JP7444075B2 - Drive control device, motor drive device and power steering device - Google Patents

Drive control device, motor drive device and power steering device Download PDF

Info

Publication number
JP7444075B2
JP7444075B2 JP2020563032A JP2020563032A JP7444075B2 JP 7444075 B2 JP7444075 B2 JP 7444075B2 JP 2020563032 A JP2020563032 A JP 2020563032A JP 2020563032 A JP2020563032 A JP 2020563032A JP 7444075 B2 JP7444075 B2 JP 7444075B2
Authority
JP
Japan
Prior art keywords
motor
frequency
drive
control
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020563032A
Other languages
Japanese (ja)
Other versions
JPWO2020137511A1 (en
Inventor
香織 鍋師
高志 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Publication of JPWO2020137511A1 publication Critical patent/JPWO2020137511A1/en
Application granted granted Critical
Publication of JP7444075B2 publication Critical patent/JP7444075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Power Steering Mechanism (AREA)

Description

本発明は、駆動制御装置、モータ駆動装置およびパワーステアリング装置に関する。 The present invention relates to a drive control device, a motor drive device, and a power steering device.

従来、n相の巻線(コイル)を有し、それらのコイル相互間が無結線の無結線モータが知られる。また、このような無結線モータの駆動方法としては、各相のコイルの両端にインバータが接続されたフルブリッジと称される駆動システムが知られる。フルブリッジによる無結線モータの駆動では、通常時は二つのインバータで駆動し、異常時には一方のインバータを中性点に切り替えて三相制御を行うことができる。そして、故障率の低減の観点から二つのインバータを二つの制御回路にて制御する構造が知られている。 例えば特許文献1では、第1制御部は、第1インバータの駆動を制御し、第2制御部は、第2インバータの駆動を制御する。 Conventionally, wireless motors are known that have n-phase windings (coils) and have no wires between the coils. Furthermore, as a method for driving such a wireless motor, a drive system called a full bridge in which an inverter is connected to both ends of a coil of each phase is known. When driving a wireless motor using a full bridge, it is normally driven by two inverters, and in the event of an abnormality, one inverter can be switched to the neutral point to perform three-phase control. From the viewpoint of reducing the failure rate, a structure is known in which two inverters are controlled by two control circuits. For example, in Patent Document 1, a first control section controls driving of a first inverter, and a second control section controls driving of a second inverter.

特開2016-073097号公報Japanese Patent Application Publication No. 2016-073097

故障率低減の観点から考えると、制御回路間で共有した回路部分がない独立駆動の方が好ましい。しかし、フルブリッジの駆動システムの場合、各制御回路におけるPMWキャリアの信号において周波数の同期がずれるとモータのトルクリップルが悪化してしまい騒音や振動などといった不具合の原因となる。 そこで、本発明は、各制御回路の独立性を確保しつつ、トルクリップルによる不具合の低減を図ることを目的の一つとする。 From the viewpoint of reducing the failure rate, it is preferable to use independent drive in which there are no shared circuit parts between the control circuits. However, in the case of a full-bridge drive system, if the frequencies of the PMW carrier signals in each control circuit are out of synchronization, the torque ripple of the motor worsens, causing problems such as noise and vibration. Therefore, one of the objects of the present invention is to reduce the problems caused by torque ripple while ensuring the independence of each control circuit.

本発明に係る駆動制御装置の一態様は、モータの駆動を制御する駆動制御装置であって、上記モータの巻線の一端に接続される第1インバータと、上記一端に対する他端に接続される第2インバータと、上記第1インバータに対してPWM制御を行う第1制御回路と、上記第2インバータに対してPWM制御を行う第2制御回路と、を備え、上記第1制御回路と上記第2制御回路とでは、PWM制御のキャリア信号の周波数が、上記モータの最大回転数と極対数との積以上の周波数差を有する。 また、本発明に係るモータ駆動装置の一態様は、上記駆動制御装置と、上記駆動制御装置によって駆動が制御されるモータと、を備える。 One aspect of the drive control device according to the present invention is a drive control device that controls the drive of a motor, and includes a first inverter connected to one end of the winding of the motor, and a first inverter connected to the other end of the winding of the motor. a second inverter; a first control circuit that performs PWM control on the first inverter; and a second control circuit that performs PWM control on the second inverter; In the two control circuits, the frequency of the PWM control carrier signal has a frequency difference that is greater than or equal to the product of the maximum rotation speed of the motor and the number of pole pairs. Moreover, one aspect of the motor drive device according to the present invention includes the drive control device described above and a motor whose drive is controlled by the drive control device.

また、本発明に係るパワーステアリング装置の一態様は、上記駆動制御装置と、上記駆動制御装置によって駆動が制御されるモータと、上記モータによって駆動されるパワーステアリング機構と、を備える。 Moreover, one aspect of the power steering device according to the present invention includes the drive control device, a motor whose drive is controlled by the drive control device, and a power steering mechanism driven by the motor.

本発明によれば、各制御回路の独立性が確保されつつ、トルクリップルによる不具合の低減が図られる。 According to the present invention, the independence of each control circuit is ensured, and problems caused by torque ripple can be reduced.

図1は、本実施形態によるモータ駆動ユニットの典型的なブロック構成を模式的に示す図である。FIG. 1 is a diagram schematically showing a typical block configuration of a motor drive unit according to this embodiment. 図2は、本実施形態によるモータ駆動ユニットの典型的な回路構成を模式的に示す図である。FIG. 2 is a diagram schematically showing a typical circuit configuration of the motor drive unit according to this embodiment. 図3は、モータの各相の各コイルに流れる電流値を示す図である。FIG. 3 is a diagram showing the current values flowing through each coil of each phase of the motor. 図4は、PWM制御の下でのスイッチング動作における電圧印加の状態を模式的に示す図である。FIG. 4 is a diagram schematically showing a state of voltage application in a switching operation under PWM control. 図5は、PWM制御の下でのスイッチング動作における印加停止の状態を模式的に示す図である。FIG. 5 is a diagram schematically showing a state in which application is stopped in a switching operation under PWM control. 図6は、PWM信号を示す図である。FIG. 6 is a diagram showing a PWM signal. 図7は、第1~第4テストの結果を示すグラフである。FIG. 7 is a graph showing the results of the first to fourth tests. 図8は、第5~第11テストの結果を示すグラフである。FIG. 8 is a graph showing the results of the fifth to eleventh tests. 図9は、回路配線が異なる変形例におけるモータ駆動ユニットの回路構成を示す図である。FIG. 9 is a diagram showing a circuit configuration of a motor drive unit in a modified example with different circuit wiring. 図10は、本実施形態による電動パワーステアリング装置の構成を模式的に示す図である。FIG. 10 is a diagram schematically showing the configuration of the electric power steering device according to this embodiment.

以下、添付の図面を参照しながら、本開示の駆動制御装置、駆動装置およびパワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a drive control device, a drive device, and a power steering device of the present disclosure will be described in detail with reference to the accompanying drawings. However, in order to avoid the following explanation from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted.

本明細書において、電源からの電力を、三相(U相、V相、W相)の巻線(「コイル」と表記する場合がある。)を有する三相モータに供給する駆動制御装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する駆動制御装置も本開示の範疇である。

(モータ駆動ユニット1000の構造)

図1は、本実施形態によるモータ駆動ユニット1000のブロック構成を模式的に示す図である。 モータ駆動ユニット1000は、インバータ101、102、モータ200および制御回路301、302を備える。
In this specification, a drive control device that supplies power from a power source to a three-phase motor having three-phase (U-phase, V-phase, W-phase) windings (sometimes referred to as "coils") is referred to as By way of example, embodiments of the present disclosure will be described. However, the scope of the present disclosure also includes a drive control device that supplies power from a power source to an n-phase motor having n-phase (n is an integer of 4 or more) windings, such as four-phase or five-phase windings.

(Structure of motor drive unit 1000)

FIG. 1 is a diagram schematically showing a block configuration of a motor drive unit 1000 according to this embodiment. Motor drive unit 1000 includes inverters 101 and 102, motor 200, and control circuits 301 and 302.

本明細書では、構成要素としてモータ200を備えるモータ駆動ユニット1000を説明する。モータ200を備えるモータ駆動ユニット1000は、本発明の駆動装置の一例に相当する。ただし、モータ駆動ユニット1000は、構成要素としてモータ200が省かれた、モータ200を駆動するための装置であってもよい。モータ200が省かれたモータ駆動ユニット1000は、本発明の駆動制御装置の一例に相当する。 In this specification, a motor drive unit 1000 including a motor 200 as a component will be described. A motor drive unit 1000 including a motor 200 corresponds to an example of a drive device of the present invention. However, the motor drive unit 1000 may be a device for driving the motor 200 without the motor 200 as a component. The motor drive unit 1000 without the motor 200 corresponds to an example of the drive control device of the present invention.

モータ駆動ユニット1000は、2つのインバータ101、102によって、電源(図2の403、404)からの電力を、モータ200に供給する電力に変換する。インバータ101、102は、例えば直流電力を、U相、V相およびW相の擬似正弦波である三相交流電力に変換することが可能である。2つのインバータ101、102は、それぞれ電流センサ401、402を備える。 Motor drive unit 1000 uses two inverters 101 and 102 to convert power from a power source (403 and 404 in FIG. 2) into power that is supplied to motor 200. The inverters 101 and 102 can convert, for example, DC power into three-phase AC power that is a pseudo sine wave of U-phase, V-phase, and W-phase. The two inverters 101 and 102 include current sensors 401 and 402, respectively.

モータ200は、例えば三相交流モータである。モータ200は、U相、V相およびW相のコイルを有する。コイルの巻き方は、例えば集中巻きまたは分布巻きである。 Motor 200 is, for example, a three-phase AC motor. Motor 200 has U-phase, V-phase, and W-phase coils. The winding method of the coil is, for example, concentrated winding or distributed winding.

第1インバータ101は、モータ200のコイルの一端210に接続されて当該一端210に駆動電圧を印加し、第2インバータ102は、モータ200のコイルの他端220に接続されて当該他端220に駆動電圧を印加する。本明細書において、部品(構成要素)同士の「接続」とは、特に断らない限り電気的な接続を意味する。 The first inverter 101 is connected to one end 210 of the coil of the motor 200 and applies a driving voltage to the one end 210, and the second inverter 102 is connected to the other end 220 of the coil of the motor 200 and applies a driving voltage to the other end 220. Apply driving voltage. In this specification, "connection" between parts (components) means electrical connection unless otherwise specified.

制御回路301、302は、後で詳述するようにマイクロコントローラ341、342などを備える。制御回路301、302は、電流センサ401、402および角度センサ321、322からの入力信号に基づいてインバータ101、102の駆動電圧を制御する。制御回路301、302によるインバータ101、102の制御手法としては、例えばベクトル制御、直接トルク制御(DTC)から選択された制御手法が用いられる。 図2を参照して、モータ駆動ユニット1000の具体的な回路構成を説明する。 図2は、本実施形態によるモータ駆動ユニット1000の回路構成を模式的に示す図である。 The control circuits 301, 302 include microcontrollers 341, 342, etc., as will be detailed later. Control circuits 301 and 302 control drive voltages of inverters 101 and 102 based on input signals from current sensors 401 and 402 and angle sensors 321 and 322. As a control method for the inverters 101 and 102 by the control circuits 301 and 302, for example, a control method selected from vector control and direct torque control (DTC) is used. A specific circuit configuration of motor drive unit 1000 will be described with reference to FIG. 2. FIG. 2 is a diagram schematically showing the circuit configuration of the motor drive unit 1000 according to this embodiment.

モータ駆動ユニット1000はそれぞれ独立した第1電源403および第2電源404に接続される。電源403、404は所定の電源電圧(例えば12V)を生成する。電源403、404として、例えば直流電源が用いられる。ただし、電源403、404は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。図2では、一例として、第1インバータ101用の第1電源403および第2インバータ102用の第2電源404が示されるが、モータ駆動ユニット1000は、第1インバータ101および第2インバータ102に共通の単一電源に接続されてもよい。また、モータ駆動ユニット1000は、内部に電源を備えていてもよい。 Motor drive unit 1000 is connected to independent first power source 403 and second power source 404, respectively. Power supplies 403 and 404 generate a predetermined power supply voltage (for example, 12V). As the power supplies 403 and 404, for example, a DC power supply is used. However, the power supplies 403 and 404 may be AC-DC converters or DC-DC converters, or may be batteries (storage batteries). In FIG. 2, a first power source 403 for the first inverter 101 and a second power source 404 for the second inverter 102 are shown as an example, but the motor drive unit 1000 is common to the first inverter 101 and the second inverter 102. may be connected to a single power source. Further, the motor drive unit 1000 may include an internal power source.

モータ駆動ユニット1000は、モータ200の一端210側に対応した第1系統と、モータ200の他端220側に対応した第2系統とを備える。第1系統には、第1インバータ101と第1の制御回路301が含まれる。第2系統には、第2インバータ102と第2の制御回路302が含まれる。第1系統のインバータ101および制御回路301は第1電源403から電力を供給される。第2系統のインバータ102および制御回路302は第2電源404から電力を供給される。 The motor drive unit 1000 includes a first system corresponding to one end 210 side of the motor 200 and a second system corresponding to the other end 220 side of the motor 200. The first system includes a first inverter 101 and a first control circuit 301. The second system includes a second inverter 102 and a second control circuit 302. The first system inverter 101 and control circuit 301 are supplied with power from a first power supply 403 . The second system inverter 102 and control circuit 302 are supplied with power from a second power supply 404.

第1インバータ101は、3個のレグを有するブリッジ回路を備える。第1インバータ101の各レグは、電源とモータ200との間に接続されたハイサイドスイッチ素子およびモータ200とグランドとの間に接続されたローサイドスイッチ素子を備える。具体的には、U相用レグは、ハイサイドスイッチ素子113Hおよびローサイドスイッチ素子113Lを備える。V相用レグは、ハイサイドスイッチ素子114Hおよびローサイドスイッチ素子114Lを備える。W相用レグは、ハイサイドスイッチ素子115Hおよびローサイドスイッチ素子115Lを備える。スイッチ素子としては、例えば電界効果トランジスタ(MOSFETなど)または絶縁ゲートバイポーラトランジスタ(IGBTなど)が用いられる。なお、スイッチ素子がIGBTである場合には、スイッチ素子と逆並列にダイオード(フリーホイール)が接続される。 The first inverter 101 includes a bridge circuit having three legs. Each leg of the first inverter 101 includes a high-side switch element connected between the power source and the motor 200 and a low-side switch element connected between the motor 200 and ground. Specifically, the U-phase leg includes a high-side switch element 113H and a low-side switch element 113L. The V-phase leg includes a high-side switch element 114H and a low-side switch element 114L. The W-phase leg includes a high-side switch element 115H and a low-side switch element 115L. As the switch element, for example, a field effect transistor (MOSFET or the like) or an insulated gate bipolar transistor (IGBT or the like) is used. Note that when the switch element is an IGBT, a diode (freewheel) is connected antiparallel to the switch element.

第1インバータ101は、例えば、U相、V相およびW相の各相の巻線に流れる電流を検出するための電流センサ401(図1を参照)として、シャント抵抗113R、114Rおよび115Rをそれぞれ各レグに備える。電流センサ401は、各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を備える。例えば、シャント抵抗は、ローサイドスイッチ素子113L、114Lおよび115Lとグランドとの間に接続され得る。シャント抵抗の抵抗値は、例えば0.5mΩ~1.0mΩ程度である。 For example, the first inverter 101 uses shunt resistors 113R, 114R, and 115R as current sensors 401 (see FIG. 1) for detecting the current flowing through the windings of each of the U-phase, V-phase, and W-phase. Prepare for each leg. The current sensor 401 includes a current detection circuit (not shown) that detects the current flowing through each shunt resistor. For example, a shunt resistor may be connected between low-side switch elements 113L, 114L, and 115L and ground. The resistance value of the shunt resistor is, for example, about 0.5 mΩ to 1.0 mΩ.

シャント抵抗の数は3つ以外でもよい。例えば、U相、V相用の2つのシャント抵抗113R、114R、V相、W相用の2つのシャント抵抗114R、115R、または、U相、W相用の2つのシャント抵抗113R、115Rが用いられてもよい。使用されるシャント抵抗の数およびシャント抵抗の配置は、製品コストおよび設計仕様などが考慮されて適宜決定される。 The number of shunt resistors may be other than three. For example, two shunt resistors 113R and 114R for U phase and V phase, two shunt resistors 114R and 115R for V phase and W phase, or two shunt resistors 113R and 115R for U phase and W phase are used. It's okay to be hit. The number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of product cost, design specifications, and the like.

第2インバータ102は、3個のレグを有するブリッジ回路を備える。第2インバータ102の各レグは、電源とモータ200との間に接続されたハイサイドスイッチ素子およびモータ200とグランドとの間に接続されたローサイドスイッチ素子を備える。具体的には、U相用レグは、ハイサイドスイッチ素子116Hおよびローサイドスイッチ素子116Lを備える。V相用レグは、ハイサイドスイッチ素子117Hおよびローサイドスイッチ素子117Lを備える。W相用レグは、ハイサイドスイッチ素子118Hおよびローサイドスイッチ素子118Lを備える。第1インバータ101と同様に、第2インバータ102は、例えば、シャント抵抗116R、117Rおよび118Rを備える。 The second inverter 102 includes a bridge circuit having three legs. Each leg of the second inverter 102 includes a high-side switch element connected between the power source and the motor 200 and a low-side switch element connected between the motor 200 and ground. Specifically, the U-phase leg includes a high-side switch element 116H and a low-side switch element 116L. The V-phase leg includes a high side switch element 117H and a low side switch element 117L. The W-phase leg includes a high-side switch element 118H and a low-side switch element 118L. Similar to the first inverter 101, the second inverter 102 includes, for example, shunt resistors 116R, 117R, and 118R.

モータ駆動ユニット1000はコンデンサ105、106を備える。コンデンサ105、106は、いわゆる平滑コンデンサであり、モータ200で発生する環流電流を吸収することで電源電圧を安定化させてトルクリップルを抑制する。コンデンサ105、106は、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。 Motor drive unit 1000 includes capacitors 105 and 106. The capacitors 105 and 106 are so-called smoothing capacitors, and absorb the circulating current generated by the motor 200 to stabilize the power supply voltage and suppress torque ripple. The capacitors 105 and 106 are, for example, electrolytic capacitors, and the capacity and number of capacitors to be used are appropriately determined based on design specifications and the like.

再び図1を参照する。制御回路301、302は、例えば、電源回路311、312と、角度センサ321、322と、入力回路331、332と、マイクロコントローラ341、342と、駆動回路351、352と、ROM361、362とを備える。制御回路301、302はインバータ101、102に接続される。そして、第1制御回路301は第1インバータ101を制御し、第2制御回路302は第2インバータ102を制御する。 Referring again to FIG. The control circuits 301 and 302 include, for example, power supply circuits 311 and 312, angle sensors 321 and 322, input circuits 331 and 332, microcontrollers 341 and 342, drive circuits 351 and 352, and ROMs 361 and 362. . Control circuits 301 and 302 are connected to inverters 101 and 102. The first control circuit 301 controls the first inverter 101 and the second control circuit 302 controls the second inverter 102.

制御回路301、302は、目的とするロータの位置(回転角)、回転速度、および電流などを制御してクローズドループ制御を実現することができる。回転速度は、例えば、回転角(rad)を時間微分することにより得られ、単位時間(例えば1分間)にロータが回転する回転数(rpm)で表される。制御回路301、302は、目的とするモータトルクを制御することも可能である。制御回路301、302は、トルク制御のためにトルクセンサを備えてもよいがトルクセンサが省かれていてもトルク制御は可能である。また、角度センサ321、322に変えてセンサレスアルゴリズムを備えてもよい。 電源回路311、312は、制御回路301、302内の各ブロックに必要なDC電圧(例えば3V、5V)を生成する。 The control circuits 301 and 302 can realize closed-loop control by controlling the target rotor position (rotation angle), rotation speed, current, and the like. The rotation speed is obtained, for example, by differentiating the rotation angle (rad) with respect to time, and is expressed by the number of rotations (rpm) at which the rotor rotates per unit time (for example, one minute). The control circuits 301 and 302 can also control the target motor torque. The control circuits 301 and 302 may be provided with a torque sensor for torque control, but torque control is possible even if the torque sensor is omitted. Further, instead of the angle sensors 321 and 322, a sensorless algorithm may be provided. The power supply circuits 311 and 312 generate DC voltages (for example, 3V and 5V) necessary for each block in the control circuits 301 and 302.

角度センサ321、322は、例えばレゾルバまたはホールICである。角度センサ321、322は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ321、322は、モータ200のロータの回転角を検出し、検出した回転角を表した回転信号をマイクロコントローラ341、342に出力する。モータ制御手法(例えばセンサレス制御)によっては、角度センサ321、322は省かれる場合がある。 The angle sensors 321 and 322 are, for example, resolvers or Hall ICs. The angle sensors 321, 322 are also realized by a combination of a magnetoresistive (MR) sensor having an MR element and a sensor magnet. The angle sensors 321 and 322 detect the rotation angle of the rotor of the motor 200 and output rotation signals representing the detected rotation angle to the microcontrollers 341 and 342. Depending on the motor control method (for example, sensorless control), the angle sensors 321 and 322 may be omitted.

入力回路331、332は、電流センサ401、402によって検出されたモータ電流値(以下、「実電流値」と表記する。)を受け取る。入力回路331、332は、マイクロコントローラ341、342の入力レベルに実電流値のレベルを必要に応じて変換し、実電流値をマイクロコントローラ341、342に出力する。入力回路331、332は、アナログデジタル変換回路である。 Input circuits 331 and 332 receive motor current values (hereinafter referred to as "actual current values") detected by current sensors 401 and 402. The input circuits 331 and 332 convert the level of the actual current value to the input level of the microcontrollers 341 and 342 as necessary, and output the actual current value to the microcontrollers 341 and 342. Input circuits 331 and 332 are analog-to-digital conversion circuits.

マイクロコントローラ341、342は、角度センサ321、322によって検出されたロータの回転信号を受信するとともに、入力回路331、332から出力された実電流値を受信する。マイクロコントローラ341、342は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、生成したPWM信号を駆動回路351、352に出力する。例えば、マイクロコントローラ341、342は、インバータ101、102における各スイッチ素子のスイッチング動作(ターンオンまたはターンオフ)を制御するためのPWM信号を生成する。 The microcontrollers 341 and 342 receive the rotor rotation signals detected by the angle sensors 321 and 322, and also receive the actual current values output from the input circuits 331 and 332. The microcontrollers 341 and 342 set a target current value according to the actual current value and the rotor rotation signal, generate a PWM signal, and output the generated PWM signal to the drive circuits 351 and 352. For example, the microcontrollers 341 and 342 generate PWM signals for controlling the switching operation (turn-on or turn-off) of each switch element in the inverters 101 and 102.

各マイクロコントローラ341、342には内部クロック371、372が備えられる。各マイクロコントローラ341、342におけるPWM信号の生成は、内部クロック371、372からのクロック信号に従って実行される。即ち、各マイクロコントローラ341、342は、内部クロック371、372の振動子から得られるクロック信号を周波数変換してPWM制御のキャリア信号を生成する。 Each microcontroller 341, 342 is provided with an internal clock 371, 372. Generation of PWM signals in each microcontroller 341, 342 is performed according to clock signals from internal clocks 371, 372. That is, each microcontroller 341, 342 converts the frequency of the clock signal obtained from the oscillator of the internal clock 371, 372 to generate a carrier signal for PWM control.

各マイクロコントローラ341、342が生成するPWM信号の基本周波数(即ちPWM制御におけるキャリア信号の周波数)は、マイクロコントローラ341、342同士で例えば1kHzといった周波数差を有する。この結果、後で詳述するように、周波数差によるトルクリップルが生じるとしても十分に高周波の領域で生じる。従って、トルクリップルに伴う騒音や振動などが、人の感知可能な周波数領域から外れ、人にとって不快な音や振動が抑制されることになる。 The fundamental frequency of the PWM signal (that is, the frequency of the carrier signal in PWM control) generated by each microcontroller 341, 342 has a frequency difference of, for example, 1 kHz between the microcontrollers 341, 342. As a result, as will be described in detail later, even if torque ripple occurs due to the frequency difference, it occurs in a sufficiently high frequency range. Therefore, the noise and vibrations associated with the torque ripple are out of the frequency range that humans can sense, and the noise and vibrations that are unpleasant to humans are suppressed.

駆動回路351、352は、典型的にはゲートドライバである。駆動回路351、352は、第1インバータ101および第2インバータ102における各スイッチ素子のスイッチング動作を制御する制御信号(例えば、ゲート制御信号)をPWM信号に従って生成し、生成した制御信号を各スイッチ素子に与える。 マイクロコントローラ341、342は、駆動回路351、352の機能を有していてもよい。その場合、駆動回路351、352は省かれる。 Drive circuits 351 and 352 are typically gate drivers. The drive circuits 351 and 352 generate a control signal (for example, a gate control signal) that controls the switching operation of each switch element in the first inverter 101 and the second inverter 102 according to the PWM signal, and apply the generated control signal to each switch element. give to The microcontrollers 341 and 342 may have the function of drive circuits 351 and 352. In that case, drive circuits 351 and 352 are omitted.

ROM361、362は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM361、362は、マイクロコントローラ341、342にインバータ101、102などを制御させるための命令群を含む制御プログラムを格納する。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。

(モータ駆動ユニット1000の動作)

以下、モータ駆動ユニット1000の動作の具体例を説明し、主としてインバータ101、102の動作の具体例を説明する。
The ROMs 361 and 362 are, for example, writable memory (for example, PROM), rewritable memory (for example, flash memory), or read-only memory. The ROMs 361 and 362 store control programs including a group of instructions for causing the microcontrollers 341 and 342 to control the inverters 101 and 102. For example, the control program is once expanded into a RAM (not shown) at boot time.

(Operation of motor drive unit 1000)

Hereinafter, a specific example of the operation of the motor drive unit 1000 will be explained, and a specific example of the operation of the inverters 101 and 102 will be mainly explained.

制御回路301、302は、第1インバータ101および第2インバータ102の両方を用いて三相通電制御することによってモータ200を駆動する。具体的に、制御回路301、302は、第1インバータ101のスイッチ素子と第2インバータ102のスイッチ素子とをスイッチング制御することにより三相通電制御を行う。 図3は、モータ200の各相の各コイルに流れる電流値を示す図である。 The control circuits 301 and 302 drive the motor 200 by controlling three-phase energization using both the first inverter 101 and the second inverter 102. Specifically, the control circuits 301 and 302 perform three-phase energization control by controlling switching of the switch elements of the first inverter 101 and the switch elements of the second inverter 102. FIG. 3 is a diagram showing current values flowing through each coil of each phase of the motor 200.

図3には、三相通電制御に従って第1インバータ101および第2インバータ102が制御されたときにモータ200のU相、V相およびW相の各コイルに流れる電流値をプロットして得られる電流波形(正弦波)が例示されている。図3の横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。Ipkは各相の最大電流値(ピーク電流値)を表す。なお、インバータ101、102は、図3に例示した正弦波以外に、例えば矩形波を用いてモータ200を駆動することも可能である。 FIG. 3 shows a current obtained by plotting the current values flowing through the U-phase, V-phase, and W-phase coils of the motor 200 when the first inverter 101 and the second inverter 102 are controlled according to the three-phase energization control. A waveform (sine wave) is illustrated. The horizontal axis in FIG. 3 indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A). Ipk represents the maximum current value (peak current value) of each phase. Note that the inverters 101 and 102 can also drive the motor 200 using, for example, a rectangular wave in addition to the sine wave illustrated in FIG. 3 .

図3に例示されたような電流波形は、そのような電流波形に応じた波形の電圧がモータ200に印加されることで生じる。そして、そのような電圧は、第1インバータ101のスイッチ素子と第2インバータ102のスイッチ素子がPWM制御によって例えば20kHzというような高速でスイッチングすることによって生じる。 図4および図5は、PWM制御の下でのスイッチング動作を模式的に示す図であり、図4には電圧印加の状態が示され、図5には印加停止の状態が示される。 The current waveform as illustrated in FIG. 3 is generated by applying a voltage having a waveform corresponding to such a current waveform to the motor 200. Such a voltage is generated by switching the switch elements of the first inverter 101 and the second inverter 102 at a high speed of, for example, 20 kHz under PWM control. 4 and 5 are diagrams schematically showing switching operations under PWM control, with FIG. 4 showing a state of voltage application, and FIG. 5 showing a state of stopped application.

図4および図5には、インバータ101、102が有するレグのうち例えばU相のレグが示される。上述したようにU相のレグには、第1インバータ101側のハイサイドスイッチ素子113Hおよびローサイドスイッチ素子113Lと、第2インバータ102側のハイサイドスイッチ素子116Hおよびローサイドスイッチ素子116Lとが含まれる。 4 and 5 show, for example, a U-phase leg among the legs of the inverters 101 and 102. As described above, the U-phase leg includes the high-side switch element 113H and low-side switch element 113L on the first inverter 101 side, and the high-side switch element 116H and low-side switch element 116L on the second inverter 102 side.

第1インバータ101側のハイサイドスイッチ素子113Hおよびローサイドスイッチ素子113Lは、同時にオン状態とはならず、一方がオン状態となる場合には他方はオフ状態になる。第2インバータ102側のハイサイドスイッチ素子116Hおよびローサイドスイッチ素子116Lも同様に、同時にオン状態とはならない。 The high-side switching element 113H and the low-side switching element 113L on the first inverter 101 side are not turned on at the same time, and when one is turned on, the other is turned off. Similarly, the high-side switch element 116H and the low-side switch element 116L on the second inverter 102 side are not turned on at the same time.

モータ200の巻線に電圧が印加される場合には、2つのインバータ101、102の一方(図4の場合は第2インバータ102)でハイサイドスイッチ素子113H、116Hがオン状態となり、他方(図4の場合は第1インバータ101)でローサイドスイッチ素子113L、116Lがオン状態となる。この結果、当該一方側から当該他方側へと図中の矢印のように電流が流れることになる。 When a voltage is applied to the windings of the motor 200, the high side switch elements 113H and 116H are turned on in one of the two inverters 101 and 102 (the second inverter 102 in the case of FIG. In the case of 4, the low side switch elements 113L and 116L of the first inverter 101) are turned on. As a result, current flows from the one side to the other side as indicated by the arrow in the figure.

印加停止時には、全てのスイッチ素子がオフ状態となる。オフ状態となった直後には、コンデンサ(図2の105、106)にモータ200からの環流電流が流れるが、その後は電流が流れない。また、環流電流はモータ200のトルクには寄与しない。 When the application is stopped, all switch elements are in the off state. Immediately after the capacitor is turned off, a circulating current from the motor 200 flows through the capacitors (105 and 106 in FIG. 2), but no current flows thereafter. Further, the circulating current does not contribute to the torque of the motor 200.

2つのインバータ101、102では、図4に示す電圧印加の状態と図5に示す印加停止の状態とが高速で繰り返される。インバータ101、102における電圧印加と印加停止との繰り返しは、制御回路301、302のマイクロコントローラ341、342によって生成されるPWM信号に従って実行される。 図6は、PWM信号を示す図である。 In the two inverters 101 and 102, the voltage application state shown in FIG. 4 and the voltage application stop state shown in FIG. 5 are repeated at high speed. The repetition of applying and stopping voltage application to the inverters 101 and 102 is performed according to PWM signals generated by the microcontrollers 341 and 342 of the control circuits 301 and 302. FIG. 6 is a diagram showing a PWM signal.

PWM信号は2値のパルス信号であり、電圧印加を表す第1値と印加停止を表す第2値とが交互に生じる。PWM信号のパルスは周期T0で繰り返され、周期T0は第1値の継続時間T1と第2値の継続時間T2とに案分される。 The PWM signal is a binary pulse signal, and a first value indicating voltage application and a second value indicating stopping of voltage application occur alternately. The pulses of the PWM signal are repeated with a period T0, and the period T0 is divided into a duration T1 of the first value and a duration T2 of the second value.

PWM信号は上述した様に例えば20kHzといった高周波数の信号であるため周期T0は例えば50μ秒といった短周期となる。従って、モータ200に印加される実効的な電圧(実効電圧)は、周期T0で均された電圧となり、周期T0と第1値の継続時間T1との比(デューティー)が電源電圧と実効電圧との比に等しい。実効電圧は、例えば図3に示す電流波形のように変化する電流値に対応して時間変化する電圧である。実効電圧のそのような時間変化は、マイクロコントローラ341、342によってPWM信号のデューティーが制御されることで実現される。 As described above, the PWM signal is a high frequency signal of, for example, 20 kHz, so the period T0 is a short period of, for example, 50 μsec. Therefore, the effective voltage (effective voltage) applied to the motor 200 is a voltage equalized by the period T0, and the ratio (duty) between the period T0 and the duration T1 of the first value is equal to the power supply voltage and the effective voltage. is equal to the ratio of The effective voltage is a voltage that changes over time in response to a changing current value, such as the current waveform shown in FIG. 3, for example. Such a temporal change in the effective voltage is realized by controlling the duty of the PWM signal by the microcontrollers 341 and 342.

2つのマイクロコントローラ341、342それぞれが周期T0のキャリア信号を生成し、そのキャリア信号に基づいてPWM信号を生成するが、上述した様にマイクロコントローラ341、342同士ではキャリア信号の周波数に差がある。このため、マイクロコントローラ341、342同士で周期T0が不一致となり、PWM信号同士の周波数の同期がズレる。このような同期ズレはモータ200でトルクリップルを生じる。 ここで、PWM信号同士の周波数差で生じるトルクリップルのシミュレーションテストについて説明する。 表1には、第1テストから第4テストまでのテスト条件が示される。 Each of the two microcontrollers 341 and 342 generates a carrier signal with a period T0 and generates a PWM signal based on the carrier signal, but as described above, there is a difference in the frequency of the carrier signal between the microcontrollers 341 and 342. . Therefore, the cycles T0 of the microcontrollers 341 and 342 do not match, and the frequencies of the PWM signals become out of synchronization. Such a synchronization difference causes torque ripple in the motor 200. Here, a simulation test of torque ripple caused by a frequency difference between PWM signals will be explained. Table 1 shows test conditions from the first test to the fourth test.

Figure 0007444075000001
Figure 0007444075000001

第1~第4テストでは、第1インバータ101を駆動するために第1制御回路301のマイクロコントローラ341で生成されるPWM信号の周波数(第1系統の周波数)が20kHzに固定される。そして、第2インバータ102を駆動するために第2制御回路302のマイクロコントローラ342で生成されるPWM信号の周波数(第2系統の周波数)が変更される。 第1テストでは、第2系統の周波数が19.95kHzに設定され、第1系統と第2系統との周波数差は50Hzとなる。 第2テストでは、第2系統の周波数が19.995kHzに設定され、第1系統と第2系統との周波数差は5Hzとなる。 第3テストでは、第2系統の周波数が19.9995kHzに設定され、第1系統と第2系統との周波数差は0.5Hzとなる。 第4テストでは、第2系統の周波数が19.99995kHzに設定され、第1系統と第2系統との周波数差は0.05Hzとなる。 図7は、第1~第4テストの結果を示すグラフである。 図7には3次元グラフが示され、高さ軸はトルク強度を表し、左奥方向の軸は周波数を表し、右奥方向の軸はテスト番号を表す。 グラフ中の500Hz付近にある大きなピークは、モータの回転数に相当する周波数成分のピークでありトルクリップルではない。 In the first to fourth tests, the frequency of the PWM signal (first system frequency) generated by the microcontroller 341 of the first control circuit 301 to drive the first inverter 101 is fixed at 20 kHz. Then, in order to drive the second inverter 102, the frequency of the PWM signal (second system frequency) generated by the microcontroller 342 of the second control circuit 302 is changed. In the first test, the frequency of the second system is set to 19.95 kHz, and the frequency difference between the first system and the second system is 50 Hz. In the second test, the frequency of the second system is set to 19.995 kHz, and the frequency difference between the first system and the second system is 5 Hz. In the third test, the frequency of the second system is set to 19.9995 kHz, and the frequency difference between the first system and the second system is 0.5 Hz. In the fourth test, the frequency of the second system is set to 19.99995 kHz, and the frequency difference between the first system and the second system is 0.05 Hz. FIG. 7 is a graph showing the results of the first to fourth tests. A three-dimensional graph is shown in FIG. 7, in which the height axis represents torque intensity, the axis toward the left represents frequency, and the axis toward the rear right represents test number. The large peak near 500 Hz in the graph is a peak of a frequency component corresponding to the rotation speed of the motor, and is not a torque ripple.

第1テストの結果を表すグラフには、数百Hzの周波数領域に多くのピークがあり、周波数差の2倍に相当する100Hzの位置のピークが特に大きい。第1テストの条件では、この大きなピークに相当する大きなトルクリップルを生じることが分かる。 The graph representing the results of the first test has many peaks in the frequency range of several hundred Hz, and the peak at a position of 100 Hz, which corresponds to twice the frequency difference, is particularly large. It can be seen that under the conditions of the first test, a large torque ripple corresponding to this large peak occurs.

第2~第4テストでは、数百Hzの周波数領域には大きなピークが生じない。従って、周波数差が5Hz程度以下になればトルクリップルはほぼ生じないことが分かる。しかしながら、例えば水晶振動子によるクロック素子の場合、水晶振動子の個体差などによって例えば10Hz以上の周波数差は容易に生じ、独立したマイクロコントローラ341、342同士で周波数を5Hz程度以下に抑えることは難しい。そこで、逆に周波数差を広げたシミュレーションテストを行った。 表2には、第5テストから第11テストまでのテスト条件が示される。 In the second to fourth tests, no large peaks occur in the frequency range of several hundred Hz. Therefore, it can be seen that torque ripple hardly occurs when the frequency difference is about 5 Hz or less. However, in the case of a clock element using a crystal oscillator, for example, a frequency difference of 10 Hz or more easily occurs due to individual differences in the crystal oscillators, and it is difficult to suppress the frequency between the independent microcontrollers 341 and 342 to about 5 Hz or less. . Therefore, we conducted a simulation test in which the frequency difference was widened. Table 2 shows test conditions from the 5th test to the 11th test.

Figure 0007444075000002
Figure 0007444075000002

第5テストでは、第1系統の周波数と第2系統の周波数がいずれも基本周波数の20.0kHzに設定され、第1系統と第2系統との周波数差は0Hzとなる。即ち、第1系統と第2系統とでPWM信号の周波数が完全に同期する。 In the fifth test, the frequency of the first system and the frequency of the second system are both set to the fundamental frequency of 20.0 kHz, and the frequency difference between the first system and the second system is 0 Hz. That is, the frequencies of the PWM signals in the first system and the second system are completely synchronized.

第6テストでは、第1系統の周波数が基本周波数に対して+1000Hzの21.0kHzに設定され、第2系統の周波数が基本周波数の20.0kHzに設定される。 In the sixth test, the frequency of the first system is set to 21.0 kHz, which is +1000 Hz with respect to the fundamental frequency, and the frequency of the second system is set to 20.0 kHz, which is the fundamental frequency.

第7テストでは、第1系統の周波数が基本周波数の20.0kHzに設定され、第2系統の周波数が基本周波数に対して-1000Hzの19.0kHzに設定される。 In the seventh test, the frequency of the first system is set to 20.0 kHz, which is the fundamental frequency, and the frequency of the second system is set to 19.0 kHz, which is -1000 Hz with respect to the fundamental frequency.

第8テストでは、第1系統の周波数が基本周波数に対して+500Hzの20.5kHzに設定され、第2系統の周波数が基本周波数の20.0kHzに設定される。 In the eighth test, the frequency of the first system is set to 20.5 kHz, which is +500 Hz with respect to the fundamental frequency, and the frequency of the second system is set to 20.0 kHz, which is the fundamental frequency.

第9テストでは、第1系統の周波数が基本周波数の20.0kHzに設定され、第2系統の周波数が基本周波数に対して-500Hzの19.5kHzに設定される。 In the ninth test, the frequency of the first system is set to the fundamental frequency of 20.0 kHz, and the frequency of the second system is set to 19.5 kHz, which is -500 Hz with respect to the fundamental frequency.

第10テストでは、第1系統の周波数が基本周波数に対して+100Hzの20.1kHzに設定され、第2系統の周波数が基本周波数の20.0kHzに設定される。 In the tenth test, the frequency of the first system is set to 20.1 kHz, which is +100 Hz with respect to the fundamental frequency, and the frequency of the second system is set to 20.0 kHz, which is the fundamental frequency.

第11テストでは、第1系統の周波数が基本周波数の20.0kHzに設定され、第2系統の周波数が基本周波数に対して-100Hzの19.9kHzに設定される。 図8は、第5~第11テストの結果を示すグラフである。 図8にも3次元グラフが示され、高さ軸はトルク強度を表し、左奥方向の軸は周波数を表し、右奥方向の軸はテスト番号を表す。 図8でも、グラフ中の500Hz付近にある大きなピークは、モータの回転数に相当する周波数成分のピークでありトルクリップルではない。 第5テストの結果を表すグラフには、数百Hzの周波数領域に特段のピークが生じない。従って、周波数が同期すればトルクリップルは生じないことが分かる。 In the 11th test, the frequency of the first system is set to the fundamental frequency of 20.0 kHz, and the frequency of the second system is set to 19.9 kHz, which is -100 Hz with respect to the fundamental frequency. FIG. 8 is a graph showing the results of the fifth to eleventh tests. A three-dimensional graph is also shown in FIG. 8, in which the height axis represents the torque intensity, the axis toward the far left represents the frequency, and the axis toward the far right represents the test number. Also in FIG. 8, the large peak near 500 Hz in the graph is a peak of a frequency component corresponding to the rotational speed of the motor, and is not a torque ripple. In the graph representing the results of the fifth test, no particular peak occurs in the frequency range of several hundred Hz. Therefore, it can be seen that torque ripple does not occur if the frequencies are synchronized.

第10テストおよび第11テストの結果を表すグラフには、数百Hzの周波数領域に多くのピークがあり、周波数差の2倍に相当する200Hzの位置のピークが特に大きい。第10テストおよび第11テストの条件では、この大きなピークに相当する大きなトルクリップルが生じることが分かる。 The graphs representing the results of the 10th test and the 11th test have many peaks in the frequency range of several hundred Hz, and the peak at a position of 200 Hz, which corresponds to twice the frequency difference, is particularly large. It can be seen that under the conditions of the 10th test and the 11th test, a large torque ripple corresponding to this large peak occurs.

第6~第9テストでは、数百Hzの周波数領域には大きなピークが生じない。第8~第9テストの場合、周波数差の2倍は1kHzであり、グラフ中には1kHzの位置にある程度大きなピークが生じる。そして、このピークに相当するトルクリップルが生じることになる。しかしながら、1kHzの振動は人間の感覚域を外れた振動であるため、トルクリップルに伴う騒音などの不具合は抑制されることになる。第6~第7テストでは、周波数差の2倍は2kHzであり、騒音などは人間の感覚域を更に外れる。 In the 6th to 9th tests, no large peaks occur in the frequency range of several hundred Hz. In the case of the eighth to ninth tests, twice the frequency difference is 1 kHz, and a somewhat large peak appears at the 1 kHz position in the graph. Then, a torque ripple corresponding to this peak will occur. However, since 1 kHz vibration is outside the range of human senses, problems such as noise associated with torque ripple can be suppressed. In the 6th and 7th tests, twice the frequency difference is 2kHz, and noise is further out of the human sense range.

例えばパワーステアリング装置などに用いられる場合、モータ200の回転数は状況に応じて変化する。このようにモータの回転数が変化した結果、モータ200の回転数とトルクリップルの振動数が重なると、モータの駆動制御に乱れが生じる虞がある。 For example, when used in a power steering device, the rotation speed of the motor 200 changes depending on the situation. As a result of the change in the rotation speed of the motor, if the rotation speed of the motor 200 and the frequency of the torque ripple overlap, there is a possibility that the drive control of the motor will be disturbed.

第1系統と第2系統とで、PWM制御のキャリア信号の周波数が、モータ200の最大回転数と極対数との積以上の周波数差を有すると、周波数差の2n倍(nは自然数)に生じるトルクリップルの周波数は、モータ200の回転数から外れると共に人間の感覚域も外れる。この結果、トルクリップルに伴う騒音や振動や制御乱れなどの不具合が抑制される。 If the frequency of the PWM-controlled carrier signal between the first system and the second system has a frequency difference that is greater than or equal to the product of the maximum rotation speed of the motor 200 and the number of pole pairs, the frequency difference will be 2n times the frequency difference (n is a natural number). The frequency of the generated torque ripple is outside the rotational speed of the motor 200 and also outside the human sensory range. As a result, problems such as noise, vibration, and control disturbance caused by torque ripple are suppressed.

また、PWM制御のキャリア信号の周波数差は、機械角で上記積の3n倍(nは自然数)を除く値であることが望ましい。第1系統と第2系統とでキャリア信号の周波数が完全に同期している場合であっても、モータ200には6n次のトルクリップルが生じる。キャリア信号の周波数差が機械角で上記積の3n倍であると、周波数差によるトルクリップルが6n次のトルクリップルに重なることが避けられる。 キャリア信号同士の周波数差を得るための具体的な構成としては2つの構成が考えられる。 Further, it is preferable that the frequency difference between the carrier signals for PWM control is a value excluding 3n times the above product (n is a natural number) in mechanical angle. Even if the frequencies of the carrier signals in the first system and the second system are completely synchronized, a 6nth-order torque ripple occurs in the motor 200. If the frequency difference between the carrier signals is 3n times the above product in mechanical angle, it is possible to avoid the torque ripple due to the frequency difference from being superimposed on the 6nth order torque ripple. Two configurations can be considered as specific configurations for obtaining the frequency difference between carrier signals.

1つ目の構成は、図1に示す2つの内部クロック371、372として、クロック信号の周波数が互いに例えば5%程度異なっているクロック素子を用いる構成である。このようなクロック素子が用いられることにより、2つのマイクロコントローラ341、342における駆動制御のプログラム(特にキャリア信号の生成とPWM制御のプログラム)として同一のプログラムが利用可能となる。 The first configuration uses clock elements whose clock signal frequencies differ from each other by, for example, about 5% as the two internal clocks 371 and 372 shown in FIG. By using such a clock element, the same program can be used as a drive control program (particularly a carrier signal generation and PWM control program) in the two microcontrollers 341 and 342.

2つ目の構成は、周波数の変換係数が2つのマイクロコントローラ341、3
42で互いに例えば5%程度相違する構成である。この変換係数は、2つのマイクロコントローラ341、342が内部クロック371、372からのクロック信号を周波数変換してPWM制御のキャリア信号を生成する際に用いられる。第1の制御回路301のマイクロコントローラ341は、第1の変換比率で周波数変換し、第2の制御回路302のマイクロコントローラ342は、第1の変換比率とは異なる第2の変換比率で周波数変換する。
The second configuration uses a microcontroller 341, 3 with two frequency conversion coefficients.
42, which differ from each other by, for example, about 5%. These conversion coefficients are used when the two microcontrollers 341 and 342 frequency convert the clock signals from the internal clocks 371 and 372 to generate carrier signals for PWM control. The microcontroller 341 of the first control circuit 301 performs frequency conversion at a first conversion ratio, and the microcontroller 342 of the second control circuit 302 performs frequency conversion at a second conversion ratio different from the first conversion ratio. do.

この構成では、内部クロック371、372として同一周波数のクロック素子が採用可能であり、望ましい周波数差を有する各キャリア信号が変換係数によって容易に得られる。同一周波数のクロック素子は、例えば同一規格の水晶体を内蔵したクロック素子であり、部品種類の増加が回避される。また、内部クロック371、372同士に個体差があっても構わない。即ち、同一規格の水晶体では上述した様に50Hz程度の個体差が生じうるが、変換係数が5%程度相違すると、このような個体差を遥かに超えた周波数差が生じるので個体差の存在は問題とならない。 With this configuration, clock elements having the same frequency can be used as the internal clocks 371 and 372, and carrier signals having a desired frequency difference can be easily obtained using conversion coefficients. The clock elements having the same frequency are, for example, clock elements incorporating a crystalline lens of the same standard, thereby avoiding an increase in the number of types of parts. Further, there may be individual differences between the internal clocks 371 and 372. In other words, as mentioned above, individual differences of about 50 Hz can occur between crystalline lenses of the same standard, but if the conversion coefficients differ by about 5%, a frequency difference that far exceeds such individual differences will occur, so the existence of individual differences is unlikely. Not a problem.

なお、更に別の構成としては、キャリア信号同士の周波数の同期状態を確認する回路を備え、確認された同期状態に基づいてキャリア信号の周波数を変更して望ましい周波数差を得るという構成も考えられる。この構成では、例えば上記変換係数として同一の変数が誤って設定された場合であっても、望ましい周波数差が得られるという利点がある。 次に、本実施形態の変形例について説明する。 図9は、回路配線が異なる変形例におけるモータ駆動ユニット1000の回路構成を示す図である。 図9に示す変形例では、第1インバータ101と第2インバータ102とのグランド端同士が分離する。このように分離した構成であっても、キャリア信号の周波数にずれが生じるとトルクリップルが発生する。従って、図9に示す変形例でも、第1系統と第2系統とで、PWM制御のキャリア信号の周波数に上述した差が設けられることで、トルクリップルの周波数は、モータ200の回転数から外れると共に人間の感覚域も外れる。この結果、トルクリップルに伴う騒音や振動や制御乱れなどの不具合が抑制される。

(パワーステアリング装置の実施形態)
Furthermore, as another configuration, a configuration may be considered in which a circuit is provided to check the frequency synchronization state of carrier signals, and the frequency of the carrier signals is changed based on the confirmed synchronization state to obtain a desired frequency difference. . This configuration has the advantage that a desired frequency difference can be obtained even if, for example, the same variable is erroneously set as the conversion coefficient. Next, a modification of this embodiment will be described. FIG. 9 is a diagram showing a circuit configuration of a motor drive unit 1000 in a modified example with different circuit wiring. In the modification shown in FIG. 9, the ground ends of the first inverter 101 and the second inverter 102 are separated from each other. Even with such a separated configuration, torque ripple will occur if a shift occurs in the frequency of the carrier signal. Therefore, in the modified example shown in FIG. 9 as well, the frequency of the torque ripple deviates from the rotation speed of the motor 200 by providing the above-mentioned difference in the frequency of the carrier signal of PWM control between the first system and the second system. At the same time, the range of human senses is also out of bounds. As a result, problems such as noise, vibration, and control disturbance caused by torque ripple are suppressed.

(Embodiment of power steering device)

自動車等の車両は一般的に、パワーステアリング装置を備える。パワーステアリング装置は、運転者がステアリングハンドルを操作することによって発生するステアリング系の操舵トルクを補助するための補助トルクを生成する。補助トルクは、補助トルク機構によって生成され、運転者の操作の負担を軽減することができる。例えば、補助トルク機構は、操舵トルクセンサ、ECU、モータおよび減速機構などから構成される。操舵トルクセンサは、ステアリング系における操舵トルクを検出する。ECUは、操舵トルクセンサの検出信号に基づいて駆動信号を生成する。モータは、駆動信号に基づいて操舵トルクに応じた補助トルクを生成し、減速機構を介してステアリング系に補助トルクを伝達する。 Vehicles such as automobiles are generally equipped with a power steering device. A power steering device generates an auxiliary torque to assist the steering torque of a steering system generated when a driver operates a steering wheel. The auxiliary torque is generated by an auxiliary torque mechanism, and can reduce the operational burden on the driver. For example, the auxiliary torque mechanism includes a steering torque sensor, an ECU, a motor, a speed reduction mechanism, and the like. The steering torque sensor detects steering torque in a steering system. The ECU generates a drive signal based on a detection signal from the steering torque sensor. The motor generates an auxiliary torque corresponding to the steering torque based on the drive signal, and transmits the auxiliary torque to the steering system via the reduction mechanism.

上記実施形態のモータ駆動ユニット1000は、パワーステアリング装置に好適に利用される。図10は、本実施形態による電動パワーステアリング装置2000の構成を模式的に示す図である。 電動パワーステアリング装置2000は、ステアリング系520および補助トルク機構540を備える。 The motor drive unit 1000 of the above embodiment is suitably used in a power steering device. FIG. 10 is a diagram schematically showing the configuration of an electric power steering device 2000 according to this embodiment. Electric power steering device 2000 includes a steering system 520 and an auxiliary torque mechanism 540.

ステアリング系520は、例えば、ステアリングハンドル521、ステアリングシャフト522(「ステアリングコラム」とも称される。)、自在軸継手523A、523B、および回転軸524(「ピニオン軸」または「入力軸」とも称される。)を備える。 The steering system 520 includes, for example, a steering handle 521, a steering shaft 522 (also referred to as a "steering column"), universal joints 523A, 523B, and a rotating shaft 524 (also referred to as a "pinion shaft" or "input shaft"). ).

また、ステアリング系520は、例えば、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪(例えば左右の前輪)529A、529Bを備える。 Further, the steering system 520 includes, for example, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A, 552B, tie rods 527A, 527B, knuckles 528A, 528B, and left and right steered wheels (for example, left and right front wheels) 529A, 529B.

ステアリングハンドル521は、ステアリングシャフト522と自在軸継手523A、523Bとを介して回転軸524に連結される。回転軸524にはラックアンドピニオン機構525を介してラック軸526が連結される。ラックアンドピニオン機構525は、回転軸524に設けられたピニオン531と、ラック軸526に設けられたラック532とを有する。ラック軸526の右端には、ボールジョイント552A、タイロッド527Aおよびナックル528Aをこの順番で介して右の操舵車輪529Aが連結される。右側と同様に、ラック軸526の左端には、ボールジョイント552B、タイロッド527Bおよびナックル528Bをこの順番で介して左の操舵車輪529Bが連結される。ここで、右側および左側は、座席に座った運転者から見た右側および左側にそれぞれ一致する。 Steering handle 521 is connected to rotating shaft 524 via steering shaft 522 and universal joints 523A and 523B. A rack shaft 526 is connected to the rotating shaft 524 via a rack and pinion mechanism 525. The rack and pinion mechanism 525 includes a pinion 531 provided on the rotating shaft 524 and a rack 532 provided on the rack shaft 526. A right steered wheel 529A is connected to the right end of the rack shaft 526 via a ball joint 552A, a tie rod 527A, and a knuckle 528A in this order. Similarly to the right side, a left steered wheel 529B is connected to the left end of the rack shaft 526 via a ball joint 552B, a tie rod 527B, and a knuckle 528B in this order. Here, the right side and left side correspond to the right side and left side, respectively, as seen from the driver sitting in the seat.

ステアリング系520によれば、運転者がステアリングハンドル521を操作することによって操舵トルクが発生し、ラックアンドピニオン機構525を介して左右の操舵車輪529A、529Bに伝わる。これにより、運転者は左右の操舵車輪529A、529Bを操作することができる。 According to the steering system 520, steering torque is generated when the driver operates the steering handle 521, and is transmitted to the left and right steering wheels 529A and 529B via the rack and pinion mechanism 525. This allows the driver to operate the left and right steering wheels 529A, 529B.

補助トルク機構540は、例えば、操舵トルクセンサ541、ECU542、モータ543、減速機構544および電力供給装置545を備える。補助トルク機構540は、ステアリングハンドル521から左右の操舵車輪529A、529Bに至るステアリング系520に補助トルクを与える。なお、補助トルクは「付加トルク」と称されることがある。 The auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an ECU 542, a motor 543, a speed reduction mechanism 544, and a power supply device 545. The auxiliary torque mechanism 540 applies an auxiliary torque to the steering system 520 extending from the steering handle 521 to the left and right steering wheels 529A and 529B. Note that the auxiliary torque is sometimes referred to as "additional torque."

ECU542としては、例えば図1などに示された制御回路301、302が用いられる。また、電力供給装置545としては、例えば図1などに示されたインバータ101、102が用いられる。また、モータ543としては、例えば図1などに示されたモータ200が用いられる。ECU542、モータ543および電力供給装置545は、一般的に「機電一体型モータ」と称されるユニットを構成する場合がある。図10に示された各要素のうち、ECU542、モータ543および電力供給装置545を除いた要素で構成された機構は、モータ543によって駆動されるパワーステアリング機構の一例に相当する。 As the ECU 542, for example, the control circuits 301 and 302 shown in FIG. 1 and the like are used. Further, as the power supply device 545, for example, the inverters 101 and 102 shown in FIG. 1 etc. are used. Moreover, as the motor 543, the motor 200 shown in FIG. 1 etc. is used, for example. The ECU 542, motor 543, and power supply device 545 may constitute a unit generally referred to as a "mechanical and electrical integrated motor." Among the elements shown in FIG. 10, a mechanism configured with the elements excluding the ECU 542, the motor 543, and the power supply device 545 corresponds to an example of a power steering mechanism driven by the motor 543.

操舵トルクセンサ541は、ステアリングハンドル521によって付与されたステアリング系520の操舵トルクを検出する。ECU542は、操舵トルクセンサ541からの検出信号(以下、「トルク信号」と表記する。)に基づいてモータ543を駆動するための駆動信号を生成する。モータ543は、操舵トルクに応じた補助トルクを駆動信号に基づいて発生する。補助トルクは、減速機構544を介してステアリング系520の回転軸524に伝達される。減速機構544は、例えばウォームギヤ機構である。補助トルクはさらに、回転軸524からラックアンドピニオン機構525に伝達される。 Steering torque sensor 541 detects the steering torque of steering system 520 applied by steering handle 521. ECU 542 generates a drive signal for driving motor 543 based on a detection signal (hereinafter referred to as "torque signal") from steering torque sensor 541. The motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal. The auxiliary torque is transmitted to the rotating shaft 524 of the steering system 520 via the speed reduction mechanism 544. The speed reduction mechanism 544 is, for example, a worm gear mechanism. The auxiliary torque is further transmitted from the rotating shaft 524 to the rack and pinion mechanism 525.

パワーステアリング装置2000は、補助トルクがステアリング系520に付与される箇所によって、ピニオンアシスト型、ラックアシスト型、およびコラムアシスト型等に分類される。図10には、ピニオンアシスト型のパワーステアリング装置2000が示される。ただし、パワーステアリング装置2000は、ラックアシスト型、コラムアシスト型等にも適用される。 The power steering device 2000 is classified into a pinion assist type, a rack assist type, a column assist type, etc. depending on the location where the auxiliary torque is applied to the steering system 520. FIG. 10 shows a pinion assist type power steering device 2000. However, the power steering device 2000 is also applicable to rack assist type, column assist type, etc.

ECU542には、トルク信号だけでなく、例えば車速信号も入力され得る。ECU542のマイクロコントローラは、トルク信号や車速信号などに基づいてモータ543をPWM制御することができる。 In addition to the torque signal, for example, a vehicle speed signal can also be input to the ECU 542. The microcontroller of the ECU 542 can perform PWM control of the motor 543 based on a torque signal, a vehicle speed signal, and the like.

ECU542は、少なくともトルク信号に基づいて目標電流値を設定する。ECU542は、車速センサによって検出された車速信号を考慮し、さらに角度センサによって検出されたロータの回転信号を考慮して、目標電流値を設定することが好ましい。ECU542は、電流センサ(図1参照)によって検出された実電流値が目標電流値に一致するように、モータ543の駆動信号、つまり、駆動電流を制御することができる。 ECU 542 sets a target current value based on at least the torque signal. Preferably, the ECU 542 sets the target current value by considering the vehicle speed signal detected by the vehicle speed sensor and further by considering the rotor rotation signal detected by the angle sensor. The ECU 542 can control the drive signal of the motor 543, that is, the drive current, so that the actual current value detected by the current sensor (see FIG. 1) matches the target current value.

パワーステアリング装置2000によれば、運転者の操舵トルクにモータ543の補助トルクを加えた複合トルクを利用してラック軸526によって左右の操舵車輪529A、529Bを操作することができる。特に、上記実施形態のモータ駆動ユニット1000が利用されることにより、トルクリップルによる騒音や振動などといった不具合が低減され、円滑なパワーアシストが実現される。 According to the power steering device 2000, the left and right steered wheels 529A and 529B can be operated by the rack shaft 526 using a composite torque obtained by adding the auxiliary torque of the motor 543 to the driver's steering torque. In particular, by using the motor drive unit 1000 of the above embodiment, problems such as noise and vibration caused by torque ripple are reduced, and smooth power assist is realized.

なお、ここでは、本発明の駆動制御装置、駆動装置における使用方法の一例としてパワーステアリング装置が挙げられるが、本発明の駆動制御装置、駆動装置の使用方法は上記に限定されず、ポンプ、コンプレッサなど広範囲に使用可能である。 Here, a power steering device is mentioned as an example of how to use the drive control device and drive device of the present invention, but the method of using the drive control device and drive device of the present invention is not limited to the above, and can be applied to pumps, compressors, etc. It can be used in a wide range of ways.

上述した実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments described above should be considered to be illustrative in all respects and not restrictive. The scope of the present invention is indicated by the claims rather than the embodiments described above, and it is intended that all changes within the meaning and range equivalent to the claims are included.

101、102:インバータ 200:モータ 301、302:制御回路 311,312:電源回路 321、322:角度センサ 331、332:入力回路 341、342:マイクロコントローラ 351、352:駆動回路 361、362:ROM 371、372:内部クロック 401、402:電流センサ 403、404:電源 1000:モータ駆動ユニット 2000:パワーステアリング装置 101, 102: Inverter 200: Motor 301, 302: Control circuit 311, 312: Power supply circuit 321, 322: Angle sensor 331, 332: Input circuit 341, 342: Microcontroller 351, 352: Drive circuit 361, 362: ROM 371 , 372: Internal clock 401, 402: Current sensor 403, 404: Power supply 1000: Motor drive unit 2000: Power steering device

Claims (5)

モータの駆動を制御する駆動制御装置であって、 前記モータの巻線の一端に接続される第1インバータと、 前記一端に対する他端に接続される第2インバータと、 前記第1インバータに対してPWM制御を行う第1制御回路と、 前記第2インバータに対してPWM制御を行う第2制御回路と、を備え、 前記第1制御回路と前記第2制御回路とでは、PWM制御のキャリア信号の周波数が、前記モータの最大回転数と極対数との積以上の周波数差を有する駆動制御装置。 A drive control device that controls driving of a motor, comprising: a first inverter connected to one end of a winding of the motor; a second inverter connected to the other end of the motor; and a second inverter connected to the other end of the winding of the motor. A first control circuit that performs PWM control; and a second control circuit that performs PWM control on the second inverter, and the first control circuit and the second control circuit control the carrier signal of the PWM control. A drive control device in which the frequency has a frequency difference that is greater than or equal to the product of the maximum rotational speed of the motor and the number of pole pairs. 前記周波数差が、機械角で前記積の3n倍(nは自然数)を除く値である請求項1に記載の駆動制御装置。 The drive control device according to claim 1, wherein the frequency difference is a value excluding 3n times (n is a natural number) the product in mechanical angle. 前記第1制御回路および前記第2制御回路は、振動子から得られるクロック信号を周波数変換してPWM制御のキャリア信号を生成し、 前記第1制御回路は、第1の変換比率で周波数変換し、 前記第2制御回路は、第1の変換比率とは異なる第2の変換比率で周波数変換する請求項1または2に記載の駆動制御装置。 The first control circuit and the second control circuit convert the frequency of a clock signal obtained from a vibrator to generate a carrier signal for PWM control, and the first control circuit converts the frequency at a first conversion ratio. 3. The drive control device according to claim 1, wherein the second control circuit converts the frequency at a second conversion ratio different from the first conversion ratio. 請求項1から3のいずれか1項に記載の駆動制御装置と、 前記駆動制御装置によって駆動が制御されるモータと、を備えるモータ駆動装置。 A motor drive device comprising: the drive control device according to any one of claims 1 to 3; and a motor whose drive is controlled by the drive control device. 請求項1から3のいずれか1項に記載の駆動制御装置と、 前記駆動制御装置によって駆動が制御されるモータと、 前記モータによって駆動されるパワーステアリング機構と、を備えるパワーステアリング装置。
A power steering device comprising: the drive control device according to claim 1; a motor whose drive is controlled by the drive control device; and a power steering mechanism driven by the motor.
JP2020563032A 2018-12-28 2019-12-10 Drive control device, motor drive device and power steering device Active JP7444075B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018248223 2018-12-28
JP2018248223 2018-12-28
PCT/JP2019/048244 WO2020137511A1 (en) 2018-12-28 2019-12-10 Drive-controlling device, motor drive device, and power-steering device

Publications (2)

Publication Number Publication Date
JPWO2020137511A1 JPWO2020137511A1 (en) 2021-11-11
JP7444075B2 true JP7444075B2 (en) 2024-03-06

Family

ID=71127151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020563032A Active JP7444075B2 (en) 2018-12-28 2019-12-10 Drive control device, motor drive device and power steering device

Country Status (3)

Country Link
JP (1) JP7444075B2 (en)
CN (1) CN113228497B (en)
WO (1) WO2020137511A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220152A (en) 2007-02-05 2008-09-18 Seiko Epson Corp Method and device for measuring speed of revolution of rotary equipment
WO2009040884A1 (en) 2007-09-25 2009-04-02 Mitsubishi Electric Corporation Controller for electric motor
JP2017158233A (en) 2016-02-29 2017-09-07 株式会社Soken Power conversion device
WO2017150641A1 (en) 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429371B2 (en) * 2010-06-07 2014-02-26 トヨタ自動車株式会社 Control device and control method for power controller
JP5348324B2 (en) * 2010-07-14 2013-11-20 トヨタ自動車株式会社 Vehicle control device
JP6329052B2 (en) * 2014-09-30 2018-05-23 株式会社Soken Drive device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220152A (en) 2007-02-05 2008-09-18 Seiko Epson Corp Method and device for measuring speed of revolution of rotary equipment
WO2009040884A1 (en) 2007-09-25 2009-04-02 Mitsubishi Electric Corporation Controller for electric motor
JP2017158233A (en) 2016-02-29 2017-09-07 株式会社Soken Power conversion device
WO2017150641A1 (en) 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Also Published As

Publication number Publication date
WO2020137511A1 (en) 2020-07-02
CN113228497B (en) 2024-04-16
CN113228497A (en) 2021-08-06
JPWO2020137511A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
JP6888609B2 (en) Power converter, motor drive unit and electric power steering device
WO2018173424A1 (en) Power conversion device, motor drive unit, and electric power steering device
US10742137B2 (en) Power conversion device, motor drive unit, and electric power steering device
JP7078051B2 (en) Power converter, motor drive unit and electric power steering device
JP7235032B2 (en) Power converters, drives and power steering devices
WO2019150913A1 (en) Driving device and power steering device
JP7010282B2 (en) Power converter, motor drive unit and electric power steering device
WO2020203526A1 (en) Power conversion device, drive device, and power steering device
JP7444075B2 (en) Drive control device, motor drive device and power steering device
WO2019151308A1 (en) Power conversion device, driving device, and power steering device
JP6468461B2 (en) Motor control device
US20220166361A1 (en) Power converter, drive, and power steering device
WO2019150911A1 (en) Power conversion device, drive device, and power steering device
JP7400735B2 (en) Drive control equipment, drive equipment and power steering equipment
JP2021013209A (en) Power conversion device, driving apparatus, and power steering apparatus
US11420672B2 (en) Power conversion device, motor drive unit, and electric power steering device
WO2019150912A1 (en) Power conversion device, driving device, and power steering device
WO2019159836A1 (en) Power conversion device, drive device, and power steering device
WO2020137510A1 (en) Drive control device, motor drive device, and power steering device
JP2021045012A (en) Power conversion device, drive device, and power steering device
WO2019159835A1 (en) Power conversion device, drive device, and power steering device
WO2020066182A1 (en) Driving control device, driving device, and power steering device
JP2020137263A (en) Power conversion device, drive device and power steering device
JP2021048735A (en) Electric power conversion device, driving device and power steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R151 Written notification of patent or utility model registration

Ref document number: 7444075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151