JP7349050B2 - Method for manufacturing samarium-iron permanent magnet material - Google Patents

Method for manufacturing samarium-iron permanent magnet material Download PDF

Info

Publication number
JP7349050B2
JP7349050B2 JP2019025640A JP2019025640A JP7349050B2 JP 7349050 B2 JP7349050 B2 JP 7349050B2 JP 2019025640 A JP2019025640 A JP 2019025640A JP 2019025640 A JP2019025640 A JP 2019025640A JP 7349050 B2 JP7349050 B2 JP 7349050B2
Authority
JP
Japan
Prior art keywords
samarium
iron
permanent magnet
magnet material
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019025640A
Other languages
Japanese (ja)
Other versions
JP2020132926A (en
Inventor
哲治 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba Institute of Technology
Original Assignee
Chiba Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba Institute of Technology filed Critical Chiba Institute of Technology
Priority to JP2019025640A priority Critical patent/JP7349050B2/en
Publication of JP2020132926A publication Critical patent/JP2020132926A/en
Application granted granted Critical
Publication of JP7349050B2 publication Critical patent/JP7349050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、従来の希土類永久磁石に代わる新しい永久磁石材料とその製造方法に関するものである。 The present invention relates to a new permanent magnet material to replace conventional rare earth permanent magnets and a method for manufacturing the same.

希土類磁石は高性能磁石としてコンピュータ周辺機器、民生用電子機器、計測・通信機器から自動車、医療機器にわたる幅広い分野で使用されており、その需要に応じて生産量は年々増加している。
希土類金属のサマリウム(Sm)と3d遷移金属の鉄(Fe)からなるSm-Fe系合金の新しい準安定相に関する研究の成果として、特許文献1にSm5Fe17金属間化合物相に関する言及が、特許文献2にSmFe12金属間化合物相に関する言及がある。
非特許文献1ではSmFe5金属間化合物相が薄膜で作製できる条件について検討されている。
Rare earth magnets are used as high-performance magnets in a wide range of fields, from computer peripherals, consumer electronics, measurement and communication equipment to automobiles and medical equipment, and their production volume is increasing year by year in response to demand.
As a result of research on a new metastable phase of an Sm-Fe alloy consisting of the rare earth metal samarium (Sm) and the 3D transition metal iron (Fe), Patent Document 1 mentions the Sm 5 Fe 17 intermetallic compound phase. Patent Document 2 mentions the SmFe 12 intermetallic compound phase.
Non-Patent Document 1 discusses conditions under which the SmFe 5 intermetallic compound phase can be produced as a thin film.

特開2008-133496号公報Japanese Patent Application Publication No. 2008-133496 特開2017-112300号公報Japanese Patent Application Publication No. 2017-112300

“Formation of SmFe5(0001)ordered alloy thinfilm on Cu(111)single-Crystal under layers”,Oyabuhara,M.Ohtake,Y.Nukaga,F.Kirino,and M.Futamoto,Journal of Physcis C:Conferences Series200(2010)082026.“Formation of SmFe5 (0001) ordered alloy thin film on Cu (111) single-Crystal under layers”, Oyabuhara, M. Ohtake, Y. Nukaga, F. Kirino, and M. Futamoto, Journal of Physcis C: Conferences Series 200 (2010 )082026.

従来、希土類磁石は、希土類金属のサマリウム(Sm)と3d遷移金属のコバルト(Co)からなるサマリウムコバルト(Sm-Co)磁石、希土類金属のネオジム(Nd)と3d遷移金属の鉄(Fe)と非金属元素の棚素(B)からなるネオジム鉄ボロン(Nd-Fe-B)磁石、希土類金属のサマリウム(Sm)と3d遷移金属の鉄(Fe)の金属間化合物(Sm2Fe17)を窒化したサマリウム鉄窒素(Sm-Fe-N)磁石などが知られている。このうち、高性能な希土類磁石として広く使用されているのは、希土類金属のネオジム(Nd)を含むネオジム鉄ボロン(Nd-Fe-B)磁石である。このネオジム鉄ボロン(Nd-Fe-B)磁石は、電気自動車やハイブリッド自動車のエンジンの部品に使用され、環境負荷の小さい自動車の普及と共に需要の増加が見込まれている。 Conventionally, rare earth magnets include samarium-cobalt (Sm-Co) magnets made of rare earth metal samarium (Sm) and 3D transition metal cobalt (Co), and rare earth metal neodymium (Nd) and 3D transition metal iron (Fe). A neodymium iron boron (Nd-Fe-B) magnet made of the non-metallic element shelf element (B), an intermetallic compound (Sm 2 Fe 17 ) of the rare earth metal samarium (Sm) and the 3D transition metal iron (Fe). Nitrided samarium iron nitrogen (Sm-Fe-N) magnets are known. Among these, neodymium iron boron (Nd-Fe-B) magnets containing the rare earth metal neodymium (Nd) are widely used as high-performance rare earth magnets. This neodymium iron boron (Nd-Fe-B) magnet is used in engine parts of electric vehicles and hybrid vehicles, and demand is expected to increase with the spread of automobiles with low environmental impact.

希土類元素は、周期表でIIIa族の第6周期に原子番号57番のランラン(La)から原子番号71番のルテチウム(Lu)までが入っており、化学的性質が非常に似ていることが知られている。これらの希土類金属は希土類鉱石から精錬されて得られるが、例えばネオジム(Nd)やジスプロシウム(Dy)のような一部の金属だけを精錬することができず、鉱石中に含まれるほぼすべての希土類金属が精錬により抽出される。そのため、どの希土類金属もバランスよく使用されるのが望ましい。特定の希土類金属のみが使用されると、使い途のない不要な希土類金属の需要供給のバランスが崩れて、過剰な供給及び廃棄につながる。
そこで、本発明は、希土類磁石の需要に伴い過剰供給の状態にある希土類金属のうち、特にサマリウム(Sm)を磁石に応用し、希土類磁石の需要に見合う希土類金属の需要供給のバランスに是正するサマリウム-鉄系永久磁石材料を提供することを課題としている。
Rare earth elements are found in the 6th period of group IIIa in the periodic table, from lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71, and it is said that they have very similar chemical properties. Are known. These rare earth metals are obtained by refining rare earth ores, but it is not possible to refine some metals, such as neodymium (Nd) and dysprosium (Dy), and almost all of the rare earths contained in the ores cannot be refined. Metals are extracted by smelting. Therefore, it is desirable that all rare earth metals be used in a well-balanced manner. If only specific rare earth metals are used, the balance between demand and supply of useless and unnecessary rare earth metals will be disrupted, leading to excessive supply and disposal.
Therefore, the present invention applies samarium (Sm), in particular, to magnets among rare earth metals that are in excess supply due to the demand for rare earth magnets, and corrects the balance between demand and supply of rare earth metals to match the demand for rare earth magnets. Our goal is to provide a samarium-iron permanent magnet material.

この発明においては、サマリウム(Sm)を原子百分率で12~20%含み、残部が実質的に鉄(Fe)から成り、主相がSmFe5金属間化合物相であるサマリウム-鉄系永久磁石材料によって、上記課題を解決する。
また、この発明においては、サマリウム(Sm)を原子百分率で12~20%含み、残部が実質的に鉄(Fe)から成る合金に急冷凝固法を施して、主相がSmFe5金属間化合物相であるアモルファス合金とした後、このアモルファス合金に700℃~800℃の温度範囲で、不活性ガスもしくは真空中で熱処理を施すことにより組織を微細化する方法により、サマリウム-鉄系永久磁石材料を製造する。
また、この発明においては、サマリウム(Sm)を原子百分率で12~20%含み、残部が実質的に鉄(Fe)から成る合金に急冷凝固法を施して、主相がSmFe5金属間化合物相であるアモルファス合金とする。その急冷凝固法における冷却速度を制御して、組織を微細化する方法により、サマリウム-鉄系永久磁石材料を製造する。
In this invention, a samarium-iron permanent magnet material containing 12 to 20% samarium (Sm) in atomic percentage, the remainder being substantially iron (Fe), and the main phase being an SmFe 5 intermetallic compound phase is used. , solve the above problems.
In addition, in the present invention, an alloy containing 12 to 20% samarium (Sm) in atomic percentage and the balance essentially consisting of iron (Fe) is subjected to a rapid solidification method, so that the main phase becomes an SmFe 5 intermetallic compound phase. After forming an amorphous alloy with Manufacture.
In addition, in the present invention, an alloy containing 12 to 20% samarium (Sm) in atomic percentage and the balance essentially consisting of iron (Fe) is subjected to a rapid solidification method, so that the main phase becomes an SmFe 5 intermetallic compound phase. It is an amorphous alloy. A samarium-iron permanent magnet material is manufactured by controlling the cooling rate in the rapid solidification method to refine the structure.

本発明においては、過剰供給になりがちの希土類金属であるサマリウム(Sm)を永久磁石材料に利用することができ、希土類金属の需要を拡大して供給とのバランスを是正することができるという効果を有する。 In the present invention, samarium (Sm), a rare earth metal that tends to be in excess supply, can be used as a permanent magnet material, and the effect is that the demand for rare earth metals can be expanded and the balance with supply can be corrected. has.

サマリウム-鉄合金インゴットに急冷凝固法を施して作製したアモルファス合金に熱処理を施した試料のヒステリシス曲線を表グラフである。This is a table graph showing the hysteresis curve of a sample obtained by heat-treating an amorphous alloy produced by subjecting a samarium-iron alloy ingot to a rapid solidification method. サマリウム-鉄合金インゴットに急冷凝固法を施して作製したアモルファス合金に熱処理を施した試料を透過電子顕微鏡で観察した組織写真である。This is a microstructure photograph taken using a transmission electron microscope of a heat-treated amorphous alloy sample prepared by subjecting a samarium-iron alloy ingot to a rapid solidification method. サマリウム-鉄合金インゴットに急冷凝固法を施して作製したアモルファス合金に熱処理を施した試料を透過電子顕微鏡で観察した電子線回折図である。This is an electron diffraction diagram obtained by observing with a transmission electron microscope a heat-treated amorphous alloy sample prepared by subjecting a samarium-iron alloy ingot to a rapid solidification method.

(実施例1)
サマリウム16.7原子%(Sm16.7at%)および鉄83.3原子%(Fe83.3at%)からなるサマリウム-鉄合金インゴットをアルゴン雰囲気中、高周波溶解により作製した。アルゴン雰囲気は、他の不活性ガスもしくは真空に代えてもよい。このサマリウム-鉄合金インゴットに急冷凝固法を施してアモルファス合金を作製した。急冷凝固法は、本発明の各実施例において合金インゴットをアルゴン雰囲気中で高周波溶解した溶湯を高速で回転している銅ロール上に噴射して急冷凝固させる単ロール法を用いた。得られたアモルファス合金に700℃で1時間熱処理を施して試料を作製した。この試料の磁気特性を測定した結果を図1に示す。図1において、横軸は試料に印加した磁界H(単位kOe)を、縦軸は試料に生じた磁化I(単位emu/g)を表す。なお、保磁力は磁化がゼロになった時の磁界、すなわちヒステリシス曲線の横軸との交点の値である。上記のようにアモルファス合金に700℃で1時間熱処理を施した試料は、2.3kOeの高い保磁力を示すことがわかった。
(Example 1)
A samarium-iron alloy ingot consisting of 16.7 at% samarium (16.7 at% Sm) and 83.3 at% iron (83.3 at% Fe) was produced by high-frequency melting in an argon atmosphere. The argon atmosphere may be replaced by other inert gas or vacuum. This samarium-iron alloy ingot was subjected to a rapid solidification method to produce an amorphous alloy. In each of the examples of the present invention, the rapid solidification method used a single roll method in which a molten alloy ingot was high-frequency melted in an argon atmosphere and was injected onto a copper roll rotating at high speed for rapid solidification. The obtained amorphous alloy was heat treated at 700°C for 1 hour to prepare a sample. Figure 1 shows the results of measuring the magnetic properties of this sample. In FIG. 1, the horizontal axis represents the magnetic field H (unit: kOe) applied to the sample, and the vertical axis represents the magnetization I (unit: emu/g) generated in the sample. Note that the coercive force is the magnetic field when magnetization becomes zero, that is, the value at the intersection with the horizontal axis of the hysteresis curve. It was found that the sample obtained by heat-treating the amorphous alloy at 700°C for 1 hour as described above exhibited a high coercive force of 2.3 kOe.

(比較例)
サマリウム16.7原子%(Sm16.7at%)および鉄83.3原子%(Fe83.3at%)からなるサマリウム-鉄合金インゴットをアルゴン雰囲気中、高周波溶解により作製した。このサマリウム-鉄合金インゴットに700℃で1時間熱処理を施して試料を作製した。この試料の磁気特性を測定したところ、1kOe以下の小さな保磁力しか示さないことがわかった。
この結果、上記のように作製したアモルファス合金に熱処理を施すと高い保磁力が得られることがわかった。この保磁力の原因を調べるため透過電子顕微鏡観察を行った。その組織写真を図2に、電子線回折図を図3に示す。これらの写真から、サマリウム-鉄アモルファス合金に700℃で1時間熱処理を施した試料は、非常に微細なSmFe5の金属間化合物相(結晶粒径が約10nm)からなることがわかった。
(Comparative example)
A samarium-iron alloy ingot consisting of 16.7 at% samarium (16.7 at% Sm) and 83.3 at% iron (83.3 at% Fe) was produced by high-frequency melting in an argon atmosphere. This samarium-iron alloy ingot was heat treated at 700°C for 1 hour to prepare a sample. When we measured the magnetic properties of this sample, we found that it exhibited a small coercive force of less than 1 kOe.
As a result, it was found that high coercive force can be obtained by heat-treating the amorphous alloy produced as described above. Transmission electron microscopy was performed to investigate the cause of this coercive force. A photograph of its structure is shown in Figure 2, and an electron diffraction diagram is shown in Figure 3. From these photographs, it was found that the samarium-iron amorphous alloy sample heat-treated at 700°C for 1 hour consisted of a very fine intermetallic compound phase of SmFe 5 (crystal grain size of about 10 nm).

(実施例2)
サマリウム16.7原子%(Sm16.7at%)および鉄83.3原子%(Fe83.3at%)からなるサマリウム-鉄合金インゴットをアルゴン雰囲気中、高周波溶解により作製した。この得られたサマリウム-鉄合金インゴットに、急冷凝固法を施してアモルファス合金を作製した。得られたアモルファス合金にアルゴン雰囲気中600℃から900℃の温度範囲で1時間熱処理を施して試料を作製した。これらの試料の保磁力を調べた結果を表1に示す。

Figure 0007349050000001
上記のようにして得られたアモルファス合金は、700~800℃の熱処理を施すと、より高い保磁力を示すことがわかった。 (Example 2)
A samarium-iron alloy ingot consisting of 16.7 at% samarium (16.7 at% Sm) and 83.3 at% iron (83.3 at% Fe) was produced by high-frequency melting in an argon atmosphere. The obtained samarium-iron alloy ingot was subjected to a rapid solidification method to produce an amorphous alloy. The obtained amorphous alloy was subjected to heat treatment in an argon atmosphere at a temperature range of 600°C to 900°C for 1 hour to prepare a sample. Table 1 shows the results of examining the coercive forces of these samples.
Figure 0007349050000001
It was found that the amorphous alloy obtained as described above exhibits higher coercive force when subjected to heat treatment at 700 to 800°C.

(実施例3)
サマリウム12~20原子%(Sm12~20at%)および鉄80~88原子%(Fe80~88at%)からなる、成分比の異なる複数のサマリウム-鉄合金インゴットをアルゴン雰囲気中、高周波溶解により作製した。これらのサマリウム-鉄合金インゴットに急冷凝固法を施してアモルファス合金を作製した。得られたアモルファス合金に700℃で1時間熱処理を施して試料を作製した。これらの試料の磁気特性を測定した結果を表2に示す。

Figure 0007349050000002
上記のようにして得られたアモルファス合金は、上記の成分比の範囲で1.0kOe以上の保磁力を示すことがわかった。 (Example 3)
A plurality of samarium-iron alloy ingots with different component ratios, consisting of 12-20 at% samarium (12-20 at% Sm) and 80-88 at% iron (80-88 at%), were produced by high-frequency melting in an argon atmosphere. These samarium-iron alloy ingots were subjected to a rapid solidification method to produce an amorphous alloy. The obtained amorphous alloy was heat treated at 700°C for 1 hour to prepare a sample. Table 2 shows the results of measuring the magnetic properties of these samples.
Figure 0007349050000002
It was found that the amorphous alloy obtained as described above exhibits a coercive force of 1.0 kOe or more within the above range of component ratios.

(実施例4)
サマリウム16.7原子%(Sm16.7at%)および鉄83.3原子%(Fe83.3at%)からなるサマリウム-鉄合金インゴットをアルゴン雰囲気中、高周波溶解により作製した。この得られたサマリウム-鉄合金インゴットに急冷凝固法を施してアモルファス合金を作製した。この急冷凝固法では、銅ロールの回転速度が40m/s以上のときにアモルファス合金が得られたが、10~20m/sでは結晶粒径が約10nmの微細な結晶質を有する合金が得られた。この銅ロールの回転速度10~20m/sで作製した微細な結晶質を有する合金は、アモルファス合金に適当な熱処理を施した試料と同様な保磁力を示すことがわかった。このことから、急冷凝固法により作製したアモルファス合金に熱処理を施す工程に代えて、急冷凝固法での冷却速度を制御することにより、微細な結晶質を有する合金を作製できることがわかった。これによると、ガスアトマイズ法やメカニカルアロイング法など他の製造法により組織を微細化することによっても高い保磁力が得られることは当業者にとって自明である。
(Example 4)
A samarium-iron alloy ingot consisting of 16.7 at% samarium (16.7 at% Sm) and 83.3 at% iron (83.3 at% Fe) was produced by high-frequency melting in an argon atmosphere. The obtained samarium-iron alloy ingot was subjected to a rapid solidification method to produce an amorphous alloy. In this rapid solidification method, an amorphous alloy was obtained when the copper roll rotation speed was 40 m/s or more, but an alloy with fine crystallinity with a crystal grain size of about 10 nm was obtained when the rotation speed of the copper roll was 10 to 20 m/s. Ta. It was found that an alloy with fine crystallinity produced at a copper roll rotation speed of 10 to 20 m/s exhibited coercive force similar to that of an amorphous alloy sample subjected to appropriate heat treatment. From this, it was found that an alloy with fine crystallinity can be produced by controlling the cooling rate in the rapid solidification method, instead of applying heat treatment to the amorphous alloy produced by the rapid solidification method. According to this, it is obvious to those skilled in the art that a high coercive force can be obtained by refining the structure by other manufacturing methods such as gas atomization or mechanical alloying.

(実施例5)
サマリウム16.7原子%(Sm16.7at%)および鉄83.3原子%(Fe83.3at%)からなるサマリウム-鉄合金インゴットのサマリウムの一部を同じ希土類金属であるイットリウム(Y)で置換したサマリウム-イットリウム-鉄合金インゴットをアルゴン雰囲気中、高周波溶解により作製した。サマリウム-イットリウム-鉄合金インゴットは、イットリウムを20~80%置換した複数の異なる成分比で作成した。これらの合金インゴットに急冷凝固法を施してアモルファス合金を作製した。得られたアモルファス合金に700℃で1時間熱処理を施して試料を作製した。これらの試料の磁気特性を測定した結果を表3に示す。

Figure 0007349050000003
上記のようにサマリウム-鉄合金のサマリウムの一部をイットリウムで置換したアモルファス合金は、サマリウムをイットリウムで置換しても保磁力を示すことがわかった。 (Example 5)
Samarium - Yttrium - in which a part of the samarium in a samarium-iron alloy ingot consisting of 16.7 at% samarium (Sm16.7at%) and 83.3 at% iron (Fe83.3at%) is replaced with yttrium (Y), which is the same rare earth metal. Iron alloy ingots were produced by high frequency melting in an argon atmosphere. Samarium-yttrium-iron alloy ingots were made with different component ratios with 20 to 80% yttrium substitution. These alloy ingots were subjected to rapid solidification to produce amorphous alloys. The obtained amorphous alloy was heat treated at 700°C for 1 hour to prepare a sample. Table 3 shows the results of measuring the magnetic properties of these samples.
Figure 0007349050000003
As mentioned above, it has been found that an amorphous alloy in which a part of the samarium in a samarium-iron alloy is replaced with yttrium exhibits coercive force even if the samarium is replaced with yttrium.

(実施例6)
サマリウム16.7原子%(Sm16.7at%)および鉄83.3原子%(Fe83.3at%)からなるサマリウム-鉄合金インゴットの鉄の一部をチタン(Ti)で4~16%置換したサマリウム-鉄-チタン合金インゴットをアルゴン雰囲気中、高周波溶解により作製した。これらの合金インゴットに急冷凝固法を施してアモルファス合金を作製した。得られたアモルファス合金に700℃で1時間熱処理を施して試料を作製した。これらの試料の磁気特性を測定した結果を表4に示す。

Figure 0007349050000004
上記のように鉄の一部をチタン(Ti)で4~16%置換したアモルファス合金は鉄をイットリウムで置換しても保磁力を示すことがわかった。 (Example 6)
Samarium-iron-titanium in which 4 to 16% of the iron in a samarium-iron alloy ingot consisting of samarium 16.7 at% (Sm16.7 at%) and iron 83.3 at% (Fe83.3 at%) is replaced with titanium (Ti). An alloy ingot was produced by high frequency melting in an argon atmosphere. These alloy ingots were subjected to rapid solidification to produce amorphous alloys. The obtained amorphous alloy was heat treated at 700°C for 1 hour to prepare a sample. Table 4 shows the results of measuring the magnetic properties of these samples.
Figure 0007349050000004
As mentioned above, it has been found that an amorphous alloy in which 4 to 16% of the iron is replaced with titanium (Ti) exhibits coercive force even if the iron is replaced with yttrium.

(実施例7)
サマリウム16.7原子%(Sm16.7at%)および鉄83.3原子%(Fe83.3at%)からなるサマリウム-鉄合金インゴットの鉄の一部をコバルト(Co)で10~50%置換したサマリウム-鉄-コバルト合金インゴットをアルゴン雰囲気中高周波溶解により作製した。得られた合金インゴットに急冷凝固法を施してアモルファス合金を作製した。得られたアモルファス合金に700℃で1時間熱処理を施して試料を作製した。得られた試料をX線回折法で調べたところ、サマリウム-鉄合金インゴットと同様にSmFe5型の金属間化合物相(正確にはSm(Fe,Co)5金属間化合物相)からなることがわかった。これらの試料の磁気特性を測定した結果を表5に示す。

Figure 0007349050000005
上記のようにの鉄の一部をコバルト(Co)で置換しても保磁力を示すことがわかった。なお、これらの試料は同じ熱処理条件で磁気特性を比べるとわずかに磁化が向上していることがわかった。 (Example 7)
Samarium-iron-cobalt in which 10 to 50% of the iron in a samarium-iron alloy ingot consisting of samarium 16.7 at% (Sm16.7 at%) and iron 83.3 at% (Fe83.3 at%) is replaced with cobalt (Co). An alloy ingot was produced by high frequency melting in an argon atmosphere. The obtained alloy ingot was subjected to a rapid solidification method to produce an amorphous alloy. The obtained amorphous alloy was heat treated at 700°C for 1 hour to prepare a sample. When the obtained sample was examined by X-ray diffraction, it was found that it consisted of an SmFe 5 type intermetallic compound phase (more precisely, an Sm(Fe,Co) 5 intermetallic compound phase), similar to the samarium-iron alloy ingot. Understood. Table 5 shows the results of measuring the magnetic properties of these samples.
Figure 0007349050000005
It has been found that coercive force is exhibited even when part of the iron is replaced with cobalt (Co) as described above. Comparing the magnetic properties of these samples under the same heat treatment conditions, it was found that the magnetization was slightly improved.

(実施例8)
サマリウム16.7原子%(Sm16.7at%)および鉄83.3原子%(Fe83.3at%)からなるサマリウム-鉄合金インゴットに少量のボロンおよび炭素を1原子%まで添加した合金インゴットを作製した。この合金インゴットに急冷凝固法を施してアモルファス合金を作製した。得られたアモルファス合金に700℃で1時間熱処理を施して試料を作製した。この試料は、X線回折法で調べたところ、ボロンおよび炭素を添加しないサマリウム-鉄合金インゴットと同様にSmFe5型の金属間化合物相からなることがわかった。添加しないものと同じ条件で熱処理を施して、磁気特性を比べると添加しないものよりわずかに保磁力が向上していることがわかった。しかし、ボロン (B)および炭素 (C)を5原子%以上添加するとSm2Fe17 型の金属間化合物相の炭化物(Sm2Fe17C3)や硼化物(Sm2Fe14B)などが生成し、SmFe5型の金属間化合物相が得られないことがわかった。
(Example 8)
An alloy ingot was prepared by adding small amounts of boron and carbon up to 1 at% to a samarium-iron alloy ingot consisting of 16.7 at% samarium (16.7 at% Sm) and 83.3 at% iron (83.3 at% Fe). This alloy ingot was subjected to a rapid solidification method to produce an amorphous alloy. The obtained amorphous alloy was heat treated at 700°C for 1 hour to prepare a sample. This sample was examined by X-ray diffraction and was found to consist of an SmFe5 type intermetallic compound phase, similar to samarium-iron alloy ingots without boron and carbon additions. When heat-treated under the same conditions as those without additives and comparing the magnetic properties, it was found that the coercive force was slightly improved compared to the one without additives. However, when boron (B) and carbon (C) are added in an amount of 5 at% or more, carbides (Sm 2 Fe 17 C 3 ) and borides (Sm 2 Fe 14 B) of the Sm 2 Fe 17 type intermetallic compound phase are formed. It was found that the SmFe 5 type intermetallic compound phase could not be obtained.

(実施例9)
サマリウム-鉄合金インゴットは、窒素またはアンモニア雰囲気で熱処理すると窒化されることが知られている。サマリウム-鉄合金インゴットも窒素雰囲気中400~500℃で1~24時間熱処理を施すと窒化されることがわかった。急冷凝固法で作製したアモルファス合金に700℃で1時間熱処理を施してから、さらに400~500℃で20時間熱処理を施して窒化して試料を作製した。これらの試料の磁気特性を測定した結果を表6に示す。

Figure 0007349050000006
SmFe5型の金属間化合物相を窒化すると保磁力が向上することがわかった。サマリウム-鉄合金の鉄を480℃で窒化した試料は最も保磁力が向上し、窒素を約5%含有していることがわかった。 (Example 9)
It is known that samarium-iron alloy ingots become nitrided when heat treated in a nitrogen or ammonia atmosphere. It was found that samarium-iron alloy ingots can also be nitrided when heat treated at 400 to 500°C for 1 to 24 hours in a nitrogen atmosphere. Samples were prepared by heat-treating an amorphous alloy produced by a rapid solidification method at 700°C for 1 hour, and then heat-treating it at 400-500°C for 20 hours to nitridize it. Table 6 shows the results of measuring the magnetic properties of these samples.
Figure 0007349050000006
It was found that nitriding the intermetallic compound phase of SmFe 5 type improved the coercive force. It was found that the sample of samarium-iron alloy nitrided at 480°C had the highest coercive force and contained approximately 5% nitrogen.

Claims (5)

サマリウム(Sm)を原子百分率で12~20%含み、残部が鉄(Fe)及び不可避的不純物から成るサマリウム-鉄合金インゴットに急冷凝固法を施してアモルファス合金を作製した後、このアモルファス合金に700℃~800℃の温度範囲で、不活性ガスもしくは真空中で熱処理を施すことにより、主相をSmFe 5 の金属間化合物相とすることを特徴とするサマリウム-鉄系永久磁石材料の製造方法。 After producing an amorphous alloy by subjecting a samarium-iron alloy ingot containing 12 to 20% samarium (Sm) by atomic percentage and the balance consisting of iron (Fe) and unavoidable impurities to this amorphous alloy , A method for producing a samarium-iron permanent magnet material, characterized in that the main phase is an intermetallic compound phase of SmFe 5 by heat treatment in an inert gas or vacuum in a temperature range of 800°C to 800°C. サマリウム(Sm)を原子百分率で12~20%含み、残部が鉄(Fe)及び不可避的不純物から成るサマリウム-鉄合金インゴットに冷却速度を10~20m/sに制御した急冷凝固法を施して、主相をSmFeA samarium-iron alloy ingot containing 12 to 20% samarium (Sm) in atomic percentage and the balance consisting of iron (Fe) and unavoidable impurities is subjected to a rapid solidification method with a cooling rate controlled at 10 to 20 m/s, The main phase is SmFe 5Five の金属間化合物相とすることを特徴とするサマリウム-鉄系永久磁石材料の製造方法。A method for producing a samarium-iron permanent magnet material characterized by having an intermetallic compound phase. 前記サマリウム(Sm)の一部を他の希土類金属元素(R)で置換することにより、サマリウム(Sm)の成分に対して原子百分率でR:20~80%を含むことを特徴とする請求項1または2に記載のサマリウム-鉄系永久磁石材料の製造方法。A claim characterized in that by substituting a part of the samarium (Sm) with another rare earth metal element (R), the samarium (Sm) contains R: 20 to 80% in atomic percentage relative to the samarium (Sm) component. 2. A method for producing a samarium-iron permanent magnet material according to 1 or 2. 鉄(Fe)の一部をチタン(Ti)で置換することにより、鉄(Fe)の成分に対して原子百分率でTi:1~20%を含むことを特徴とする請求項1または2に記載のサマリウム-鉄系永久磁石材料の製造方法 According to claim 1 or 2, the iron (Fe) is partially replaced with titanium (Ti) to contain Ti: 1 to 20% in atomic percentage based on the iron (Fe) component. A method for producing a samarium-iron permanent magnet material . 鉄(Fe)の一部をコバルト(Co)で置換することにより、鉄(Fe)の成分に対して原子百分率でCo:10~50%を含むことを特徴とする請求項1または2に記載のサマリウム-鉄系永久磁石材料の製造方法 Claim 1 or 2, characterized in that by substituting a part of iron (Fe) with cobalt (Co), Co: 10 to 50% is contained in atomic percentage relative to the iron (Fe) component. A method for producing a samarium-iron permanent magnet material .
JP2019025640A 2019-02-15 2019-02-15 Method for manufacturing samarium-iron permanent magnet material Active JP7349050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019025640A JP7349050B2 (en) 2019-02-15 2019-02-15 Method for manufacturing samarium-iron permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019025640A JP7349050B2 (en) 2019-02-15 2019-02-15 Method for manufacturing samarium-iron permanent magnet material

Publications (2)

Publication Number Publication Date
JP2020132926A JP2020132926A (en) 2020-08-31
JP7349050B2 true JP7349050B2 (en) 2023-09-22

Family

ID=72262495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019025640A Active JP7349050B2 (en) 2019-02-15 2019-02-15 Method for manufacturing samarium-iron permanent magnet material

Country Status (1)

Country Link
JP (1) JP7349050B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561524B (en) * 2021-11-19 2022-10-21 杭州永磁集团有限公司 Heat treatment method for improving 2
CN116612973B (en) * 2023-03-30 2023-12-05 广东省科学院资源利用与稀土开发研究所 Preparation method of high-density neodymium iron nitrogen magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057017A (en) 2000-05-29 2002-02-22 Daido Steel Co Ltd Isotropic powdery magnet material, its manufacturing method, and bonded magnet
JP2003173907A (en) 2001-12-04 2003-06-20 Daido Steel Co Ltd METHOD OF MANUFACTURING SmFeN-BASED POWDERY MAGNET MATERIAL
JP2008133496A (en) 2006-11-27 2008-06-12 Chiba Inst Of Technology Samarium-iron based permanent magnet material and method manufacturing the same
CN107564644A (en) 2017-08-07 2018-01-09 中南大学 A kind of compound samarium ferromagnetic alloy of nanoporous two-phase and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248103A (en) * 1987-04-03 1988-10-14 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JPH01155602A (en) * 1987-12-14 1989-06-19 Tohoku Tokushuko Kk Permanent magnet and manufacture thereof
JPH04142703A (en) * 1990-09-25 1992-05-15 Natl Sci Council Permanent magnet alloy of rare earth element-transition metal-nitrogen-borone and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057017A (en) 2000-05-29 2002-02-22 Daido Steel Co Ltd Isotropic powdery magnet material, its manufacturing method, and bonded magnet
JP2003173907A (en) 2001-12-04 2003-06-20 Daido Steel Co Ltd METHOD OF MANUFACTURING SmFeN-BASED POWDERY MAGNET MATERIAL
JP2008133496A (en) 2006-11-27 2008-06-12 Chiba Inst Of Technology Samarium-iron based permanent magnet material and method manufacturing the same
CN107564644A (en) 2017-08-07 2018-01-09 中南大学 A kind of compound samarium ferromagnetic alloy of nanoporous two-phase and preparation method thereof

Also Published As

Publication number Publication date
JP2020132926A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
TWI673732B (en) R-Fe-B based sintered magnet and manufacturing method thereof
JP4698581B2 (en) R-Fe-B thin film magnet and method for producing the same
JP4831253B2 (en) R-T-Cu-Mn-B sintered magnet
CN108630371B (en) High-thermal-stability rare earth permanent magnet material, preparation method thereof and magnet containing same
JP3057448B2 (en) Rare earth permanent magnet
JP6549720B2 (en) Rare earth cobalt based permanent magnet, method of manufacturing the same, motor and device
JP2009302318A (en) RL-RH-T-Mn-B-BASED SINTERED MAGNET
JP4863377B2 (en) Samarium-iron permanent magnet material
EP2857547B1 (en) Method for making a rare-earth magnet sputtering target
JP7349050B2 (en) Method for manufacturing samarium-iron permanent magnet material
Rehman et al. Microstructure and magnetic properties of alnico permanent magnetic alloys with Zr-B additives
WO2005015580A1 (en) R-t-b sintered magnet and rare earth alloy
CN113593799A (en) Fine-grain and high-coercivity sintered neodymium-iron-boron magnet and preparation method thereof
Rehman et al. Effects of Zr alloying on the microstructure and magnetic properties of Alnico permanent magnets
JP7010884B2 (en) Rare earth cobalt permanent magnets, their manufacturing methods, and devices
JPWO2018101408A1 (en) Permanent magnet and permanent magnet powder
US9859042B2 (en) Rare earth permanent magnetic powder, bonded magnet and device using the bonded magnet
Dillon Effects of heat treatment and processing modifications on microstructure in alnico 8H permanent magnet alloys for high temperature applications
WO2021193333A1 (en) Anisotropic rare-earth sintered magnet and method for producing same
CN114008728A (en) Samarium iron nitrogen series magnetic material
JP6376840B2 (en) Permanent magnet material and manufacturing method thereof
JPH06231917A (en) Permanent magnet of rare earth-transition metal base and its manufacture
Zheleznyi et al. Structure and magnetic hysteresis Properties of NdFe11 Ti based alloys and their nitrides after different methods of obtaining
JP7446600B2 (en) Manufacturing method of Cu-Mn-Al magnet
JP2013098319A (en) METHOD FOR MANUFACTURING Nd-Fe-B MAGNET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230807

R150 Certificate of patent or registration of utility model

Ref document number: 7349050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150