JPH0851007A - Permanent magnet and production thereof - Google Patents

Permanent magnet and production thereof

Info

Publication number
JPH0851007A
JPH0851007A JP7202929A JP20292995A JPH0851007A JP H0851007 A JPH0851007 A JP H0851007A JP 7202929 A JP7202929 A JP 7202929A JP 20292995 A JP20292995 A JP 20292995A JP H0851007 A JPH0851007 A JP H0851007A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
phase
magnet according
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7202929A
Other languages
Japanese (ja)
Other versions
JP3003979B2 (en
Inventor
Koichi Yajima
弘一 矢島
Osamu Kawamoto
修 河本
Tetsuto Yoneyama
哲人 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP7202929A priority Critical patent/JP3003979B2/en
Publication of JPH0851007A publication Critical patent/JPH0851007A/en
Application granted granted Critical
Publication of JP3003979B2 publication Critical patent/JP3003979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Abstract

PURPOSE:To obtain a high performance isotropic magnet exhibiting high coercive force and high energy product and suitable for practical use. CONSTITUTION:The permanent magnet has a composition shown by a formula {R' a (CebLa1-b)1-a}X-(Fe1-z)100-x-y-wByMw (where, R' represents at least one kind of rare earth element including Y but excluding Ce and La, 5.5<=x<12, 2<=y<15, 0<=z<=0.7, 0<w<=10, 0.80<=a<=1.00, 0<=b<=1, and M represents Zr or Zr and at least one kind of Nb, Mo, Hf, Ta and W). The permanent magnet is composed of microcrystal or has a mixed phase of microcrystal and amorphous phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は各種電気機器等に使用
される高性能磁石、特に希土類元素を含む合金系の急冷
磁石およびその製法に関し、Fe−R−B系(RはYを
含む希土類元素である、以下同じ)およびFe−Co−
R−B系の合金溶湯を急冷凝固させることによって優れ
た磁石特性を有する磁石としさらに急冷凝固後の磁石を
特定条件下で焼鈍することによって、均質で安定な磁石
性能を得るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance magnet for use in various electric appliances and the like, and more particularly to an alloy-based quenching magnet containing rare earth elements and a method for producing the same, and Fe--RB--system (R is a rare earth containing Y) The same applies hereinafter) and Fe-Co-
The RB alloy melt is rapidly solidified to obtain a magnet having excellent magnet characteristics, and the magnet after rapid solidification is annealed under specific conditions to obtain homogeneous and stable magnet performance.

【0002】なお、本明細書において、RはYを包含す
る希土類元素のうち少なくとも1種、R’はCe,La
を除き、Yを包含する希土類元素の少なくとも1種を示
す。
In the present specification, R is at least one of rare earth elements including Y, and R'is Ce, La.
Except at least one of rare earth elements including Y is shown.

【0003】[0003]

【従来の技術】高性能を有する希土類磁石としては、粉
末冶金法によるSm−Co系磁石でエネルギー積とし
て、32MGOeのものが量産されているが、Sm,C
oは原料価格が高いという欠点を有する。希土類の中で
原子量の小さい希土類元素、たとえばセリウムやプラセ
オジム、ネオジムはサマリウムよりも豊富にあり、価格
が安い。又Feは安価である。
2. Description of the Related Art As a rare earth magnet having high performance, an Sm-Co based magnet by a powder metallurgy method having an energy product of 32 MGOe is mass-produced.
o has the drawback that the raw material price is high. Among rare earth elements, rare earth elements with small atomic weight, such as cerium, praseodymium, and neodymium, are more abundant and cheaper in price than samarium. Moreover, Fe is inexpensive.

【0004】そこで、近年Nd−Fe−B系磁石が開発
され、特開昭59−46008号公報では、焼結磁石
が、また特開昭60−9852号公報では、高速急冷法
によるものが述べられている。
Therefore, in recent years, an Nd-Fe-B system magnet has been developed, and a sintered magnet is described in JP-A-59-46008 and a magnet by a high speed quenching method is described in JP-A-60-9852. Has been.

【0005】焼結法による磁石では、従来のSm−Co
系の粉末冶金プロセスを適用出来るものの、酸化しやす
いNd−Fe系合金インゴットを2〜10μm程度に微
粉末化する工程を有するため、取り扱いが難かしいこ
と、あるいは粉末冶金プロセスは工程数が多い(溶解→
鋳造→インゴット粗粉砕→微粉砕→プレス→焼結→磁
石)ため安価な原料を用いるという特徴を生かせない面
があった。
In the magnet produced by the sintering method, the conventional Sm-Co is used.
Although a powder-based metallurgy process can be applied, it has a step of pulverizing an easily oxidizable Nd—Fe-based alloy ingot to a size of about 2 to 10 μm, which makes it difficult to handle, or the powder metallurgy process has a large number of steps ( Melt →
Since casting → ingot coarse crushing → fine crushing → pressing → sintering → magnet), there was a point that the feature of using inexpensive raw materials could not be utilized.

【0006】一方、高速急冷法による磁石では工程が簡
素化され(溶解→高速急冷→粗粉砕→冷間プレス(温間
プレス)→磁石)、かつ微粉末化工程を必要としないと
いう利点がある。しかしながら、高速急冷法による磁石
を工業材料となすためには一層の高保磁力化、高エネル
ギー積化、低コスト化および着磁特性の改良等が望まれ
ていた。
On the other hand, the magnet by the rapid quenching method has the advantages that the process is simplified (melting → rapid quenching → coarse crushing → cold pressing (warm pressing) → magnet), and the fine powdering process is not required. . However, in order to make a magnet manufactured by the rapid quenching method into an industrial material, it has been desired to further increase the coercive force, increase the energy product, reduce the cost, and improve the magnetizing property.

【0007】希土類−鉄−ホウ素永久磁石の諸特性の中
で保磁力は温度に鋭敏であり、希土類コバルト永久磁石
の保磁力(iHc)の温度係数が0.15%/℃である
のに対して、希土類−鉄−ホウ素永久磁石材料の保磁力
(iHc)の温度係数は0.6〜0.7%/℃と4倍以
上高いという問題点があった。したがって、希土類−鉄
−ホウ素永久磁石材料は温度上昇に伴って減磁する危険
が大きく、磁気回路上での限定された設計を余儀なくさ
れていた。さらには、例えば、熱帯で使用する自動車の
エンジンルーム内の部品用永久磁石としては使用不可能
であった。希土類−鉄−ホウ素永久磁石材料は保磁力の
温度係数が大きいところに実用上の問題があることは従
来より知られており、保磁力の絶対値が大きい磁石の出
現が望まれていた(日経ニューマテリアル、1986、
4−28(No. 9)第80頁)。R−B−Fe合金に液
体急冷法により高い保磁力iHeとエネルギ積を具備さ
せることを提案する特開昭60−9852号公報の組成
は、希土類元素R(Nd,Pr)=10%以上、B=
0.5〜10%、残部Feからなるものが特許請求の範
囲に記載されている。従来R−B−Fe合金の優れた磁
石特性はNd2 Fe14B相化合物によるものと説明され
ており、そのため焼結法、高速急冷法共に磁石特性を改
良するための多くの提案(特開昭59−89401,6
0−144906,61−579749,57−141
901,61−73861号公報)はこの化合物に該当
する組成の近傍、すなわち、R=12〜17%、B=5
〜8%の範囲の合金の実験に基づいている。希土類元素
は高価であるため、その含有量を低下させることが望ま
れるが、希土類元素の含有量が12%未満になると、保
磁力iHcが急激に劣化するという問題があり、特開昭
60−9852号ではR=10%となるとiHcは6k
Oe以下になる事が示されている。すなわち、R−B−
Fe系合金において希土類元素の含有量が12%未満に
なると、保磁力iHcが劣化するとの事実があったので
あるが、かかる組成範囲において保磁力iHcの劣化を
防止するように組成ならびに組織を設計する方法は従来
知られていなかった。
Among the various characteristics of the rare earth-iron-boron permanent magnet, the coercive force is sensitive to temperature, whereas the temperature coefficient of the coercive force (iHc) of the rare earth cobalt permanent magnet is 0.15% / ° C. Then, the temperature coefficient of coercive force (iHc) of the rare earth-iron-boron permanent magnet material is 0.6 to 0.7% / ° C., which is four times or more higher. Therefore, the rare earth-iron-boron permanent magnet material has a large risk of being demagnetized as the temperature rises, and a limited design on the magnetic circuit has been forced. Furthermore, it cannot be used, for example, as a permanent magnet for parts in the engine room of an automobile used in the tropics. It has been conventionally known that a rare earth-iron-boron permanent magnet material has a problem in practical use where the temperature coefficient of coercive force is large, and the emergence of a magnet having a large absolute value of coercive force has been desired (Nikkei. New Material, 1986,
4-28 (No. 9) p. 80). The composition of JP-A-60-9852, which proposes that an RB-Fe alloy has a high coercive force iHe and an energy product by a liquid quenching method, has a composition of rare earth element R (Nd, Pr) = 10% or more, B =
What consists of 0.5 to 10% and the balance Fe is described in the claims. Conventionally, it has been explained that the excellent magnetic properties of the RB-Fe alloy are due to the Nd 2 Fe 14 B phase compound, and therefore many proposals for improving the magnetic properties of both the sintering method and the rapid quenching method have been made. Showa 59-89401,6
0-144906, 61-579749, 57-141
901, 61-73861) is near the composition corresponding to this compound, that is, R = 12 to 17%, B = 5.
Based on experiments with alloys in the range of ~ 8%. Since the rare earth element is expensive, it is desired to reduce the content thereof, but when the content of the rare earth element is less than 12%, there is a problem that the coercive force iHc rapidly deteriorates. In 9852, when R = 10%, iHc is 6k
It is shown that it becomes less than or equal to Oe. That is, R-B-
There was the fact that the coercive force iHc deteriorates when the content of rare earth elements in Fe-based alloys is less than 12%. However, the composition and structure are designed to prevent the coercive force iHc from deteriorating in such a composition range. The method of doing so far has not been known.

【0008】焼結法と高速急冷法においては、基本的に
Nd2 Fe14B化合物を用いているが、応用物理第55
巻、第2号(1986)頁121に示される如く、上記
磁石は単なる製法の違いだけではなく両磁石は合金組織
と保磁力発生機構の観点から全く異なったタイプの磁石
である。すなわち焼結磁石は結晶粒径が約10μmであ
り、従来のSm−Co系磁石で言えば、逆磁区の核発生
が保磁力を決めるSmCo5 型磁石のようなニュークリ
エーション型であり、一方高速急冷磁石は0.01〜1
μmの微細粒子をアモルファス相が取り囲んだ極めて微
細な組織により磁壁のピン止めが保磁力を決定するSm
2 Co17型磁石のようなピンニング型磁石である。それ
ゆえ、特性向上のための両磁石へのアプローチの考え方
としては保磁力発生機構が十分異なる事を考慮して検討
する必要があった。
In the sintering method and the rapid quenching method, the Nd 2 Fe 14 B compound is basically used.
Vol. 2, No. 2 (1986), page 121, the above-mentioned magnets are not the only difference in the manufacturing method but also the two magnets are completely different types in terms of alloy structure and coercive force generating mechanism. That is, the sintered magnet has a crystal grain size of about 10 μm, and in the case of a conventional Sm-Co magnet, it is a nucleation type magnet such as an SmCo 5 type magnet whose coercive force is determined by the nucleation of reverse magnetic domains, while high speed. Quenching magnet is 0.01-1
Sm where domain wall pinning determines coercive force due to extremely fine structure in which amorphous phase surrounds fine particles of μm
It is a pinning type magnet such as a 2 Co 17 type magnet. Therefore, it was necessary to consider the approach to both magnets to improve the characteristics in consideration of the fact that the coercive force generation mechanism is sufficiently different.

【0009】[0009]

【課題を解決するための手段】本発明は平衡相ととも
に、非平衡相を比較的容易に作製可能である高速急冷法
に着目し、Fe(Co)−R−B系に対して種々の元素
を添加することを検討した結果、Zrの添加により、R
含有量が12原子%未満の組成領域で、等方性であって
も高保磁力、高エネルギー積を示し、実用に適した高性
能磁石を提供しうる事を見出したものである。この発明
は高速急冷法で得られるものであり、焼結法においては
実現出来ないものである。
The present invention focuses on the rapid quenching method that allows the non-equilibrium phase to be produced relatively easily together with the equilibrium phase, and various elements are added to the Fe (Co) -RB system. As a result of studying the addition of
It has been found that a high-performance magnet suitable for practical use can be provided by exhibiting a high coercive force and a high energy product even if it is isotropic in a composition region where the content is less than 12 atomic%. The present invention is obtained by the rapid quenching method and cannot be realized by the sintering method.

【0010】さらに本発明はZr、またはZrとNb,
Mo,Hf,TaおよびWの少なくとも1種を添加し、
高速急冷することにより着磁特性および耐食性が良好な
磁石合金を提供するものである。またこの発明はその磁
石の性能をさらに安定に得るための方法を提供するもの
である。
Further, the present invention is directed to Zr, or Zr and Nb,
At least one of Mo, Hf, Ta and W is added,
By rapidly cooling at high speed, a magnet alloy having good magnetizing properties and corrosion resistance is provided. The present invention also provides a method for obtaining more stable performance of the magnet.

【0011】すなわち、本発明は、{R′a(Ceb
1-b1-ax(Fe1-z Coz100-x-y-wyw
(但し、R′はCe,Laを除き、Yを包含する希土
類元素の少なくとも1種、5.5≦x<12,2≦y<
15、0≦z≦0.7、0<w≦10、0.80≦a≦
1.00、0≦b≦1、MはZr、またはZrとNb,
Mo,Hf,TaおよびWの少なくとも1種)の組成を
もち、微結晶相あるいは微結晶とアモルファス相との混
相からなる永久磁石にある。
That is, according to the present invention, {R'a (Ce b L
a 1-b) 1-a } x (Fe 1-z Co z) 100-xyw B y M w
(However, R'is at least one kind of rare earth element including Y except Ce and La, 5.5≤x <12, 2≤y <
15, 0 ≦ z ≦ 0.7, 0 <w ≦ 10, 0.80 ≦ a ≦
1.00, 0 ≦ b ≦ 1, M is Zr, or Zr and Nb,
A permanent magnet having a composition of at least one of Mo, Hf, Ta and W) and having a microcrystalline phase or a mixed phase of a microcrystalline and an amorphous phase.

【0012】本発明の磁石は、前記の組成のFe−R−
BおよびFe−Co−R−Bからなる系の合金溶湯をい
わゆる液体急冷法によって高速で冷却凝固させたもので
ある。この液体急冷法は、水冷等により冷却された金属
製の回転体の表面に、ノズルから溶湯を射出して高速で
急冷凝固させ、リボン状の材料を得る方法であり、ディ
スク法、単ロール法(片ロール法)、双ロール法等があ
るが、この発明の場合には片ロール法、すなわち1個の
回転ロールの周面上に溶湯を射出する方法が最も適当で
ある。片ロール法でこの発明の磁石を得る場合、水冷回
転ロールの周速度は、2m/sec 〜100m/sec の範囲内
とすることが望ましい。その理由は、ロール周速度が2
m/sec 未満の場合および100m/sec を越える場合のい
ずれにおいても保磁力iHcが低くなるからである。高
保磁力、高エネルギー積を得るためにはロール周速度を
5〜30m/sec とする事が望ましい。このようにロール
周速度2〜100m/sec にて片ロール法で前記組成の合
金溶湯を急冷凝固させることによって、保磁力iHc
が、3〜20kOe、磁化σが80〜150emu/gr程度
の磁石が得られる。このように溶湯から直接急冷凝固さ
せれば、非晶質もしくは極めて微細な結晶質の組織が得
られ、その結果上述のように磁石特性が優れた磁石が得
られるのである。
The magnet of the present invention has the above composition of Fe--R--.
This is a molten alloy of a system consisting of B and Fe-Co-RB, which is cooled and solidified at a high speed by a so-called liquid quenching method. This liquid quenching method is a method of injecting a molten metal from a nozzle onto the surface of a metal rotating body cooled by water cooling or the like to rapidly quench and solidify it to obtain a ribbon-shaped material, which is a disk method or a single roll method. Although there are (single roll method), twin roll method, etc., in the case of the present invention, the single roll method, that is, the method of injecting the molten metal onto the peripheral surface of one rotating roll is most suitable. When the magnet of the present invention is obtained by the single roll method, it is desirable that the peripheral speed of the water-cooled rotary roll is within the range of 2 m / sec to 100 m / sec. The reason is that the roll peripheral speed is 2
This is because the coercive force iHc becomes low both when it is less than m / sec and when it exceeds 100 m / sec. In order to obtain a high coercive force and high energy product, it is desirable to set the roll peripheral speed to 5 to 30 m / sec. In this way, the coercive force iHc is obtained by rapidly solidifying the molten alloy having the above composition by the single roll method at the roll peripheral velocity of 2 to 100 m / sec.
However, a magnet having a magnetization of 3 to 20 kOe and a magnetization σ of about 80 to 150 emu / gr can be obtained. By directly quenching and solidifying the molten metal in this manner, an amorphous or extremely fine crystalline structure is obtained, and as a result, a magnet having excellent magnet characteristics is obtained as described above.

【0013】急冷後の組織は急冷条件により異なるが、
アモルファスあるいは微結晶又はその混合組織からなる
が、焼鈍により、その微結晶又はアモルファスと微結晶
からなる組織およびサイズをさらにコントロール出来、
より高い高特性が得られる。微結晶相としては、少くと
も50%以上が、0.01〜3μm未満好ましくは0.
01〜1μm未満の範囲内の大きさである時、高特性が
得られる。アモルファス相を含まない組織からなる時高
特性が得られる。
The structure after quenching varies depending on the quenching conditions.
Amorphous or microcrystalline or a mixed structure thereof, but by annealing, the structure and size of the microcrystalline or amorphous and microcrystalline can be further controlled,
Higher high characteristics can be obtained. As the microcrystalline phase, at least 50% or more, but less than 0.01 to 3 μm, preferably 0.1.
When the size is in the range of 01 to less than 1 μm, high characteristics are obtained. High characteristics can be obtained when the structure does not contain an amorphous phase.

【0014】液体急冷法によって急冷凝固された磁石
を、不活性雰囲気もしくは真空中において300〜90
0℃の温度範囲にて0.001〜50時間焼鈍する。こ
のような焼鈍熱処理を施すことによって、この発明で対
象とする成分の急冷磁石では、急冷条件によって諸特性
が敏感でなくなり、安定した特性が容易に得られる。こ
こで焼鈍温度は、300℃未満では焼鈍の効果はなく、
900℃を越える場合には、保磁力iHcが急激に低下
する。また焼鈍時間が0.001時間未満では焼鈍の効
果がなく、50時間を越えてもそれ以上特性は向上せ
ず、経済的に不利となるだけである。したがって焼鈍条
件は前述のように規定した。また、上記焼鈍中に、磁場
中処理を行なうことにより磁石特性を向上させることが
できる。得られたリボン状の磁石を、好ましくは30〜
500μmの粒径に粉砕して、冷間プレス又は温間プレ
スする事により高密度のバルク体磁石となす事が出来
る。
The magnet rapidly solidified by the liquid quenching method is used for 300 to 90 in an inert atmosphere or vacuum.
Anneal for 0.001 to 50 hours in a temperature range of 0 ° C. By carrying out such an annealing heat treatment, in the quenched magnet of the component targeted by the present invention, various characteristics become insensitive depending on the quenching condition, and stable characteristics can be easily obtained. Here, if the annealing temperature is less than 300 ° C., there is no effect of annealing,
When the temperature exceeds 900 ° C., the coercive force iHc drops sharply. Further, if the annealing time is less than 0.001 hour, there is no effect of annealing, and if it exceeds 50 hours, the characteristics are not further improved, and it is only economically disadvantageous. Therefore, the annealing conditions were defined as described above. Further, magnet characteristics can be improved by performing a treatment in a magnetic field during the annealing. The obtained ribbon-shaped magnet is preferably 30-
By crushing to a particle size of 500 μm and cold pressing or warm pressing, a high density bulk magnet can be obtained.

【0015】さらに本発明に係る永久磁石は、液体急冷
法の他に粉末結合法、すなわち液体急冷法により得たリ
ボンまたは粉末を必要ならばさらに焼鈍処理および粉砕
した後に、樹脂等で結合してボンディッド磁石とする事
が出来る。
Further, in the permanent magnet according to the present invention, in addition to the liquid quenching method, a powder bonding method, that is, a ribbon or powder obtained by the liquid quenching method is further annealed and crushed if necessary, and then bonded with a resin or the like. It can be a bonded magnet.

【0016】従来の高速急冷法により得られたリボン状
の磁石あるいは、それを粉砕後バルク体となした磁石お
よびポンディッド磁石は特開昭59−211549号公
報に示される如く知られている。しかし従来の磁石は
J.A.P60(10),vol15(1986)36
85頁に示される如く飽和磁化まで着磁させるためには
40kOe以上110kOeにもおよぶ着磁磁場が必要
であり、通常の電磁石である15〜20kOeで飽和着
磁可能な磁石が望まれていた。本発明におけるZr等を
含有させた磁石合金は図1に示す如く15〜20kOe
で十分着磁可能であるという利点を有し、そのため15
〜20kOeでの着磁後の特性は大巾に改良される。
A ribbon-shaped magnet obtained by a conventional rapid quenching method, a magnet obtained by crushing the ribbon-shaped magnet into a bulk body, and a ponded magnet are known as disclosed in JP-A-59-211549. However, the conventional magnet is J. A. P60 (10), vol15 (1986) 36
As shown on page 85, a magnetizing magnetic field of 40 kOe to 110 kOe is required to magnetize the magnet to saturation magnetization, and a magnet capable of saturation magnetizing at 15 to 20 kOe which is an ordinary electromagnet has been desired. The magnet alloy containing Zr or the like according to the present invention is 15 to 20 kOe as shown in FIG.
Has the advantage that it can be magnetized sufficiently, and therefore 15
The characteristics after magnetization at ˜20 kOe are greatly improved.

【0017】なお、図中、Fe−13.5Nd−5Bは
従来の磁石の例、Fe−9.5Nd−8B−4Zrは本
発明の磁石の例、横軸は着磁磁場(kOe)、縦軸はB
r(Hex)−ある着磁磁場における残留磁化−に対す
るBr(40k)−40kOeの着磁磁場に対する残留
磁化の比率である。
In the figure, Fe-13.5Nd-5B is an example of a conventional magnet, Fe-9.5Nd-8B-4Zr is an example of the magnet of the present invention, the horizontal axis is the magnetizing magnetic field (kOe), and the vertical axis is. Axis is B
It is the ratio of the residual magnetization to the magnetizing magnetic field of Br (40k) -40 kOe with respect to r (Hex) -the residual magnetization in a certain magnetizing magnetic field.

【0018】次にこの発明における成分限定理由につい
て説明すると、希土類元素の量xの値が、5.5未満で
は保磁力iHcが低下する傾向があり、xの値が12以
上となれば磁化の値が小さくなる。又CeとLaの複合
添加の合計が20%を越えて添加されると最大エネルギ
ー積が低下する。又Smメタルも、異方性化定数を低下
させるのでxの20%以下に押えた方が良い。Bの量y
の値は、2未満では保磁力iHcが小さく、15以上で
はBrが低下する。CoでFeを置換することで磁気性
能が改善しかつキューリー温度も改良されるが、置換量
zは0.7を越えると保磁力の低下をまねく。
Explaining the reason for limiting the components in the present invention, the coercive force iHc tends to decrease when the value x of the rare earth element is less than 5.5, and when the value x is 12 or more, the magnetization The value becomes smaller. If the total amount of Ce and La added together exceeds 20%, the maximum energy product decreases. Further, Sm metal also lowers the anisotropy constant, so it is better to keep it to 20% or less of x. Amount of B y
When the value is less than 2, the coercive force iHc is small, and when it is 15 or more, Br decreases. By substituting Fe with Co, the magnetic performance is improved and the Curie temperature is also improved, but when the substitution amount z exceeds 0.7, the coercive force is lowered.

【0019】ZrまたはZrとNb,Mo,Hf,Ta
およびWの少なくとも1種のM元素の量wが10を越え
ると磁化の急激な減少をまねく。またiHcの増加のた
めには0.1以上のwが好ましく、耐食性を上昇させる
ためには0.5以上、より好ましくは1以上が良好であ
る。M元素を2種以上複合添加すると、単独添加の場合
よりも保磁力iHc向上効果が大きい。なお複合添加の
場合の添加量上限は10%である。
Zr or Zr and Nb, Mo, Hf, Ta
When the amount w of at least one M element of W and W exceeds 10, a rapid decrease in magnetization is caused. Further, w of 0.1 or more is preferable for increasing iHc, and 0.5 or more, and more preferably 1 or more is preferable for increasing corrosion resistance. When two or more kinds of M elements are added in combination, the effect of improving the coercive force iHc is greater than in the case of adding them alone. In addition, in the case of composite addition, the upper limit of the addition amount is 10%.

【0020】Bの50%以下をSi,C,Ga,Al,
P,N,Ce,S等で置換してもB単独と同様な効果を
有する。
50% or less of B is Si, C, Ga, Al,
Substitution with P, N, Ce, S or the like has the same effect as B alone.

【0021】yは2〜15未満の範囲、zは0〜0.7
の範囲、wは0を含まず〜10の範囲とする必要があ
る。
Y is in the range of 2 to less than 15 and z is 0 to 0.7.
And w must be in the range of 10 without including 0.

【0022】等方性で高エネルギー積を得るための好ま
しい領域はxは12未満、より好ましくは、10未満、
yは2〜15未満、より好ましくは4〜12、さらに好
ましくは4〜10の範囲、zは0〜0.7、より好まし
くは0〜0.6、wは0を含まず〜10、より好ましく
は2〜10の範囲である。
The preferred region for obtaining an isotropic and high energy product is such that x is less than 12, more preferably less than 10,
y is less than 2-15, more preferably 4-12, even more preferably 4-10, z is 0-0.7, more preferably 0-0.6, w does not include 0-10, and more It is preferably in the range of 2-10.

【0023】又、等方性で着磁特性が良く高エネルギー
積を得るための好ましい領域はxは6〜12未満、より
好ましくは、6〜10未満、yは2〜15未満、より好
ましくは4〜12さらに好ましくは4〜10の範囲、z
は0〜0.7、より好ましくは0〜0.6、wは0を含
まず〜10、より好ましくは、2〜10の範囲である。
Further, the preferable region for obtaining a high energy product with good isotropy and good magnetization characteristics is x of 6 to less than 12, more preferably 6 to less than 10 and y of less than 2 to 15, more preferably. 4 to 12, more preferably 4 to 10, z
Is 0 to 0.7, more preferably 0 to 0.6, and w does not include 0 and is in the range of 10 to 10, more preferably 2 to 10.

【0024】[0024]

【作用】Mの添加は、約10原子%Nd以上では特に高
保磁力化に寄与しまた低コスト化が可能な約10原子%
Nd未満では特に最大エネルギ積(BH)max の向上に
寄与する。またMは保磁力向上に対する寄与も大きい。
[Function] The addition of M is about 10 atom% when Nd is more than about 10 atom% because it contributes to a particularly high coercive force and can reduce the cost.
When it is less than Nd, it particularly contributes to the improvement of the maximum energy product (BH) max. Further, M greatly contributes to the improvement of coercive force.

【0025】上述のような高保磁力化の原因としては、
R含有量xが12原子%未満、特に10原子%未満の場
合は従来のR−Fe−B磁石に見られるような安定な正
方晶R2 Fe14B化合物を使用する保磁力機構ではな
く、高速急冷法により過飽和にM元素が固溶した準安定
なR2 Fe14B相を主相とした微細組織が原因となる。
通常Mは約2原子%までは安定に高温で固溶しうるが、
2原子%以上固溶するためには高速急冷法を用いなけれ
ば不可能であり、準安定に存在する。このことは図2,
3に示されるX線回折の結果からも推察される。
The cause of the high coercive force as described above is as follows.
When the R content x is less than 12 atom%, particularly less than 10 atom%, it is not a coercive force mechanism using a stable tetragonal R 2 Fe 14 B compound as seen in conventional R-Fe-B magnets, The cause is the microstructure of the metastable R 2 Fe 14 B phase in which the M element is solid-soluted in supersaturation by the rapid quenching method.
Normally, M can stably form a solid solution at a high temperature up to about 2 atomic%,
In order to form a solid solution of 2 atomic% or more, it is impossible unless a rapid quenching method is used, and it exists metastable. This is shown in Figure 2.
It can also be inferred from the result of X-ray diffraction shown in 3.

【0026】図2は10m/秒で高速急冷後700℃1
0分間時効処理を施した磁石のX線回折図で、殆んどR
2 Fe14B相からなる。図3は鋳造インゴットを作成後
または1150℃4時間均質化処理後のX線回折である
が、明らかに図2と回折パターンが異なり主相がRFe
7 相で構成されている。
FIG. 2 shows 700 ° C. after high speed rapid cooling at 10 m / sec.
In the X-ray diffraction diagram of the magnet that has been aged for 0 minutes, most of the R
2 Fe 14 B phase. Fig. 3 shows the X-ray diffraction after the cast ingot was prepared or after the homogenization treatment at 1150 ° C for 4 hours, but the diffraction pattern is clearly different from that of Fig. 2 and the main phase is RFe.
It consists of 7 phases.

【0027】それゆえ、添加元素Mは低R組成でもR2
Fe14B相を安定化するが、この作用は高速急冷法にお
いてのみ得られるものであり、焼結磁石ではこのような
効果はない。
Therefore, even if the additive element M has a low R composition, R 2
It stabilizes the Fe 14 B phase, but this effect is obtained only by the rapid quenching method, and the sintered magnet has no such effect.

【0028】Rx w y (Fe,Co)1−x−y−
wで表現すれば、2≦w≦10、5.5≦x<12好ま
しくは6≦x<10、4≦y≦12好ましくは4≦y≦
10なる時上記作用影響が大である。又、添加元素Mは
ピンニングサイトのための境界相として働く副相を生成
し、強化する働きをもつと考えられる。さらに、α−F
eおよび他の相も一部副相として存在することができ
る。又α−Fe相および他の相も一部副相として存在す
ることが出来る。
[0028] R x M w B y (Fe , Co) 1-x-y-
Expressed by w, 2 ≦ w ≦ 10, 5.5 ≦ x <12, preferably 6 ≦ x <10, 4 ≦ y ≦ 12, preferably 4 ≦ y ≦
When it becomes 10, the above-mentioned effect is large. Further, it is considered that the additional element M has a function of generating and strengthening a sub-phase which acts as a boundary phase for the pinning site. Furthermore, α-F
e and other phases may also exist as some subphases. Further, the α-Fe phase and other phases can also partially exist as sub-phases.

【0029】R含有量が10原子%以上の場合、保磁力
発生機構は従来のR2 Fe14B型相によるが、Mが結晶
異方性定数を上昇させる効果により保磁力が向上すると
考えられる。又本発明による磁石は先に述べた如く着磁
磁場が低くてすみかつ量産安定性に優れた磁石である。
When the R content is 10 atomic% or more, the coercive force generation mechanism depends on the conventional R 2 Fe 14 B type phase, but it is considered that the coercive force is improved by the effect of M increasing the crystal anisotropy constant. . Further, as described above, the magnet according to the present invention has a low magnetizing magnetic field and is excellent in mass production stability.

【0030】[0030]

【実施例】【Example】

実施例1 Rx (Fe1-z Coz 100-x-y-w y w なる組成を
有する合金をアーク溶解により作製した。得られた合金
を溶湯急冷法を用いて薄帯化した。10〜80m/秒で
回転するロール表面に石英ノズルを介して溶湯合金をア
ルゴンガス圧で射出冷却して非晶質あるいは微結晶質か
ら成る薄帯を得た。
EXAMPLE 1 R x (Fe 1-z Co z) 100-xyw B y M w becomes alloy having a composition was prepared by arc melting. The obtained alloy was thinned into strips by the melt quenching method. The molten alloy was injected and cooled under argon gas pressure through a quartz nozzle onto the surface of a roll rotating at 10 to 80 m / sec to obtain a ribbon made of amorphous or microcrystalline material.

【0031】この薄帯にアルゴンガス雰囲気中550〜
900℃の温度範囲で時効処理を施した。得られた最高
の磁気特性を表1に示す。
550 to 550 in this argon gas atmosphere in an argon gas atmosphere
Aging treatment was performed in the temperature range of 900 ° C. The highest magnetic properties obtained are shown in Table 1.

【0032】表1より、Zr、またはZrとNb,M
o,Hf,TaおよびWの少なくとも1種の添加によ
り、iHcと(BH)max の高い磁石が得られることが
わかる。
From Table 1, Zr or Zr and Nb, M
It can be seen that by adding at least one of o, Hf, Ta and W, a magnet having high iHc and (BH) max can be obtained.

【0033】また、Zr、またはZrとNb,Mo,H
f,TaおよびWの少なくとも1種を添加した場合にお
いてもR≧12のときはBrが低くなる。
Zr, or Zr and Nb, Mo, H
Even when at least one of f, Ta and W is added, Br becomes low when R ≧ 12.

【0034】[0034]

【表1】 [Table 1]

【0035】本発明の試料のNo. 1〜10および比較例
No. 11〜14の磁石を40℃、90%の温度の雰囲気
で100時間放置したところ、No. 11〜14の試料に
は0.1〜1mmの錆が発生したが、本発明の試料には殆
んど認められなかった。これより、Zr、またはZrと
Nb,Mo,Hf,TaおよびWの少なくとも1種の添
加は耐食性も改良している事がわかる。
Sample Nos. 1 to 10 of the present invention and comparative examples
When the magnets of Nos. 11 to 14 were left in an atmosphere of 40 ° C. and a temperature of 90% for 100 hours, 0.1 to 1 mm of rust was generated in the samples of Nos. 11 to 14, Was hardly recognized. From this, it is understood that the corrosion resistance is improved by adding Zr or at least one of Zr and Nb, Mo, Hf, Ta and W.

【0036】実施例2 表2に示すような組成を有する合金が、得られるように
原料を配合し、高周波加熱によってこれらの原料を溶解
し、アルゴン雰囲気中にて周速40m/sec で回転してい
る銅ロールに石英ノズルから溶湯を噴出し、厚さ約20
μm 、幅5mmのリボンを得た。次いでリボンを50〜2
00μm 程度の粒径の粒子に粉砕した。リボンの磁石特
性を表3に示す。
Example 2 An alloy having a composition as shown in Table 2 was blended with raw materials so as to obtain, and these raw materials were melted by high frequency heating and rotated at a peripheral speed of 40 m / sec in an argon atmosphere. The molten metal is sprayed from the quartz nozzle onto the copper roll, and the thickness is about 20.
A ribbon having a size of μm and a width of 5 mm was obtained. Then ribbon 50-2
It was crushed into particles having a particle size of about 00 μm. Table 3 shows the magnet characteristics of the ribbon.

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】実施例3 Ndx (Fe1-z Coz 100-x-y-w y w なる組成
(具体的には表4に示した)を有する合金について実施
例1と同様の処理を行なった結果を表4に示す。
Example 3 An alloy having a composition of Nd x (Fe 1-z Co z ) 100-xyw B y M w (specifically shown in Table 4) was treated in the same manner as in Example 1. The results are shown in Table 4.

【0040】[0040]

【表4】 [Table 4]

【0041】実施例4 表5に組成を示す合金を実施例1と同様にして得た。リ
ボンの磁石特性を表6に示す。
Example 4 An alloy having the composition shown in Table 5 was obtained in the same manner as in Example 1. Table 6 shows the magnet characteristics of the ribbon.

【0042】[0042]

【表5】 [Table 5]

【0043】[0043]

【表6】 [Table 6]

【0044】実施例5 実施例1と同様な方法で表7に示す組成の合金を作成し
た。
Example 5 An alloy having the composition shown in Table 7 was prepared in the same manner as in Example 1.

【0045】[0045]

【表7】 [Table 7]

【0046】この試料を振動式磁力計を用いまず18k
Oeで着磁測定し、次に40kOeでパルス着磁後測定
したものを比較した。その値をBr18K /Br
40K (%)で表7に示す。
This sample was first used for 18 k using a vibrating magnetometer.
Magnetization measurement was performed with Oe, and then those measured after pulse magnetization with 40 kOe were compared. The value is Br 18K / Br
It is shown in Table 7 at 40K (%).

【0047】なお、表中の値は40kOeでパルス着磁
した試料の値である。
The values in the table are the values of the sample which was pulse-magnetized at 40 kOe.

【0048】表7より本系合金は着磁が容易である事が
わかる。
From Table 7, it can be seen that this system alloy is easily magnetized.

【0049】実施例6 9.5Nd−8B−4Zr−balFeなる組成を有す
る合金をアーク溶解により作製した。得られた合金を溶
湯急冷法を用いて薄帯化した。表8に示したように、
7.5〜30m/秒で回転するロール表面に石英ノズル
を介して溶湯合金をアルゴンガス圧で射出冷却して非晶
質あるいは微結晶質から成る薄帯を得た。
Example 6 An alloy having a composition of 9.5Nd-8B-4Zr-balFe was prepared by arc melting. The obtained alloy was thinned into strips by the melt quenching method. As shown in Table 8,
The molten alloy was injected and cooled with argon gas pressure through a quartz nozzle onto the surface of a roll rotating at 7.5 to 30 m / sec to obtain a ribbon made of an amorphous or microcrystalline material.

【0050】この薄帯にアルゴンガス雰囲気中750℃
で10分間時効処理した。得られた磁気特性を表8に示
す。
750 ° C. in an argon gas atmosphere on this ribbon
Aged for 10 minutes. The magnetic properties obtained are shown in Table 8.

【0051】[0051]

【表8】 [Table 8]

【0052】又比較のため、9.5Nd−8B−4Zr
−balFeなる組成の合金をアーク溶解で作成し、そ
のまま700℃で10分間熱処理した。得られた最高の
(BH)mは7MGOeであった。さらにNo. 1〜5の
試料についてiHcおよびBrの温度係数を20℃〜1
10℃にわたって測定した所、dBr/dT=0.08
〜0.11%/℃、diHc/dT=0.34〜0.4
0%/℃と良好な値を示した。
For comparison, 9.5Nd-8B-4Zr
An alloy having a composition of -balFe was prepared by arc melting and heat-treated at 700 ° C for 10 minutes as it was. The highest (BH) m obtained was 7 MGOe. Furthermore, regarding the samples of Nos. 1 to 5, the temperature coefficient of iHc and Br was set to 20 ° C to 1
DBr / dT = 0.08 when measured at 10 ° C.
~ 0.11% / ° C, diHc / dT = 0.34-0.4
It showed a good value of 0% / ° C.

【0053】実施例7 下記の表9に示される特性を有する薄帯を約100μm
に粉砕し熱硬化性樹脂と混合しプレス成形し、密度約6
g/ccのボンド磁石を得た。
Example 7 A ribbon having the characteristics shown in Table 9 below was prepared to have a thickness of about 100 μm.
Crushed into a mixture, mixed with thermosetting resin and press-molded to a density of about 6
A g / cc bond magnet was obtained.

【0054】40kOeのパルス着磁を施し測定した結
果を表9に示す。
Table 9 shows the measurement results obtained by pulsed magnetization of 40 kOe.

【0055】[0055]

【表9】 [Table 9]

【0056】又、本発明の実施例のNo. 1および2の磁
石は18kOeでの着磁が40kOeでのパルス着磁と
比べ97%以上と良好であり、又、温度特性は実施例4
のリボンと同様な良好な値を示した。
Further, the magnets No. 1 and 2 of the embodiment of the present invention have good magnetization at 18 kOe of 97% or more as compared with pulse magnetization at 40 kOe, and have temperature characteristics of the fourth embodiment.
The ribbon showed the same good value as that of the ribbon.

【0057】又、比較例のNo. 5の試料の18kOeで
の着磁は92%であった。さらに比較例のBr,iHc
の温度特性(20〜110℃)を調べた所dBr/dT
=0.14%/℃,diHc/dT=0.41%/℃で
あった。
The magnetization of the sample No. 5 of the comparative example at 18 kOe was 92%. Further, Br, iHc of Comparative Example
The temperature characteristics (20 to 110 ° C) were examined and dBr / dT
= 0.14% / ° C and diHc / dT = 0.41% / ° C.

【0058】[0058]

【発明の効果】以上の説明、特に実施例から明らかなよ
うに、本発明により、Zr、またはZrとNb,Mo,
Hf,TaおよびWの少なくとも1種を添加することに
より、R,Fe,B含有量がほぼ同一の系のM元素無添
加磁石と比較して、添加量にもよるが、1.5倍以上の
保磁力iHcが達成される。よって、R−B−Fe合金
磁石の保磁力iHcの温度特性が優れないという欠点が
あるにせよ、かかる欠点を補って余りある高い保磁力i
Hc向上が達成され、そして実用性ある永久磁石が提供
された。
As is apparent from the above description, particularly the examples, according to the present invention, Zr or Zr and Nb, Mo,
By adding at least one of Hf, Ta and W, it is 1.5 times or more as compared with the M element-free magnet of the system having almost the same R, Fe and B contents, although it depends on the addition amount. A coercive force iHc of is achieved. Therefore, even though the coercive force iHc of the RB-Fe alloy magnet is not excellent in temperature characteristics, a high coercive force i which is sufficient to compensate for such a defect.
An improved Hc was achieved and a practical permanent magnet was provided.

【0059】また極めて着磁特性に優れた磁石であると
いう特徴がある。
Further, there is a feature that the magnet is extremely excellent in magnetizing characteristics.

【0060】さらに、特筆すべき点として、希土類元素
Rの含有量が10%未満においても、希土類元素Rの含
有量10%以上の場合と遜色ない磁石特性が得られる。
よって、本発明により、低コストでありかつ保磁力およ
びエネルギー積の高い磁石が提供されたこととなり、当
該分野における本発明の意義は大きい。
Further, it should be noted that even if the content of the rare earth element R is less than 10%, the magnet characteristics comparable to the case where the content of the rare earth element R is 10% or more can be obtained.
Therefore, the present invention provides a low cost magnet having a high coercive force and high energy product, and the present invention has a great significance in this field.

【図面の簡単な説明】[Brief description of drawings]

【図1】着磁特性を示すグラフ図である。FIG. 1 is a graph showing magnetization characteristics.

【図2】高速急冷後700℃で、10分加熱した8Nd
−4.5Zr−7.5B−balFeのX線回折図であ
る。
[Fig. 2] 8 Nd heated at 700 ° C for 10 minutes after rapid cooling
It is an X-ray diffraction pattern of -4.5Zr-7.5B-balFe.

【図3】1150℃で4時間加熱した同一組成の鋳造イ
ンゴットのX線回折図である。
FIG. 3 is an X-ray diffraction diagram of a cast ingot of the same composition heated at 1150 ° C. for 4 hours.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 33/04 D 38/00 303 D C22F 1/10 H01F 1/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C22C 33/04 D 38/00 303 D C22F 1/10 H01F 1/08

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】{R′a(Ceb La1-b1-ax(F
1-z Coz100-x-y-wyw (但し、R’はC
e,Laを除き、Yを包含する希土類元素の少なくとも
1種、5.5≦x<12、2≦y<15、0≦z≦0.
7、0<w≦10、0.80≦a≦1.00、0≦b≦
1、MはZr、またはZrとNb,Mo,Hf,Taお
よびWの少なくとも1種)の組成をもち、微結晶あるい
は微結晶とアモルファス相との混相からなる永久磁石。
1. {R'a (Ce b La 1-b ) 1-a } x (F
e 1-z Co z) 100 -xyw B y M w ( where, R 'is C
Excluding e and La, at least one rare earth element including Y, 5.5 ≦ x <12, 2 ≦ y <15, 0 ≦ z ≦ 0.
7, 0 <w ≦ 10, 0.80 ≦ a ≦ 1.00, 0 ≦ b ≦
1, M is Zr, or a composition of Zr and at least one of Nb, Mo, Hf, Ta and W), and is a permanent magnet composed of fine crystals or a mixed phase of fine crystals and an amorphous phase.
【請求項2】 高速急冷により得られるリボン形態であ
る請求項1の永久磁石。
2. The permanent magnet according to claim 1, which is in the form of a ribbon obtained by rapid quenching.
【請求項3】 前記微結晶あるいは微結晶相とアモルフ
ァス相の混相よりなる粉末を圧粉した請求項1の永久磁
石。
3. The permanent magnet according to claim 1, wherein powder comprising the fine crystals or a mixed phase of the fine crystalline phase and the amorphous phase is pressed.
【請求項4】 高速急冷により得られたリボンを粉砕後
圧粉した請求項3の永久磁石。
4. The permanent magnet according to claim 3, wherein the ribbon obtained by rapid quenching is crushed and then pressed.
【請求項5】 微結晶相あるいは微結晶相とアモルファ
ス相との混相からなる粉末をボンド磁石とした請求項1
ないし4のいずれかの永久磁石。
5. A bond magnet made of powder comprising a microcrystalline phase or a mixed phase of a microcrystalline phase and an amorphous phase.
A permanent magnet according to any one of 1 to 4.
【請求項6】 ほぼ20kOe の低磁場で95%以上着磁
可能な請求項1ないし5のいずれかの永久磁石。
6. The permanent magnet according to claim 1, which can be magnetized at 95% or more in a low magnetic field of approximately 20 kOe.
【請求項7】 x{Rの含有量(ここで、RはYを包含
する希土類元素の少なくとも1種)}<10である請求
項1ないし6のいずれかの永久磁石。
7. The permanent magnet according to claim 1, wherein x {R content (where R is at least one rare earth element including Y)} <10.
【請求項8】 xが6≦x≦10である請求項7の永久
磁石。
8. The permanent magnet according to claim 7, wherein x is 6 ≦ x ≦ 10.
【請求項9】 y(Bの含有量)が4≦y≦12であ
り、またW(Mの含有量)が2≦w≦10である請求項
1ないし8の永久磁石。
9. The permanent magnet according to claim 1, wherein y (content of B) is 4 ≦ y ≦ 12, and W (content of M) is 2 ≦ w ≦ 10.
【請求項10】 保磁力(iHc)が7kOe 以上である
請求項1ないし9の永久磁石。
10. The permanent magnet according to claim 1, which has a coercive force (iHc) of 7 kOe or more.
【請求項11】 ボンド磁石以外の磁石であって、最大
エネルギ積(BH)max が8MGOeを超える請求項7の永
久磁石。
11. The permanent magnet according to claim 7, which is a magnet other than a bonded magnet and has a maximum energy product (BH) max of more than 8 MGOe.
【請求項12】{R′a(Ceb La1-b1-ax
(Fe1-z Coz10 0-x-y-wyw (但し、R’は
Ce,Laを除き、Yを包含する希土類元素の少なくと
も1種、5.5≦x<12、2≦y≦15、0≦z≦
0.7、0<w≦10、0.80≦a≦1.00、0≦
b≦1、MはZr、またはZrとNb,Mo,Hf,T
aおよびWの少なくとも1種)からなる合金溶湯を高速
急冷後に300〜900℃の温度範囲にて焼鈍する永久
磁石の製造方法。
12. {R'a (Ceb La1-b )1-a }x 
(Fe1-z Coz )Ten 0-xyw By Mw (However, R'is
Except for Ce and La, at least rare earth elements including Y
Also 1 type, 5.5 ≦ x <12, 2 ≦ y ≦ 15, 0 ≦ z ≦
0.7, 0 <w ≦ 10, 0.80 ≦ a ≦ 1.00, 0 ≦
b ≦ 1, M is Zr, or Zr and Nb, Mo, Hf, T
High speed molten alloy consisting of at least one of a and W)
Permanently annealed in the temperature range of 300 to 900 ° C after quenching
Magnet manufacturing method.
JP7202929A 1995-07-17 1995-07-17 Permanent magnet and method for manufacturing the same Expired - Lifetime JP3003979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7202929A JP3003979B2 (en) 1995-07-17 1995-07-17 Permanent magnet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7202929A JP3003979B2 (en) 1995-07-17 1995-07-17 Permanent magnet and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62052215A Division JP2727505B2 (en) 1986-04-15 1987-03-09 Permanent magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0851007A true JPH0851007A (en) 1996-02-20
JP3003979B2 JP3003979B2 (en) 2000-01-31

Family

ID=16465503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7202929A Expired - Lifetime JP3003979B2 (en) 1995-07-17 1995-07-17 Permanent magnet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3003979B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100367437B1 (en) * 2000-01-14 2003-01-10 세이코 엡슨 가부시키가이샤 Magnetic powder and isotropic bonded magnet
WO2003085147A1 (en) * 2002-04-09 2003-10-16 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
WO2004003245A1 (en) * 2002-06-28 2004-01-08 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
US6852246B2 (en) 1999-06-11 2005-02-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6855265B2 (en) 2000-01-07 2005-02-15 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6955729B2 (en) 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet
WO2022124344A1 (en) * 2020-12-08 2022-06-16 株式会社トーキン Permanent magnet, method for manufacturing same, and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159709A (en) * 1985-09-17 1986-07-19 Kaneo Mori Permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159709A (en) * 1985-09-17 1986-07-19 Kaneo Mori Permanent magnet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852246B2 (en) 1999-06-11 2005-02-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6855265B2 (en) 2000-01-07 2005-02-15 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
KR100367437B1 (en) * 2000-01-14 2003-01-10 세이코 엡슨 가부시키가이샤 Magnetic powder and isotropic bonded magnet
WO2003085147A1 (en) * 2002-04-09 2003-10-16 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
US6955729B2 (en) 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet
WO2004003245A1 (en) * 2002-06-28 2004-01-08 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
WO2022124344A1 (en) * 2020-12-08 2022-06-16 株式会社トーキン Permanent magnet, method for manufacturing same, and device

Also Published As

Publication number Publication date
JP3003979B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JP2843379B2 (en) Isotropic heat-resistant bonded magnet, method of manufacturing the same, magnetic powder using the same, and PM-type motor using the same
JPH01103805A (en) Permanent magnet
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JP2727505B2 (en) Permanent magnet and manufacturing method thereof
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JP3003979B2 (en) Permanent magnet and method for manufacturing the same
US4854979A (en) Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal
JP3411663B2 (en) Permanent magnet alloy, permanent magnet alloy powder and method for producing the same
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
JPH01100242A (en) Permanent magnetic material
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JPH0696926A (en) Resin-bonded rare-earth-cobalt magnet
JPH02201903A (en) Permanent magnet powder
JPH02201902A (en) Permanent magnet
JP3519438B2 (en) Rare earth magnet alloy powder and its production method
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JP3238779B2 (en) Rare earth magnet alloy powder and its manufacturing method
JP2746111B2 (en) Alloy for permanent magnet
JP3040895B2 (en) Rare earth bonded magnet and its manufacturing method
JPH0613212A (en) Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980414

EXPY Cancellation because of completion of term