as a condenser, exchanging heat between the refrigerant compressed by the compressor 101 flowing in from the flow path switching device 102 side and the outdoor air to condense and liquefy the refrigerant. The outdoor heat exchanger 103 is provided with an outdoor blower 104 to increase the efficiency of heat exchange between the refrigerant and the outdoor air. The outdoor blower 104 may be equipped with an inverter device to change the operating frequency of the fan motor to change the rotation speed of the fan. The expansion valve 105 is a throttle device, and functions as an expansion valve by adjusting the flow rate of the refrigerant flowing through the expansion valve 105, and adjusts the pressure of the refrigerant by changing the opening degree. For example, when the expansion valve 105 is configured as an electronic expansion valve or the like, the opening degree is adjusted based on an instruction from a control device.

(室内機200)
室内機200は、冷媒と室内空気との間で熱交換を行う室内熱交換器201と、室内熱交換器201が熱交換を行う空気の流れを調整する室内送風機202とを有する。室内熱交換器201は、暖房運転時には、凝縮器の働きをし、冷媒配管300から流入した冷媒と室内空気との間で熱交換を行い、冷媒を凝縮させて液化させ、冷媒配管400側に流出させる。室内熱交換器201は、冷房運転時には蒸発器の働きをし、膨張弁105によって低圧状態にされた冷媒と室内空気との間で熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、冷媒配管300側に流出させる。室内送風機202は、室内熱交換器201と対面するように設けられている。室内送風機202には、実施の形態1~実施の形態5に係る送風機7が適用される。室内送風機202の運転速度は、ユーザの設定により決定される。室内送風機202には、インバータ装置を取り付け、ファンモータ(図示は省略)の運転周波数を変化させてクロスフローファンの回転速度を変更してもよい。
(Indoor unit 200)
The indoor unit 200 has an indoor heat exchanger 201 that exchanges heat between the refrigerant and the indoor air, and an indoor blower 202 that adjusts the flow of air that the indoor heat exchanger 201 exchanges heat with. The indoor heat exchanger 201 functions as a condenser during heating operation, and exchanges heat between the refrigerant that flows in from the refrigerant pipe 300 and the indoor air, condenses the refrigerant to liquefy it, and causes it to flow out to the refrigerant pipe 400 side. The indoor heat exchanger 201 functions as an evaporator during cooling operation, and exchanges heat between the refrigerant that is in a low-pressure state by the expansion valve 105 and the indoor air, and causes the refrigerant to take heat from the air, evaporate it, and vaporize it, and causes it to flow out to the refrigerant pipe 300 side. The indoor blower 202 is provided so as to face the indoor heat exchanger 201. The blower 7 according to the first to fifth embodiments is applied to the indoor blower 202. The operating speed of the indoor blower 202 is determined by a user's setting. The indoor blower 202 may be equipped with an inverter device to change the operating frequency of the fan motor (not shown) to change the rotation speed of the crossflow fan.

[冷凍サイクル装置50の動作例]
次に、冷凍サイクル装置50の動作例として冷房運転動作を説明する。圧縮機101によって圧縮され吐き出された高温高圧のガス冷媒は、流路切替装置102を経由して、室外熱交換器103に流入する。室外熱交換器103に流入したガス冷媒は、室外送風機104により送風される外気との熱交換により凝縮し、低温の冷媒となって、室外熱交換器103から流出する。室外熱交換器103から流出した冷媒は、膨張弁105によって膨張および減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室内機200の室内熱交換器201に流入し、室内送風機202により送風される室内空気との熱交換により蒸発し、低温低圧のガス冷媒となって室内熱交換器201から流出する。このとき、冷媒に吸熱されて冷却された室内空気は、空調空気となって、室内機200の吐出口から空調対象空間に吹き出される。室内熱交換器201から流出したガス冷媒は、流路切替装置102を経由して圧縮機101に吸入され、再び圧縮される。以上の動作が繰り返される。
[Operation example of the refrigeration cycle device 50]
Next, the cooling operation will be described as an example of the operation of the refrigeration cycle device 50. The high-temperature, high-pressure gas refrigerant compressed and discharged by the compressor 101 flows into the outdoor heat exchanger 103 via the flow switching device 102. The gas refrigerant that flows into the outdoor heat exchanger 103 condenses by heat exchange with the outside air blown by the outdoor blower 104, becomes a low-temperature refrigerant, and flows out of the outdoor heat exchanger 103. The refrigerant that flows out of the outdoor heat exchanger 103 is expanded and decompressed by the expansion valve 105, and becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows into the indoor heat exchanger 201 of the indoor unit 200, evaporates by heat exchange with the indoor air blown by the indoor blower 202, becomes a low-temperature, low-pressure gas refrigerant, and flows out of the indoor heat exchanger 201. At this time, the indoor air that has been cooled by absorbing heat into the refrigerant becomes conditioned air and is blown out from the discharge port of the indoor unit 200 into the space to be air-conditioned. The gas refrigerant flowing out from the indoor heat exchanger 201 is drawn into the compressor 101 via the flow switching device 102 and compressed again. The above operations are repeated.

次に、冷凍サイクル装置50の動作例として暖房運転動作を説明する。圧縮機101によって圧縮され吐き出された高温高圧のガス冷媒は、流路切替装置102を経由して、室内機200の室内熱交換器201に流入する。室内熱交換器201に流入したガス冷媒は、室内送風機202により送風される室内空気との熱交換により凝縮し、低温の冷媒となって、室内熱交換器201から流出する。このとき、ガス冷媒から熱を受け取り暖められた室内空気は、空調空気となって、室内機200の吐出口から空調対象空間に吹き出される。室内熱交換器201から流出した冷媒は、膨張弁105によって膨張および減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室外機100の室外熱交換器103に流入し、室外送風機104により送風される外気との熱交換により蒸発し、低温低圧のガス冷媒となって室外熱交換器103から流出する。室外熱交換器103から流出したガス冷媒は、流路切替装置102を経由して圧縮機101に吸入され、再び圧縮される。以上の動作が繰り返される。Next, the heating operation will be described as an example of the operation of the refrigeration cycle device 50. The high-temperature, high-pressure gas refrigerant compressed and discharged by the compressor 101 flows into the indoor heat exchanger 201 of the indoor unit 200 via the flow switching device 102. The gas refrigerant that flows into the indoor heat exchanger 201 condenses through heat exchange with the indoor air blown by the indoor blower 202, becomes a low-temperature refrigerant, and flows out of the indoor heat exchanger 201. At this time, the indoor air that has received heat from the gas refrigerant and been warmed becomes conditioned air and is blown out from the discharge port of the indoor unit 200 into the space to be conditioned. The refrigerant that flows out of the indoor heat exchanger 201 is expanded and decompressed by the expansion valve 105, becoming a low-temperature, low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 103 of the outdoor unit 100, evaporates through heat exchange with the outdoor air blown by the outdoor blower 104, and flows out of the outdoor heat exchanger 103 as a low-temperature, low-pressure gas refrigerant. The gas refrigerant flowing out from the outdoor heat exchanger 103 passes through the flow switching device 102 and is drawn into the compressor 101, where it is compressed again. The above operations are repeated.

実施の形態6に係る冷凍サイクル装置50は、実施の形態1~実施の形態5に係る送風機7を備えるため、上記実施の形態1~実施の形態5と同様の効果を得ることができる。The refrigeration cycle device 50 of embodiment 6 is equipped with the blower 7 of embodiments 1 to 5, and therefore can achieve the same effects as those of embodiments 1 to 5 described above.

以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。The configurations shown in the above embodiments are merely examples, and may be combined with other known technologies, and parts of the configurations may be omitted or modified without departing from the spirit of the invention.

1 空気調和装置、2 筐体、3 本体、4 化粧パネル、4a 吸込口、4b 吹出口、5 フィルタ、6 熱交換器、7 送風機、8 ドレンパン、9 上下風向調整板、10 左右風向調整板、11 クロスフローファン、12 モータ、13 ファンケーシング、14 リアガイド、14a 前流端、14b 後流端、15 スタビライザー、20 羽根車、21 翼、22 支持板、23 正圧面、23-1 正圧側第1の曲面、23-1P2 外周端、23-1a 範囲、23-2 正圧側第2の曲面、23-2P1 内周端、23-2P2 外周端、23-3 正圧側第3の曲面、23a-1 正圧側第1の範囲、23a-2 正圧側第2の範囲、23a-3 正圧側第3の範囲、24 負圧面、24-1 負圧側第1の曲面、24-2 負圧側第2の曲面、24-2P1 内周端、24-2P2 外周端、24-3 負圧側第3の曲面、24a-1 負圧側第1の範囲、24a-2 負圧側第2の範囲、24a-3 負圧側第3の範囲、25 内周側端面、25-P 内周端、26 外周側端面、26-P 外周端、27 仮想中心面、27-P 内周端、28 最大翼厚、28a 中心、30 気流、31 気流、50 冷凍サイクル装置、100 室外機、101 圧縮機、102 流路切替装置、103 室外熱交換器、104 室外送風機、105 膨張弁、200 室内機、201 室内熱交換器、202 室内送風機、300 冷媒配管、400 冷媒配管、E1 吸込領域、E2 吹出領域、E3 第1境界領域、E4 第2境界領域、L 接線、Lps 垂直距離、Lss 垂直距離、O 回転軸、P28a 最大翼厚投影位置、P 中心、l 翼弦線、lps1 正圧側第1の範囲長、lps2 正圧側第2の範囲長、lps3 正圧側第3の範囲長、lss1 負圧側第1の範囲長、lss2 負圧側第2の範囲長、lss3 負圧側第3の範囲長、θ 流入角度。 LIST OF SYMBOLS 1 Air conditioner, 2 Housing, 3 Main body, 4 Decorative panel, 4a Intake port, 4b Outlet port, 5 Filter, 6 Heat exchanger, 7 Blower, 8 Drain pan, 9 Up/down air direction adjustment plate, 10 Left/right air direction adjustment plate, 11 Cross flow fan, 12 Motor, 13 Fan casing, 14 Rear guide, 14a Front end, 14b Rear end, 15 Stabilizer, 20 Impeller, 21 Blade, 22 Support plate, 23 Pressure surface, 23-1 Pressure side first curved surface, 23-1P2 Outer circumferential end, 23-1a Range, 23-2 Pressure side second curved surface, 23-2P1 Inner circumferential end, 23-2P2 Outer circumferential end, 23-3 Pressure side third curved surface, 23a-1 Positive pressure side first range, 23a-2 positive pressure side second range, 23a-3 positive pressure side third range, 24 negative pressure surface, 24-1 negative pressure side first curved surface, 24-2 negative pressure side second curved surface, 24-2P1 inner circumferential end, 24-2P2 outer circumferential end, 24-3 negative pressure side third curved surface, 24a-1 negative pressure side first range, 24a-2 negative pressure side second range, 24a-3 negative pressure side third range, 25 inner circumferential end face, 25-P inner circumferential end, 26 outer circumferential end face, 26-P outer circumferential end, 27 virtual center plane, 27-P inner circumferential end, 28 maximum blade thickness, 28a center, 30 air flow, 31 air flow, 50 refrigeration cycle device, 100 outdoor unit, 101 compressor, 102 flow path switching device, 103 outdoor heat exchanger, 104 Outdoor blower, 105 expansion valve, 200 indoor unit, 201 indoor heat exchanger, 202 indoor blower, 300 refrigerant piping, 400 refrigerant piping, E1 suction area, E2 blowing area, E3 first boundary area, E4 second boundary area, L tangent, L ps vertical distance, L ss vertical distance, O rotation axis, P 28a maximum blade thickness projection position, P c center, l blade chord line, l ps1 positive pressure side first range length, l ps2 positive pressure side second range length, l ps3 positive pressure side third range length, l ss1 negative pressure side first range length, l ss2 negative pressure side second range length, l ss3 negative pressure side third range length, θ inflow angle.

Claims (7)

翼が環状に複数配置された羽根車を有するクロスフローファンを備えた送風機であって、
前記翼は、前記クロスフローファンの回転軸に垂直な断面で見て、前記クロスフローファンの回転方向側に凹状の正圧面と、反回転方向側に凸状の負圧面と、前記翼の内周側であって前記正圧面と前記負圧面とを接続する円弧状の内周側端面と、前記翼の外周側であって前記正圧面と前記負圧面とを接続する円弧状の外周側端面と、を有し、
前記外周側端面は、前記内周側端面よりも回転方向側に位置しており、
前記翼の前記正圧面は、前記羽根車の内周側から順に、曲率の異なる正圧側第1の曲面と、正圧側第2の曲面と、正圧側第3の曲面と、を有し、前記正圧側第2の曲面の曲率>前記正圧側第3の曲面の曲率>前記正圧側第1の曲面の曲率、の関係を満足し、
前記翼を前記翼の翼厚方向の仮想中心面で2つに分けたうちの正圧面側翼面を、前記正圧側第2の曲面の内周端と前記正圧側第2の曲面の外周端とを境に3つの範囲に分け、内周側から順に、正圧側第1の範囲、正圧側第2の範囲、正圧側第3の範囲としたとき、各範囲を、前記翼の内周端と外周端とを結んだ翼弦線に投影したときの長さは、正圧側第3の範囲長>正圧側第1の範囲長>正圧側第2の範囲長、の関係を満足する送風機。
A blower equipped with a cross-flow fan having an impeller with a plurality of blades arranged in an annular shape,
each of the blades has, when viewed in a cross section perpendicular to the rotation axis of the cross flow fan, a concave pressure side facing in the rotation direction of the cross flow fan and a convex suction side facing in the opposite rotation direction, an arc-shaped inner end face on the inner periphery of the blade connecting the positive pressure side and the suction side, and an arc-shaped outer periphery end face on the outer periphery of the blade connecting the positive pressure side and the suction side,
the outer circumferential end surface is located on the rotational direction side of the inner circumferential end surface,
the pressure surface of the blade has, in order from an inner circumferential side of the impeller, a pressure-side first curved surface, a pressure-side second curved surface, and a pressure-side third curved surface, which have different curvatures, and satisfies a relationship of curvature of the pressure-side second curved surface > curvature of the pressure-side third curved surface > curvature of the pressure-side first curved surface,
a blower in which, when the blade is divided into two by a virtual center plane in the blade thickness direction of the blade, the pressure side blade surface of the blade is divided into three ranges bounded by the inner circumferential end of the pressure side second curved surface and the outer circumferential end of the pressure side second curved surface, and the ranges are defined as a pressure side first range, a pressure side second range, and a pressure side third range, in that order from the inner circumferential side, the lengths of the ranges projected onto a chord line connecting the inner circumferential end and the outer circumferential end of the blade satisfy the relationship: pressure side third range length > pressure side first range length > pressure side second range length.
前記翼の前記負圧面は、前記羽根車の内周側から順に、曲率の異なる負圧側第1の曲面と、負圧側第2の曲面と、負圧側第3の曲面と、を有し、前記負圧側第1の曲面の曲率が前記負圧側第2の曲面および前記負圧側第3の曲面の曲率よりも小さく構成されており、
前記翼を前記仮想中心面で2つに分けたうちの負圧面側翼面を、前記負圧側第2の曲面の内周端と前記負圧側第2の曲面の外周端とを境に3つの範囲に分けたうちの最も内周側の範囲を負圧側第1の範囲とし、前記負圧側第1の範囲を前記翼弦線に投影したときの長さを負圧側第1の範囲長としたとき、
前記正圧側第1の範囲長は、前記負圧側第1の範囲長よりも長く、かつ、前記正圧側第1の曲面の外周端を前記翼弦線に投影した位置が、前記翼弦線の中心より内周側に位置する請求項1記載の送風機。
the suction surface of the blade has, in order from an inner circumferential side of the impeller, a suction-side first curved surface, a suction-side second curved surface, and a suction-side third curved surface, the curvature of which is smaller than the curvatures of the suction-side second curved surface and the suction-side third curved surface;
When the blade is divided into two by the virtual center plane, the suction side blade surface is divided into three ranges with the inner circumferential end of the suction side second curved surface and the outer circumferential end of the suction side second curved surface as boundaries, the innermost range is defined as a suction side first range, and the length of the suction side first range projected onto the blade chord line is defined as a suction side first range length,
2. The blower according to claim 1, wherein the positive pressure side first range length is longer than the negative pressure side first range length, and the position of the outer circumferential end of the positive pressure side first curved surface projected onto the chord line is located on the inner circumferential side of the center of the chord line.
前記翼の前記負圧面は、前記負圧側第2の曲面の曲率>前記負圧側第3の曲面の曲率>前記負圧側第1の曲面の曲率、の関係を満足するように構成され、
前記負圧面側翼面を、前記負圧側第2の曲面の内周端と前記負圧側第2の曲面の外周端とを境に3つの範囲に分け、内周側から順に、前記負圧側第1の範囲、負圧側第2の範囲、負圧側第3の範囲としたとき、各範囲を、前記翼弦線に投影したときの長さは、負圧側第3の範囲長>負圧側第2の範囲長>負圧側第1の範囲長、の関係を満足する請求項2記載の送風機。
the suction surface of the blade is configured to satisfy a relationship of a curvature of the suction-side second curved surface > a curvature of the suction-side third curved surface > a curvature of the suction-side first curved surface,
3. The blower according to claim 2, wherein when the suction side blade surface is divided into three ranges with a boundary between an inner circumferential end of the suction side second curved surface and an outer circumferential end of the suction side second curved surface, the ranges are defined as the suction side first range, the suction side second range, and the suction side third range from the inner circumferential side, the lengths of the ranges projected onto the chord line satisfy the relationship: length of the suction side third range > length of the suction side second range > length of the suction side first range.
前記正圧面において前記翼弦線との垂直距離が最大となる位置を前記翼弦線に投影した位置が、前記負圧面において前記翼弦線との垂直距離が最大となる位置を前記翼弦線に投影した位置よりも外周側に位置する請求項1~請求項3のいずれか一項に記載の送風機。A blower as claimed in any one of claims 1 to 3, wherein the position on the positive pressure surface where the vertical distance from the chord line is maximum, projected onto the chord line, is located further outboard than the position on the negative pressure surface where the vertical distance from the chord line is maximum, projected onto the chord line. 前記翼の翼厚が最大となる位置の翼厚の中心を、前記翼弦線に投影した位置が、前記正圧側第1の曲面を前記翼弦線に投影した範囲に位置し、かつ、前記翼の内周端から前記翼弦線の10%以上、15%以下の範囲に位置する請求項1~請求項4のいずれか一項に記載の送風機。A blower according to any one of claims 1 to 4, wherein the center of the blade thickness at the position where the blade thickness is maximum, projected onto the chord line, is located within a range where the first curved surface on the positive pressure side is projected onto the chord line, and is located within a range of 10% to 15% of the chord line from the inner circumferential end of the blade. 請求項1~請求項5のいずれか一項に記載の送風機と、送風機を収納する筐体と、熱交換器と、を備えた空気調和装置。An air conditioning device comprising a blower according to any one of claims 1 to 5, a housing for housing the blower, and a heat exchanger. 請求項1~請求項5のいずれか一項に記載の送風機を備えた冷凍サイクル装置。A refrigeration cycle device equipped with a blower according to any one of claims 1 to 5.
JP2023518563A 2021-05-07 2021-05-07 Blower, air conditioner and refrigeration cycle device Active JP7466765B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017432 WO2022234630A1 (en) 2021-05-07 2021-05-07 Blower, air conditioner, and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2022234630A1 JPWO2022234630A1 (en) 2022-11-10
JP7466765B2 true JP7466765B2 (en) 2024-04-12

Family

ID=83932665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023518563A Active JP7466765B2 (en) 2021-05-07 2021-05-07 Blower, air conditioner and refrigeration cycle device

Country Status (5)

Country Link
US (1) US20240159238A1 (en)
EP (1) EP4336045A4 (en)
JP (1) JP7466765B2 (en)
CN (1) CN117222815A (en)
WO (1) WO2022234630A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263285A (en) 2000-03-21 2001-09-26 Mitsubishi Electric Corp Thorough flow air blower and air conditioner
JP4911990B2 (en) 2006-02-27 2012-04-04 三洋電機株式会社 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5652599B2 (en) 2010-07-12 2015-01-14 セイコーエプソン株式会社 Concentration determination apparatus, concentration determination method and program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911990U (en) * 1972-05-06 1974-01-31
JPS5652599A (en) * 1979-10-04 1981-05-11 Seibu Giken:Kk Impeller of complex multivane blower
US6261051B1 (en) * 1998-09-02 2001-07-17 Gordon A. Kolacny Fan duct combination unit
JP2001280288A (en) 2000-03-31 2001-10-10 Daikin Ind Ltd Impeller structure of multiblade blower
CN103320631B (en) * 2013-06-26 2015-05-27 苏州天兼新材料科技有限公司 Preparation method of nanoscale silicon carbide magnesium alloy material
CN108350903B (en) * 2015-11-02 2019-11-05 三菱电机株式会社 Aerofoil fan and conditioner with the aerofoil fan
JP7394614B2 (en) * 2019-12-18 2023-12-08 サンデン株式会社 centrifugal blower

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263285A (en) 2000-03-21 2001-09-26 Mitsubishi Electric Corp Thorough flow air blower and air conditioner
JP4911990B2 (en) 2006-02-27 2012-04-04 三洋電機株式会社 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5652599B2 (en) 2010-07-12 2015-01-14 セイコーエプソン株式会社 Concentration determination apparatus, concentration determination method and program

Also Published As

Publication number Publication date
JPWO2022234630A1 (en) 2022-11-10
EP4336045A1 (en) 2024-03-13
US20240159238A1 (en) 2024-05-16
WO2022234630A1 (en) 2022-11-10
EP4336045A4 (en) 2024-06-05
CN117222815A (en) 2023-12-12

Similar Documents

Publication Publication Date Title
CN111279085B (en) Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
TWI676741B (en) Centrifugal blower, air supply device, air conditioner, and refrigeration cycle device
JP6600005B2 (en) Air conditioner outdoor unit and refrigeration cycle apparatus
CN109247023B (en) Centrifugal blower, air conditioner, and refrigeration cycle device
JP5295321B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
JP6945739B2 (en) Multi-blade blower and air conditioner
TW201918635A (en) Centrifugal blower, blowing device, air conditioner, and refrigeration cycle device
WO2020044540A1 (en) Centrifugal blower, blower device, air conditioning device, and refrigeration cycle device
WO2018092262A1 (en) Propeller fan and refrigeration cycle device
US11976824B2 (en) Centrifugal fan, air conditioning apparatus, and refrigeration cycle apparatus
JP7466765B2 (en) Blower, air conditioner and refrigeration cycle device
JP7113819B2 (en) Propeller fan and refrigeration cycle device
JP7130061B2 (en) Centrifugal blowers, blowers, air conditioners and refrigeration cycle devices
JP6430032B2 (en) Centrifugal fan, air conditioner and refrigeration cycle apparatus
JP6695403B2 (en) Centrifugal blower and air conditioner
CN109891101B (en) Propeller fan, outdoor unit, and refrigeration cycle device
JP7301236B2 (en) SCROLL CASING FOR CENTRIFUGAL BLOWER, CENTRIFUGAL BLOWER INCLUDING THIS SCROLL CASING, AIR CONDITIONER AND REFRIGERATION CYCLE DEVICE
JP6463497B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
EP4098885A1 (en) Centrifugal blower and air conditioner provided with same
WO2023058228A1 (en) Centrifugal blower, air conditioning device, and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240402

R150 Certificate of patent or registration of utility model

Ref document number: 7466765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150