JP7446600B2 - Manufacturing method of Cu-Mn-Al magnet - Google Patents

Manufacturing method of Cu-Mn-Al magnet Download PDF

Info

Publication number
JP7446600B2
JP7446600B2 JP2019231653A JP2019231653A JP7446600B2 JP 7446600 B2 JP7446600 B2 JP 7446600B2 JP 2019231653 A JP2019231653 A JP 2019231653A JP 2019231653 A JP2019231653 A JP 2019231653A JP 7446600 B2 JP7446600 B2 JP 7446600B2
Authority
JP
Japan
Prior art keywords
magnetic field
heat treatment
phase
magnet
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019231653A
Other languages
Japanese (ja)
Other versions
JP2021100065A (en
Inventor
好古 三井
佳一 小山
駿 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Priority to JP2019231653A priority Critical patent/JP7446600B2/en
Publication of JP2021100065A publication Critical patent/JP2021100065A/en
Application granted granted Critical
Publication of JP7446600B2 publication Critical patent/JP7446600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

特許法第30条第2項適用 発行者名:国立大学法人東北大学 金属材料研究所、刊行物名:東北大学金属材料研究所 強磁場超伝導材料研究センター 平成30年度年次報告、発行年月:2019年6月 Article 30, Paragraph 2 of the Patent Law applies Publisher's name: National University Corporation Tohoku University, Institute for Materials Research, Publication name: Tohoku University Institute for Materials Research, High-field Superconducting Materials Research Center Annual Report 2018, Publication date : June 2019

特許法第30条第2項適用 発行者名:日本金属学会・日本鉄鋼協会・軽金属学会 九州支部 合同学術講演大会 実行委員会、刊行物名:令和元年度 合同学術講演大会 講演概要集、発行年月日:2019年6月1日 集会名:2019年度合同学術講演会、発表名:「Cu-Mn-Al合金の磁場中熱処理効果」、開催日:2019年6月1日 Article 30, Paragraph 2 of the Patent Act applies Publisher name: Japan Institute of Metals, Japan Iron and Steel Institute, Kyushu Branch Joint Academic Lecture Conference Executive Committee, Publication name: 2019 Joint Academic Lecture Conference Lecture Summary Collection, Publication Date: June 1, 2019 Meeting name: 2019 Joint Academic Lecture, Presentation name: "Magnetic field heat treatment effect of Cu-Mn-Al alloy", Date: June 1, 2019

特許法第30条第2項適用 発行者名:公益社団法人 応用物理学会、刊行物名:2019年第80回応用物理学会秋季学術講演会講演予稿集DVD、発行年月日:2019年9月4日 Article 30, Paragraph 2 of the Patent Act applies Publisher name: Japan Society of Applied Physics, Public Interest Incorporated Association, Publication name: 2019 80th Japan Society of Applied Physics Autumn Academic Lecture Proceedings Collection DVD, Publication date: September 2019 4 days

特許法第30条第2項適用 集会名:2019年第80回応用物理学会秋季学術講演会、発表名:「Reduction of the Crystallite Size in Cu▲2▼MnAl Alloys by In-field Annealing」(「磁場中熱処理によるCu▲2▼MnAl合金の微細化」)、開催日:2019年9月18日 Article 30, Paragraph 2 of the Patent Act applies Meeting name: 2019 80th Japan Society of Applied Physics Autumn Academic Conference, Presentation name: “Reduction of the Crystallite Size in Cu▲2▼MnAl Alloys by In-field Annealing” (“Magnetic field "Refining of Cu▲2▼MnAl alloy by medium heat treatment"), Date: September 18, 2019

特許法第30条第2項適用 発行者名:Faculty of Engineering Physics and Nanotechnology,VNU University of Engineering and Technology,Vietnam National University,Hanoi(ベトナム国家大学ハノイ校工科大学、工業物理・ナノテクノロジー学部)、刊行物名:FMS-NANOMATA2019 ABSTRACT BOOK(エフエムエス-ナノマタ2019 アブストラクトブック)、発行年月日:2019年11月10日 集会名:Joint 5th International Symposium on Frontiers in Materials Science and 3rd International Symposium on Nano-materials, Technology and Applications(材料科学のフロンティアに関する第5回国際シンポジウムとナノ材料、技術、及び応用に関する第3回国際シンポジウムとの合同シンポジウム)、発表名:「Magnetic properties of Cu-Mn-Al system annealed under high magnetic fields」(「強磁場中熱処理したCu-Mn-Al系の磁気特性」)、開催日:2019年11月11日Article 30, Paragraph 2 of the Patent Law applies Publisher name: Faculty of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology, Vietnam National Published by nal University, Hanoi (Faculty of Industrial Physics and Nanotechnology, University of Technology, Vietnam National University, Hanoi) Product name: FMS-NANOMATA2019 ABSTRACT BOOK, Publication date: November 10, 2019 Meeting name: Joint 5th International Symposium on Frontiers in Materials Science and 3rd International Symposium on Nano-materials, Technology and Applications (joint symposium between the 5th International Symposium on Frontiers of Materials Science and the 3rd International Symposium on Nanomaterials, Technology, and Applications), Presentation name: "Magnetic properties of Cu-Mn-Al system annealed under" high magnetic fields” (“Magnetic properties of Cu-Mn-Al system heat-treated in a strong magnetic field”), Date: November 11, 2019

本発明は、Cu-Mn-Al系磁石の製造方法に関する。 The present invention relates to a method for manufacturing a Cu--Mn--Al magnet.

特許文献1及び2に開示されているように、Mn及びAlを含むMn-Al系磁石の中間体、並びにMn及びBiを含むMn-Bi系磁石の中間体に対して、加熱を磁場中で行う磁場中熱処理を施すことが提案されている。 As disclosed in Patent Documents 1 and 2, an Mn-Al magnet intermediate containing Mn and Al and an Mn-Bi magnet intermediate containing Mn and Bi are heated in a magnetic field. It has been proposed to perform heat treatment in a magnetic field.

特開2017-157738号公報JP 2017-157738 Publication 特開2015-063725号公報JP2015-063725A

特許文献1及び2は、強磁性相の合成が促進されるという理由で、磁場中熱処理を推奨している。強磁性相の合成の促進は、得られる磁石の磁化を増強させる要因となる。 Patent Documents 1 and 2 recommend heat treatment in a magnetic field because the synthesis of the ferromagnetic phase is promoted. Accelerating the synthesis of the ferromagnetic phase is a factor that increases the magnetization of the resulting magnet.

しかし、磁石の用途によっては、大きすぎる磁化はむしろ望ましくなく、保磁力が充分に大きい磁石が望まれる場合もある。 However, depending on the purpose of the magnet, excessively large magnetization is rather undesirable, and a magnet with sufficiently large coercive force may be desired.

本発明の目的は、磁化を抑えることができる一方、保磁力を高めることができる、Cu-Mn-Al系磁石の製造方法を提供することである。 An object of the present invention is to provide a method for manufacturing a Cu--Mn--Al magnet that can suppress magnetization while increasing coercive force.

上記目的を達成するために、本発明に係るCu-Mn-Al系磁石の製造方法は、
Cu、Mn、及びAlを含むCu-Mn-Al系中間体を準備する準備工程と、
前記Cu-Mn-Al系中間体に対し、前記Cu-Mn-Al系中間体に磁場を与えつつ前記Cu-Mn-Al系中間体を加熱する磁場中熱処理を施す磁場中熱処理工程と、
を有し、
前記磁場中熱処理工程では、前記Cu-Mn-Al系中間体に対し、前記Cu-Mn-Al系中間体に5T以上の前記磁場を与えつつ前記Cu-Mn-Al系中間体を500K以上に加熱する前記磁場中熱処理を、6時間超にわたって施す
In order to achieve the above object, the method for manufacturing a Cu-Mn-Al magnet according to the present invention includes:
a preparation step of preparing a Cu-Mn-Al intermediate containing Cu, Mn, and Al;
A heat treatment step in a magnetic field of applying a magnetic field to the Cu-Mn-Al-based intermediate while heating the Cu-Mn-Al-based intermediate;
has
In the magnetic field heat treatment step, the Cu-Mn-Al-based intermediate is heated to a temperature of 500 K or more while applying the magnetic field of 5 T or more to the Cu-Mn-Al-based intermediate. The magnetic field heat treatment is carried out for more than 6 hours .

前記準備工程では、Cu、Mn、及びAlを含む原料粉体を焼結させることにより、Cu、Mn、及びAlの合金を含む前記Cu-Mn-Al系中間体を準備してもよい。 In the preparation step, the Cu--Mn--Al-based intermediate containing an alloy of Cu, Mn, and Al may be prepared by sintering raw material powder containing Cu, Mn, and Al.

前記合金が、L2構造を有するホイスラー合金であってもよい。 The alloy may be a Heusler alloy having an L2 1 structure.

これまで強磁性相の合成を促進する目的で行われてきた磁場中熱処理は、Cu-Mn-Al系中間体に対しては、強磁性相の結晶子を微細化し、かつ非磁性相の合成を促進する効果をもたらすことが判明した。強磁性相の結晶子が微細化され、非磁性相の合成が促進される結果、得られるCu-Mn-Al系磁石の磁化を抑えることができる一方、保磁力を高めることができる。 Heat treatment in a magnetic field, which has been carried out for the purpose of promoting the synthesis of the ferromagnetic phase, has been used to refine the crystallites of the ferromagnetic phase and synthesize the non-magnetic phase for Cu-Mn-Al intermediates. It was found that it has the effect of promoting As the crystallites of the ferromagnetic phase are refined and the synthesis of the non-magnetic phase is promoted, the magnetization of the resulting Cu--Mn--Al based magnet can be suppressed, while the coercive force can be increased.

Cu-Mn-Al系磁石の製造方法を例示するフローチャート。1 is a flowchart illustrating a method for manufacturing a Cu-Mn-Al magnet. Cu-Mn-Al系磁石のX線回折パターンを示すグラフ。A graph showing an X-ray diffraction pattern of a Cu-Mn-Al magnet. L2構造を有する結晶子のサイズの時間変化を示すグラフ。FIG. 2 is a graph showing changes over time in the size of crystallites having an L2 1 structure. FIG. Cu-Mn-Al系磁石の磁気履歴曲線を示すグラフ。A graph showing a magnetic history curve of a Cu-Mn-Al based magnet. Cu-Mn-Al系磁石の保磁力の時間変化を示すグラフ。A graph showing the change in coercive force of a Cu-Mn-Al based magnet over time.

図1に示すフローチャートに沿って、実施形態に係るCu-Mn-Al系磁石の製造方法について説明する。 A method for manufacturing a Cu--Mn--Al based magnet according to an embodiment will be described along the flowchart shown in FIG.

(a)混合工程
まず、Cuを主成分とする銅粉体、Mnを主成分とするマンガン粉体、及びAlを主成分とするアルミニウム粉体を混合し、原料粉体を得る(ステップS1)。本明細書において“主成分とする”とは、純度が97質量%以上、好ましくは99質量%以上であることを意味する。
(a) Mixing process First, a copper powder containing Cu as a main component, a manganese powder containing Mn as a main component, and an aluminum powder containing Al as a main component are mixed to obtain a raw material powder (Step S1) . In this specification, "containing as a main component" means that the purity is 97% by mass or more, preferably 99% by mass or more.

原料粉体の粒度は、後述する焼結工程(ステップS3)において合金が生成される反応を促進する観点から、1mm未満であることが好ましく、75μm未満であることがより好ましい。本明細書において、粒子の粒径がd未満とは、粒子がJIS-Z8801に規定する目開きdの篩を通過する粒度であることを意味する。 The particle size of the raw material powder is preferably less than 1 mm, more preferably less than 75 μm, from the viewpoint of promoting the reaction that produces an alloy in the sintering step (step S3) described below. In this specification, the particle size of particles less than d means that the particles have a particle size that allows the particles to pass through a sieve having a mesh size d defined in JIS-Z8801.

(b)成形工程
次に、上述した原料粉体を成形することにより、成形体となす(ステップS2)。原料粉体の成形方法としては、加圧を伴う方法、例えば、原料粉体を型に充填してプレスする型成形法が典型的である。但し、これに限られない。原料粉体を噴射し、積層させながら造形する積層造形法を用いてもよい。なお、成形に際して、得られる成形体の保形性を高める結合剤を使用してもよい。
(b) Molding process Next, the raw material powder described above is molded to form a molded body (step S2). A typical method for molding the raw material powder is a method that involves pressurization, for example, a molding method in which the raw material powder is filled into a mold and pressed. However, it is not limited to this. An additive manufacturing method may be used in which raw material powder is injected and shaped while being layered. In addition, during molding, a binder may be used to improve the shape retention of the resulting molded product.

(c)焼結工程
次に、得られた成形体を焼結させることにより、Cu、Mn、及びAlの合金であるCu-Mn-Al系合金を含むCu-Mn-Al系中間体を得る(ステップS3)。
(c) Sintering process Next, by sintering the obtained compact, a Cu-Mn-Al intermediate containing a Cu-Mn-Al alloy that is an alloy of Cu, Mn, and Al is obtained. (Step S3).

焼結の温度は、合金が生成される反応を有意に進行させるため、Alの合金の融点以上、具体的には、933K以上であることが好ましい。また、焼結の温度は、1073K以上であることがより好ましく、1123K以上であることがより好ましい。 The sintering temperature is preferably higher than the melting point of the Al alloy, specifically 933K or higher, in order to significantly advance the reaction that produces the alloy. Further, the sintering temperature is more preferably 1073K or higher, and more preferably 1123K or higher.

Cu-Mn-Al系合金は、bcc構造を有するβ相を含む多結晶体である。また、Cu-Mn-Al系合金は、Cuを内割で40mol%以上含み、Mnを内割で20mol%以上含み、Alを内割で20mol%以上含む。 The Cu-Mn-Al alloy is a polycrystalline body containing a β phase having a bcc structure. Further, the Cu-Mn-Al alloy contains Cu in an internal ratio of 40 mol% or more, internally contains Mn in an internal ratio of 20 mol% or more, and internally contains Al in an internal ratio of 20 mol% or more.

具体的には、Cu-Mn-Al系合金は、いずれも強磁性体であるCu50Mn25Al25、又はCu45Mn20Al35よりなるものであってもよい。このうちCu50Mn25Al25は、L2構造を有するホイスラー合金である。 Specifically, the Cu-Mn-Al alloy may be made of Cu 50 Mn 25 Al 25 or Cu 45 Mn 20 Al 35 , both of which are ferromagnetic. Among these, Cu 50 Mn 25 Al 25 is a Heusler alloy having an L2 1 structure.

なお、Cu-Mn-Al系合金に占めるCu、Mn、及びAlのモル比は、ステップS1の混合工程における銅粉体、マンガン粉体、及びアルミニウム粉体の配合割合によって調整できる。 Note that the molar ratio of Cu, Mn, and Al in the Cu--Mn--Al alloy can be adjusted by adjusting the mixing ratio of copper powder, manganese powder, and aluminum powder in the mixing process of step S1.

但し、Cu-Mn-Al系中間体は、その全体が完全に合金化されていなくてもよく、合金化されずに独立しているCu、Mn、及びAlを含んでいてもよい。また、Cu-Mn-Al系中間体は、Cu、Mn、及びAl以外の不可避的不純物を内割で5質量%以下含んでもよい。 However, the entirety of the Cu-Mn-Al intermediate may not be completely alloyed, and may contain Cu, Mn, and Al that are independent without being alloyed. Further, the Cu-Mn-Al intermediate may contain 5% by mass or less of unavoidable impurities other than Cu, Mn, and Al.

なお、以上説明したステップS1からS3は、Cu、Mn、及びAlを含むCu-Mn-Al系中間体を準備する準備工程の一例である。 Note that steps S1 to S3 described above are an example of a preparation process for preparing a Cu-Mn-Al intermediate containing Cu, Mn, and Al.

(d)磁場中熱処理工程
次に、Cu-Mn-Al系中間体に対し、Cu-Mn-Al系中間体に磁場を与えつつCu-Mn-Al系中間体を加熱する磁場中熱処理を施す(ステップS4)。これにより、等方性磁石であるCu-Mn-Al系磁石が得られる。
(d) Magnetic field heat treatment step Next, the Cu-Mn-Al intermediate is subjected to magnetic field heat treatment in which the Cu-Mn-Al intermediate is heated while applying a magnetic field to the Cu-Mn-Al intermediate. (Step S4). As a result, a Cu--Mn--Al based magnet, which is an isotropic magnet, is obtained.

特許文献1及び2が教示するように、これまで磁場中熱処理は、強磁性相の合成を促進する目的で行われてきた。しかし、本願発明者らの研究によれば、磁場中熱処理は、Cu-Mn-Al系中間体に対しては、従来の効果とは逆の効果、具体的には、強磁性相の結晶子サイズを微細化し、かつ非磁性相の合成を促進する効果をもたらすことが判明した。 As taught in Patent Documents 1 and 2, heat treatment in a magnetic field has heretofore been performed for the purpose of promoting the synthesis of a ferromagnetic phase. However, according to the research of the present inventors, heat treatment in a magnetic field has an effect opposite to the conventional effect on Cu-Mn-Al intermediates. It has been found that this has the effect of reducing the size and promoting the synthesis of a non-magnetic phase.

磁場中熱処理によって、Cu-Mn-Al系中間体における強磁性相の結晶子が微細化され、非磁性相の合成が促進される結果、得られるCu-Mn-Al系磁石の磁化を抑えることができる一方、保磁力を高めることができる。 Heat treatment in a magnetic field refines the crystallites of the ferromagnetic phase in the Cu-Mn-Al intermediate and promotes the synthesis of the non-magnetic phase, thereby suppressing the magnetization of the resulting Cu-Mn-Al magnet. While it is possible to increase the coercive force.

なお、磁場中熱処理でCu-Mn-Al系中間体に与える磁場は、磁化を抑制する効果と保磁力を高める効果とを一層充分に得るために、5T以上であることが好ましく、10T以上であることがより好ましい。 In addition, the magnetic field applied to the Cu-Mn-Al intermediate during magnetic field heat treatment is preferably 5T or more, and preferably 10T or more in order to obtain a more sufficient effect of suppressing magnetization and increasing coercive force. It is more preferable that there be.

また、磁場中熱処理でCu-Mn-Al系中間体を加熱する温度は、ステップS3の焼結工程で成形体を加熱する温度よりも低い。但し、磁化を抑制する効果と保磁力を高める効果とを一層充分に得るために、磁場中熱処理でCu-Mn-Al系中間体を加熱する温度は、500K以上であることが好ましく、550K以上であることがより好ましい。 Further, the temperature at which the Cu--Mn--Al intermediate is heated in the magnetic field heat treatment is lower than the temperature at which the compact is heated in the sintering step of step S3. However, in order to more fully obtain the effect of suppressing magnetization and the effect of increasing coercive force, the temperature at which the Cu-Mn-Al intermediate is heated by heat treatment in a magnetic field is preferably 500K or higher, and preferably 550K or higher. It is more preferable that

また、磁場中熱処理の初期の段階においては、強磁性相の結晶子が粗大化しうる。そこで、強磁性相の結晶子を微細化し、非磁性相の合成を促進する効果を一層確実に得るために、磁場中熱処理を継続させる時間は、6時間超であることが好ましく、10時間以上であることがより好ましく、20時間以上であることがより好ましい。 Furthermore, in the initial stage of heat treatment in a magnetic field, the crystallites of the ferromagnetic phase may become coarse. Therefore, in order to more reliably obtain the effect of refining the crystallites of the ferromagnetic phase and promoting the synthesis of the non-magnetic phase, it is preferable that the heat treatment in the magnetic field be continued for more than 6 hours, and more than 10 hours. It is more preferable that it is, and it is more preferable that it is 20 hours or more.

以上、実施形態に係るCu-Mn-Al系磁石の製造方法について例示的に述べたが、以下の変形も可能である。 The method for manufacturing a Cu--Mn--Al magnet according to the embodiment has been exemplified above, but the following modifications are also possible.

磁場中熱処理に供するCu-Mn-Al系中間体は、必ずしも焼結によって形成されたものでなくてもよい。Cuの原料、Mnの原料、及びAlの原料の混合物を液相状態へと完全に溶融させたものを冷却して得た合金であってもよい。 The Cu--Mn--Al intermediate to be subjected to heat treatment in a magnetic field does not necessarily have to be formed by sintering. An alloy obtained by completely melting a mixture of a Cu raw material, a Mn raw material, and an Al raw material to a liquid phase state and cooling the mixture may also be used.

また、ステップS3の焼結工程と、ステップS4の磁場中熱処理工程とを、同一の加熱炉としての電気炉を用いて、連続して行ってもよい。また、Cu-Mn-Al系合金の形成と、強磁性相の結晶子の微細化及び非磁性相の合成とが、1つの工程で行われてもよい。 Further, the sintering step in step S3 and the magnetic field heat treatment step in step S4 may be performed continuously using the same electric furnace as the heating furnace. Further, the formation of the Cu--Mn--Al alloy, the refinement of the crystallites of the ferromagnetic phase, and the synthesis of the non-magnetic phase may be performed in one step.

以下、本実施形態に係るCu-Mn-Al系磁石の用途について例示的に述べる。本実施形態に係るCu-Mn-Al系磁石は、例えば、磁気ディスク、磁気テープといった磁気メモリにおける磁気記録層に用いることができる。本実施形態に係るCu-Mn-Al系磁石は、磁場中熱処理によって磁化が抑えられているため、近傍の他の機器に磁気的な悪影響を与えにくい。また、本実施形態に係るCu-Mn-Al系磁石は、磁場中熱処理によって保磁力が高められているので、磁気的な反転が生じ難く、ビット情報を安定して保持できる。 Hereinafter, applications of the Cu--Mn--Al based magnet according to the present embodiment will be exemplified. The Cu--Mn--Al based magnet according to this embodiment can be used, for example, in a magnetic recording layer in a magnetic memory such as a magnetic disk or a magnetic tape. Since the Cu--Mn--Al based magnet according to the present embodiment has its magnetization suppressed by heat treatment in a magnetic field, it is unlikely to have an adverse magnetic effect on other devices in the vicinity. Further, since the Cu--Mn--Al based magnet according to the present embodiment has increased coercive force by heat treatment in a magnetic field, magnetic reversal is less likely to occur and bit information can be stably held.

[実施例1]
まず、いずれも純度が99.9質量%で粒径が75μm未満の銅粉体、マンガン粉体、及びアルミニウム粉体よりなる原料粉体を成形したものを、1173Kの温度で48時間にわたって焼結させたのち、氷水でクエンチした。このようにして、反応焼結法により、L2構造を有するCu50Mn25Al25相の多結晶体であるホイスラー合金よりなるCu-Mn-Al系中間体を準備した。
[Example 1]
First, raw material powders consisting of copper powder, manganese powder, and aluminum powder, all of which have a purity of 99.9% by mass and a particle size of less than 75 μm, are molded and sintered at a temperature of 1173K for 48 hours. After that, it was quenched with ice water. In this manner, a Cu--Mn--Al intermediate made of a Heusler alloy, which is a polycrystalline Cu 50 Mn 25 Al 25 phase having an L2 1 structure, was prepared by the reaction sintering method.

次に、そのCu-Mn-Al系中間体に対して、573Kの温度で磁場中熱処理を施すことにより、Cu-Mn-Al系磁石を得た。 Next, the Cu--Mn--Al-based intermediate was heat-treated in a magnetic field at a temperature of 573 K to obtain a Cu--Mn--Al based magnet.

磁場中熱処理がもたらす効果の、磁場の強さに対する依存性を確認するために、磁場中熱処理の継続時間を48時間に固定したうえで、Cu-Mn-Al系中間体に与える磁場が、0Tである場合、5Tである場合、及び10Tである場合のそれぞれについてCu-Mn-Al系磁石を得た。そして、得られた3種のCu-Mn-Al系磁石に含まれる晶相を、X線回折装置を用いて同定した。 In order to confirm the dependence of the effect of heat treatment in a magnetic field on the strength of the magnetic field, the duration of heat treatment in a magnetic field was fixed at 48 hours, and the magnetic field applied to the Cu-Mn-Al intermediate was set to 0T. Cu--Mn--Al based magnets were obtained for the following cases: 5 T, and 10 T. Then, the crystal phases contained in the three types of Cu--Mn--Al magnets obtained were identified using an X-ray diffraction device.

図2に、それら3種のCu-Mn-Al系磁石のX線回折パターンを示す。横軸は、角度2θを単位“度”で示す。縦軸は、回折ビームの強度を相対目盛で示す。なお、図2には、回折ピークによって同定される晶相を付記している。“L2”と付記された回折ピークは、強磁性のCu50Mn25Al25相の存在を示している。“CuAl”と付記された回折ピークは、非磁性のCuAl相の存在を示している。 FIG. 2 shows the X-ray diffraction patterns of these three types of Cu--Mn--Al based magnets. The horizontal axis indicates the angle 2θ in degrees. The vertical axis indicates the intensity of the diffracted beam on a relative scale. Note that in FIG. 2, crystal phases identified by diffraction peaks are added. The diffraction peak labeled “L2 1 ” indicates the presence of a ferromagnetic Cu 50 Mn 25 Al 25 phase. The diffraction peak labeled “Cu 9 Al 4 ” indicates the presence of a nonmagnetic Cu 9 Al 4 phase.

図2に示すように、0Tの熱処理を行った場合は、L2構造に由来する回折ピークだけが観測された。一方、5Tの磁場中熱処理を行った場合、CuAl相に由来する回折ピークも観測された。さらに、10Tの磁場中熱処理を行った場合は、CuAl相に由来する回折ピークの高さが、5Tの磁場中熱処理を行った場合よりも高まった。 As shown in FIG. 2, when 0T heat treatment was performed, only the diffraction peak derived from the L2 1 structure was observed. On the other hand, when heat treatment was performed in a 5T magnetic field, a diffraction peak derived from the Cu 9 Al 4 phase was also observed. Furthermore, when heat treatment was performed in a 10T magnetic field, the height of the diffraction peak derived from the Cu 9 Al 4 phase was higher than when heat treatment was performed in a 5T magnetic field.

この結果より、磁場中熱処理が、Cu-Mn-Al系中間体に対しては、非磁性相であるCuAl相の合成を促進する効果をもたらし、かつその効果は、Cu-Mn-Al系中間体に与える磁場が大きいほど高まることが分かった。 These results show that heat treatment in a magnetic field has the effect of promoting the synthesis of the non-magnetic phase Cu 9 Al 4 phase for Cu-Mn-Al intermediates, and that this effect is greater than that of Cu-Mn- It was found that the larger the magnetic field applied to the Al-based intermediate, the higher the effect.

また、5Tの磁場中熱処理を行った場合、L2構造に由来する回折ピークの高さが、0Tの熱処理を行った場合よりも低下した。10Tの磁場中熱処理を行った場合は、L2構造に由来する回折ピークの高さがさらに低下した。 Furthermore, when heat treatment was performed in a magnetic field at 5T, the height of the diffraction peak derived from the L2 1 structure was lower than when heat treatment was performed at 0T. When heat treatment was performed in a magnetic field of 10 T, the height of the diffraction peak derived from the L2 1 structure was further reduced.

この結果より、磁場中熱処理が、Cu-Mn-Al系中間体に対しては、強磁性相であるCu50Mn25Al25相の、非磁性相であるCuAl相への分解を伴う微細化を促進する効果をもたらし、かつその効果は、Cu-Mn-Al系中間体に与える磁場が大きいほど高まることが分かった。 From this result, heat treatment in a magnetic field can suppress the decomposition of the ferromagnetic phase, Cu 50 Mn 25 Al 25 phase, into the non-magnetic phase, Cu 9 Al 4 phase, for Cu-Mn-Al intermediates. It has been found that the larger the magnetic field applied to the Cu--Mn--Al-based intermediate, the greater the effect of promoting the accompanying refinement.

また、回折ピークの半値幅は、その回折ピークによって同定される結晶子のサイズ(以下、結晶子サイズと記す。)に依存する。具体的には、結晶子が小さいほど半値幅が広い。なお、“結晶子”とは、多結晶体において単結晶とみなせる最大の集まりを意味する。 Further, the half-value width of a diffraction peak depends on the size of a crystallite identified by the diffraction peak (hereinafter referred to as crystallite size). Specifically, the smaller the crystallite, the wider the half width. Note that "crystallite" means the largest collection of polycrystals that can be considered a single crystal.

そこで、Cu-Mn-Al系磁石におけるCu50Mn25Al25相の結晶子サイズの、磁場中熱処理の継続時間に対する依存性を確認するために、Cu-Mn-Al系中間体に与える磁場が、0Tである場合、及び5Tである場合のそれぞれについて、磁場中熱処理の継続時間を種々変更した。 Therefore, in order to confirm the dependence of the crystallite size of the Cu 50 Mn 25 Al 25 phase in the Cu-Mn-Al based magnet on the duration of the heat treatment in the magnetic field, we investigated whether the magnetic field applied to the Cu-Mn-Al based intermediate was , 0T, and 5T, the duration of the heat treatment in the magnetic field was varied.

図3に、Cu50Mn25Al25相の結晶子サイズの時間変化を示す。横軸は、磁場中熱処理の継続時間を示す。縦軸は、Cu-Mn-Al系磁石に含まれるCu50Mn25Al25相の平均的な結晶子サイズを示す。結晶子サイズは、X線回折パターンの回折ピークの半値幅を用い、Halder-Wagnerの関係式によって推定した。 FIG. 3 shows the change in crystallite size of the Cu 50 Mn 25 Al 25 phase over time. The horizontal axis indicates the duration of heat treatment in a magnetic field. The vertical axis indicates the average crystallite size of the Cu 50 Mn 25 Al 25 phase contained in the Cu--Mn--Al based magnet. The crystallite size was estimated by the Halder-Wagner relation using the half-width of the diffraction peak in the X-ray diffraction pattern.

図3に示すように、Cu-Mn-Al系中間体に与える磁場が0Tである場合、及び5Tである場合のいずれにおいても、6時間までは、Cu50Mn25Al25相の結晶子が粗大化した。一方、その後は、いずれの場合においても、Cu50Mn25Al25相の結晶子が微細化する傾向がみられる。 As shown in Figure 3, in both cases where the magnetic field applied to the Cu-Mn-Al intermediate is 0T and 5T, the crystallites of the Cu 50 Mn 25 Al 25 phase are It has become coarser. On the other hand, thereafter, in any case, the crystallites of the Cu 50 Mn 25 Al 25 phase tend to become finer.

但し、5Tの磁場中熱処理を行った場合の方が、0Tの熱処理を行った場合よりも、Cu50Mn25Al25相の結晶子が速やかに微細化されている。 However, the crystallites of the Cu 50 Mn 25 Al 25 phase are more quickly refined when heat treatment is performed in a magnetic field at 5 T than when heat treatment is performed at 0 T.

この結果より、Cu-Mn-Al系中間体に対しては、磁場中熱処理が、強磁性相であるCu50Mn25Al25相の結晶子の微細化を促進する効果をもたらすことが判明した。 These results revealed that for Cu-Mn-Al intermediates, heat treatment in a magnetic field has the effect of promoting refinement of the crystallites of the ferromagnetic phase, Cu 50 Mn 25 Al 25 phase. .

次に、磁場中熱処理で得られたCu-Mn-Al系磁石の磁気履歴曲線を、振動試料型磁力計によって測定した。また、比較のために、0Tの熱処理で得られたCu-Mn-Al系磁石の磁気履歴曲線も測定した。 Next, the magnetic hysteresis curve of the Cu--Mn--Al magnet obtained by heat treatment in a magnetic field was measured using a vibrating sample magnetometer. For comparison, the magnetic hysteresis curve of a Cu--Mn--Al magnet obtained by heat treatment at 0 T was also measured.

図4に、それぞれのCu-Mn-Al系磁石の磁気履歴曲線を示す。横軸は、Cu-Mn-Al系磁石に与えた外部磁場の強さを表す。縦軸は、Cu-Mn-Al系磁石の単位質量あたりの磁化を表す。 FIG. 4 shows the magnetic history curves of each Cu--Mn--Al based magnet. The horizontal axis represents the strength of the external magnetic field applied to the Cu--Mn--Al based magnet. The vertical axis represents magnetization per unit mass of the Cu--Mn--Al based magnet.

図4に示すように、0Tの熱処理を行った場合の飽和磁化は77emu/gであるのに対し、10Tの磁場中熱処理を行った場合の飽和磁化は、それよりも著しく小さい12emu/gであった。また、0Tの熱処理を行った場合の保磁力は略ゼロであったのに対し、10Tの磁場中熱処理を行った場合の保磁力は、2.3kOe以上であった。 As shown in Figure 4, the saturation magnetization when heat-treated at 0T is 77 emu/g, whereas the saturation magnetization when heat-treated in a 10T magnetic field is significantly smaller, 12 emu/g. there were. Further, the coercive force when heat treatment was performed at 0 T was approximately zero, whereas the coercive force when heat treatment was performed in a magnetic field at 10 T was 2.3 kOe or more.

この結果より、磁場中熱処理は、Cu-Mn-Al系中間体に対しては、磁化を抑える一方、保磁力を高める効果をもたらすことが分かった。 From this result, it was found that heat treatment in a magnetic field has the effect of suppressing magnetization and increasing coercive force for the Cu--Mn--Al intermediate.

磁化が抑えられる理由は、図2を参照して述べたように、磁場中熱処理によって、強磁性相の合成が抑えられ、かつ非磁性相の合成が促進されたためである。 The reason why the magnetization is suppressed is that, as described with reference to FIG. 2, the heat treatment in the magnetic field suppresses the synthesis of the ferromagnetic phase and promotes the synthesis of the nonmagnetic phase.

また、保磁力が高められる理由は、強磁性相の結晶子が微細化され、かつ非磁性相が合成されたことにより、微細な強磁性相の結晶子が非磁性相によって分断されて組織中に散在した状態になるためと推定される。 In addition, the reason why the coercive force is increased is that the crystallites of the ferromagnetic phase are made finer and the non-magnetic phase is synthesized. It is presumed that this is because they are scattered throughout the area.

[実施例2]
Cu-Mn-Al系中間体におけるCu、Mn、Alのモル比が実施例1の場合と異なる場合にも、磁場中熱処理によって保磁力が高められるか否かを確認するために、反応焼結法によって、Cu45Mn20Al35相の多結晶体であるCu-Mn-Al系中間体を得た。反応焼結の条件は実施例1と同じである。
[Example 2]
In order to confirm whether the coercive force can be increased by heat treatment in a magnetic field even when the molar ratio of Cu, Mn, and Al in the Cu-Mn-Al intermediate is different from that in Example 1, reaction sintering was conducted. By this method, a polycrystalline Cu--Mn--Al intermediate having a Cu 45 Mn 20 Al 35 phase was obtained. The reaction sintering conditions are the same as in Example 1.

そして、そのCu-Mn-Al系中間体に磁場中熱処理を施すことで得たCu-Mn-Al系磁石の保磁力を調べた。また、比較のために、0Tの熱処理で得たCu-Mn-Al系磁石の保磁力も調べた。 Then, the coercive force of a Cu-Mn-Al-based magnet obtained by subjecting the Cu-Mn-Al-based intermediate to heat treatment in a magnetic field was investigated. For comparison, the coercive force of a Cu--Mn--Al magnet obtained by heat treatment at 0 T was also investigated.

図5に、それぞれのCu-Mn-Al系磁石の保磁力の時間変化を示す。横軸は、磁場中熱処理又は熱処理の継続時間を示す。縦軸は、保磁力を示す。図5に示すように、磁場中熱処理は、Cu45Mn20Al35相の多結晶体に対しても保磁力の上昇を促進する効果を示すことが確認された。 FIG. 5 shows the change in coercive force of each Cu--Mn--Al based magnet over time. The horizontal axis indicates the duration of heat treatment in a magnetic field or heat treatment. The vertical axis indicates coercive force. As shown in FIG. 5, it was confirmed that the heat treatment in a magnetic field has the effect of promoting an increase in coercive force also for the polycrystalline body of the Cu 45 Mn 20 Al 35 phase.

Claims (3)

Cu、Mn、及びAlを含むCu-Mn-Al系中間体を準備する準備工程と、
前記Cu-Mn-Al系中間体に対し、前記Cu-Mn-Al系中間体に磁場を与えつつ前記Cu-Mn-Al系中間体を加熱する磁場中熱処理を施す磁場中熱処理工程と、
を有
前記磁場中熱処理工程では、前記Cu-Mn-Al系中間体に対し、前記Cu-Mn-Al系中間体に5T以上の前記磁場を与えつつ前記Cu-Mn-Al系中間体を500K以上に加熱する前記磁場中熱処理を、6時間超にわたって施す、
Cu-Mn-Al系磁石の製造方法。
a preparation step of preparing a Cu-Mn-Al intermediate containing Cu, Mn, and Al;
A heat treatment step in a magnetic field of applying a magnetic field to the Cu-Mn-Al-based intermediate while heating the Cu-Mn-Al-based intermediate;
has
In the magnetic field heat treatment step, the Cu-Mn-Al-based intermediate is heated to a temperature of 500 K or more while applying the magnetic field of 5 T or more to the Cu-Mn-Al-based intermediate. The heat treatment in a magnetic field is performed for more than 6 hours.
A method for manufacturing a Cu-Mn-Al magnet.
前記準備工程では、Cu、Mn、及びAlを含む原料粉体を焼結させることにより、Cu、Mn、及びAlの合金を含む前記Cu-Mn-Al系中間体を準備する、
請求項1に記載のCu-Mn-Al系磁石の製造方法。
In the preparation step, the Cu-Mn-Al intermediate containing an alloy of Cu, Mn, and Al is prepared by sintering raw material powder containing Cu, Mn, and Al.
A method for manufacturing a Cu-Mn-Al magnet according to claim 1.
前記合金が、L2構造を有するホイスラー合金である、
請求項2に記載のCu-Mn-Al系磁石の製造方法。
the alloy is a Heusler alloy having an L2 1 structure;
The method for manufacturing a Cu-Mn-Al magnet according to claim 2.
JP2019231653A 2019-12-23 2019-12-23 Manufacturing method of Cu-Mn-Al magnet Active JP7446600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019231653A JP7446600B2 (en) 2019-12-23 2019-12-23 Manufacturing method of Cu-Mn-Al magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019231653A JP7446600B2 (en) 2019-12-23 2019-12-23 Manufacturing method of Cu-Mn-Al magnet

Publications (2)

Publication Number Publication Date
JP2021100065A JP2021100065A (en) 2021-07-01
JP7446600B2 true JP7446600B2 (en) 2024-03-11

Family

ID=76541415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019231653A Active JP7446600B2 (en) 2019-12-23 2019-12-23 Manufacturing method of Cu-Mn-Al magnet

Country Status (1)

Country Link
JP (1) JP7446600B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086508A (en) 2004-08-17 2006-03-30 Toshiba Corp Magnetic transmitting element, magnetic head, and magnetic recording/reproducing device
JP2007180470A (en) 2005-11-30 2007-07-12 Fujitsu Ltd Magnetoresistive effect element, magnetic head, magnetic storage, and magnetic memory device
JP2008041163A (en) 2006-08-04 2008-02-21 Hitachi Global Storage Technologies Netherlands Bv Current perpendicular-to-plane magnetoresistance effect head
JP2008091551A (en) 2006-09-29 2008-04-17 Fujitsu Ltd Magnetoresistance effect element, magnetic storage device, and magnetic memory device
JP2015063725A (en) 2013-09-25 2015-04-09 国立大学法人東北大学 Method for manufacturing permanent magnet
JP2017059690A (en) 2015-09-16 2017-03-23 株式会社東芝 Magnetic element and storage device
WO2017135251A1 (en) 2016-02-02 2017-08-10 国立研究開発法人物質・材料研究機構 Ferromagnetic tunnel junction, magnetoresistive effect element and spintronics device in which said ferromagnetic tunnel junction is used, and method of manufacturing ferromagnetic tunnel junction
JP2017157738A (en) 2016-03-03 2017-09-07 国立大学法人 鹿児島大学 MANUFACTURING METHOD OF Mn-Al PERMANENT MAGNET AND Mn-Al PERMANENT MAGNET

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086508A (en) 2004-08-17 2006-03-30 Toshiba Corp Magnetic transmitting element, magnetic head, and magnetic recording/reproducing device
JP2007180470A (en) 2005-11-30 2007-07-12 Fujitsu Ltd Magnetoresistive effect element, magnetic head, magnetic storage, and magnetic memory device
JP2008041163A (en) 2006-08-04 2008-02-21 Hitachi Global Storage Technologies Netherlands Bv Current perpendicular-to-plane magnetoresistance effect head
JP2008091551A (en) 2006-09-29 2008-04-17 Fujitsu Ltd Magnetoresistance effect element, magnetic storage device, and magnetic memory device
JP2015063725A (en) 2013-09-25 2015-04-09 国立大学法人東北大学 Method for manufacturing permanent magnet
JP2017059690A (en) 2015-09-16 2017-03-23 株式会社東芝 Magnetic element and storage device
WO2017135251A1 (en) 2016-02-02 2017-08-10 国立研究開発法人物質・材料研究機構 Ferromagnetic tunnel junction, magnetoresistive effect element and spintronics device in which said ferromagnetic tunnel junction is used, and method of manufacturing ferromagnetic tunnel junction
JP2017157738A (en) 2016-03-03 2017-09-07 国立大学法人 鹿児島大学 MANUFACTURING METHOD OF Mn-Al PERMANENT MAGNET AND Mn-Al PERMANENT MAGNET

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
成田賢仁,Cu-Mn-Al磁性合金の高保磁力化機構,日本応用磁気学会誌,日本,日本応用磁気学会,1981年,Vol.5、No.2,93-96
鹿又 武,ホイスラ―合金の磁性,まてりあ,日本,日本金属学会,2006年,第45巻 第3号,165-171

Also Published As

Publication number Publication date
JP2021100065A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US20210180174A1 (en) Applied magnetic field synthesis and processing of iron nitride magnetic materials
US20210265111A1 (en) Applied magnetic field synthesis and processing of iron nitride magnetic materials
CN104823249A (en) Rare-earth permanent magnetic powders, bonded magnet comprising same, and device using bonded magnet
Horikawa et al. Recent progress in the development of high-performance bonded magnets using rare earth–Fe compounds
CN103021613A (en) Sintered magnet
Madugundo et al. Recent developments in nanostructured permanent magnet materials and their processing methods
CN107408437B (en) Rare earth magnet
CN110942879B (en) Magnetic particles, magnetic particle molded body, and method for producing same
JPH06283316A (en) Iron-rare earth permanent magnet material and its manufacture
Rahimi et al. On the magnetic and structural properties of neodymium iron boron nanoparticles
JPH01703A (en) Permanent magnet and its manufacturing method
Rahimi et al. Coercivity Mechanism in Nd-Fe-B Nanoparticles synthesized by reduction-diffusion process
JP3655321B2 (en) Method for producing Fe-based soft magnetic alloy powder
JP7446600B2 (en) Manufacturing method of Cu-Mn-Al magnet
JP7349050B2 (en) Method for manufacturing samarium-iron permanent magnet material
JPWO2018101408A1 (en) Permanent magnet and permanent magnet powder
US4854979A (en) Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal
JPH01100242A (en) Permanent magnetic material
JPH0851007A (en) Permanent magnet and production thereof
Palanisamy et al. Exploring the pathways for enhancing the hard magnetic properties of binary Al-55at.% Mn Heusler alloy through mechanical alloying
JPS62240742A (en) Production of permanent magnet material
JP2004193207A (en) Magnet material and bonded magnet using the same
JP2016044352A (en) Method for producing powder for magnet, and method for producing rare earth magnet
JPH01184244A (en) Permanent magnetic material and its manufacture
KR20200023107A (en) Manufacturing method of sintered magnetic and sintered magnetic manufactured by the same

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240220

R150 Certificate of patent or registration of utility model

Ref document number: 7446600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150